
Automatic Collocation Extraction from Text Corpora

Pavel Pecina


Ústav formální a aplikovańe lingvistiky MFF UK Praha

May 17, 2004

Outline

- The notion of collocation
 - Motivation
 - Few definitions
 - Characteristic features, classification and categotization
- 2 Methodology of collocation extraction
 - Phrase Extraction
 - Collocation identification
- 3 Experiments
 - Toolkit
 - Data
 - Basic Methods Evaluation
 - Advanced Methods
- 4 Summary
 - Conclusion, Future work, Used Tools

Outline

- 1 The notion of collocation
 - Motivation
 - Few definitions
 - Characteristic features, classification and categotization
- 2 Methodology of collocation extraction
 - Phrase Extraction
 - Collocation identification
- 3 Experiments
 - Toolkit
 - Data
 - Basic Methods Evaluation
 - Advanced Methods
- 4 Summary
 - Conclusion, Future work, Used Tools

Well known problems

Lexicography

Which multiword expressions to include into a lexicon?
 My new computer is a laptop computer.

Machine translation

- Where to brake a sentence into chunks?

She likes ice cream pancakes.

Information retrieval

Which multiword terms to index?
 Our new friend is from New York.

Word sense disambiguation

How to distinguish between possible word senses?
 My uncle owns a wine yard.

Other well known problems

Spell/grammar/style-checking

Is this text written correctly?
 Meals will be served outside, weather allowing.

Text classification and summarization

What is this text about?
 Carriage return is necessary here.

Language modeling (text/speech synthesis)

- How to create a fluent sentence? Could you hand me salt and pepper?

Corpus-based language teaching/learning

What kinds of multiword expressions to teach?
 When she kicked his head he kicked the bucket.

What are we looking for?

• noun phrases disk drive, weapons of mass destruction

light verbs compounds

phrasal verbs

stock phrases

idioms

technological expressions

proper names

keep an eye, make a decision

make up, give up, tell off

bacon and eggs, salt and pepper

hear it through the grapevine

object oriented language

Joe Black, Prague Spring

• frequent usages game over, good morning

multiword units w/ independent existence white wine, Far East

• close associations between words knock on a door, thick hair

What are we looking for?

• noun phrases disk drive, weapons of mass destruction

light verbs compounds

phrasal verbs

stock phrases

idioms

technological expressions

proper names

keep an eye, make a decision

make up, give up, tell off

bacon and eggs, salt and pepper

hear it through the grapevine

object oriented language

Joe Black, Prague Spring

• frequent usages game over, good morning

multiword units w/ independent existence white wine, Far East

• close associations between words knock on a door, thick hair

Collocations.

Definitions ...

Firth (1951)

"Collocations of a given word are statements of the habitual or customary places of that word."

Choueka (1988)

"A collocation is a sequence of two or more consecutive words, that has characteristics of a syntactic and semantic unit, and whose exact and unambiguous meaning or connotation cannot be derived directly from the meaning or connotation of its components."

Other Definitions ...

Manning (1999)

"A collocation is an expression consisting of two or more words that correspond to some conventional way of saying things."

Motivation

Radev (1998)

"A collocation is a group of words that that occur together more often than by a chance."

... and The Definition

"A collocation is an expression consisting of two or more words that form a grammatical and semantic unit."

Motivation

Characteristic Features

Non-compositionality

kick the bucket, carriage return, white man

Non-substituability

yellow wine, hit the bucket, make homework

Non-modifiability

give a small hand, poor as a church mice

Not straightforward translation

ice cream, to be right

Domain-dependency

carriage return,

"Subjectivity"

game over, new company

Classification

Semantics

- compositional, noncompositional

Consecutivity

- free, fixed

Functionality

 idioms, proper names, technical terms, phrasal verbs, light verbs

Word usage

-
$$A \rightarrow N$$
, $N \rightarrow A$, $D \rightarrow V$, $R \rightarrow N$

Motivation

Grammar Patterns

Part-Of-Speech

Α	N	lineární funkce
Ν		následník trůnu
D	$A\;N$	objektově orientovaný jazyk
Ν	ΑN	zbraně hromadného ničení
V	RN	přijít k sobě

Dependency Types Atr | conný papír

Αu	сенну рари
Sb	soud rozhodl
Obj	dávat přednost
Adv	zdravotně postižený

Outline

- The notion of collocation
 - Motivation
 - Few definitions
 - Characteristic features, classification and categotization
- 2 Methodology of collocation extraction
 - Phrase Extraction
 - Collocation identification
- 3 Experiments
 - Toolkit
 - Data
 - Basic Methods Evaluation
 - Advanced Methods
- 4 Summary
 - Conclusion, Future work, Used Tools

Phrase extraction

1. extracting all possible candidates for collocations

- consequent word n-grams
- sliding window
- syntactical subtrees

2. collecting their occurrence statistics

- contingency tables
- empirical context

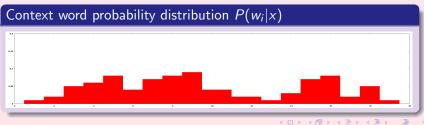
Contingency table: observed frequencies

bigram: <i>xy</i>				
	X=x	$X \neq x$		
$Y=y$ $Y\neq y$	O ₁₁	O ₁₂	R_1	
Y≠y	O ₂₁	O_{22}	R_2	
	C_1	C ₂	N	

example: černý trh					
	X=černý	X≠černý			
Y=trh	černý trh	domácí trh			
Y≠trh	černý čaj	zelený čaj			

Contingency table: observed frequencies

bigram: <i>xy</i>			
	X=x	$X \neq x$	
$Y=y$ $Y\neq y$	а	b	
Y≠y	С	d	


example: černý trh					
	X=černý	X≠černý			
Y=trh	černý trh	domácí trh			
Y≠trh	černý čaj	zelený čaj			

Average Word Context

Example

zlepšení situace . Kapitálový trh že to není samostatný trh bariérách v přístupu na trh banky . Americký akciový trh iít se svou kuží na trh

trh je však stále nelikvidní
trh a že je součástá širšího
trh , cenových rozdílech ,
trh byl za silného obchodování
trh . Pro vydán i mluvila zejména

Collocation Identification

Few different basic approaches

- Cooccurrence statistics
- 4 Hypothesis tests
- Association estimation
- Information theory measures
- Ontext similarity measures

Cooccurrence statistics

- Joint probability P(xy)
- Conditional probability P(y|x)
- Reverse conditional probability P(y|x)
- Symetric conditional probability P(y|x)P(x|y)

Hypothesis testing:

Null hypothesis: word occurences are independent

$$\mathbf{H_0}: P(xy) = P(x)P(y)$$

bigram: xy
$$\begin{array}{c|ccccc}
 & X = x & X \neq x \\
\hline
Y = y & E_{11} = \frac{R_1C_1}{N} & E_{12} = \frac{R_1C_2}{N} \\
Y \neq y & E_{21} = \frac{R_2C_1}{N} & E_{22} = \frac{R_2C_2}{N}
\end{array}$$

Hypothesis testing cont.

- z-score $\frac{O_{11}-E_{11}}{\sqrt{E}_{11}}$
- *t*-score $\frac{O_{11}-E_{11}}{\sqrt{O}_{11}}$
- χ^2 score $\sum_{i,j} \frac{(O_{ij} E_{ij})^2}{E_{ij}}$
- log-likelihood $2\sum_{i,j} O_{ij} \log \frac{O_{ij}}{E_{ij}}$

Association estimation

• Russel-Rao
$$\frac{a}{a+b+c+d}$$

• Sokal-Michiner
$$\frac{a+d}{a+b+c+d}$$

• Rogers-Tanimoto
$$\frac{a+d}{a+2b+2c+d}$$

• Hamann
$$\frac{(a+d)-(b+c)}{a+b+c+d}$$

• Sokal-Sneath
$$3^{rd} \frac{b+c}{a+d}$$

• Jaccard
$$\frac{a}{a+b+c}$$

$$ullet$$
 Kulczynski 1^{st} $\frac{a}{b+c}$

• Sokal-Sneath
$$2^{th} \frac{a}{a+2(b+c)}$$

• Kulczynski
$$2^{nd} \frac{1}{2} (\frac{a}{a+b} + \frac{a}{a+c})$$

Information thory and ontext similarity measures

- pointwise mutual information $\log \frac{P(xy)}{P(x)P(y)}$
- local mutual information $NP(xy) \log \frac{P(xy)}{P(x)P(y)}$
- Cross Entropy $-\sum_{w \in C} P(w|x) \log_2 P(w|y)$
- Intersection measure $\frac{2|C_x \cap C_y|}{|C_x|+|C_y|}$
- Euclidean norm $\sqrt{\sum_{w \in C} (P(w|x) P(w|y))^2}$
- Cosine norm $\frac{\sum_{w \in C} P(w|x) P(w|y)}{\sum_{w \in C} P(w|x)^2 \sum_{w \in C} P(w|y)^2}$
- L1 norm $\sum_{w \in C} |P(w|x) P(w|y)|$

Outline

- The notion of collocation
 - Motivation
 - Few definitions
 - Characteristic features, classification and categotization
- 2 Methodology of collocation extraction
 - Phrase Extraction
 - Collocation identification
- 3 Experiments
 - Toolkit
 - Data
 - Basic Methods Evaluation
 - Advanced Methods
- 4 Summary
 - Conclusion, Future work, Used Tools

Task setup

- implementation of toolkit for statistical analysis of word cooccurrences
- 2 collecting of basic methods for collocation extraction
- 1 implementation of the basic methods
- 2 evaluation of the basic methods
- experiments with advanced methods

Toolkit

- fully functional prototype implementation in Perl
- Input: plain text/ morphological level/ analytical level
- Output: collocation candidates with values of all specified measures and scores

Word Base Forms

- Full word forms too specific (morphology)
- Lemmas too general (loosing semantic information)
- Solution: lemmas with subset of morphological tags

```
<f>nenahraditelná<l>nahraditelný_(*4)<t>AAFS1----1N----<r>8<g>7
\downarrow \qquad \downarrow \qquad \downarrow \downarrow
nahraditelný_(*4) \quad A \quad F \qquad 1N
\downarrow \downarrow
<f>nahraditelný_(*4)<t>A*F1N</f>
<math display="block">\downarrow \downarrow
nenahraditelná
```

Data

Prague Dependency Treebank

- base form types: 66 662
- bigram types: 306 845
- experiments performed on dependency bigrams with frequency > 5: 21 595
- all these collocation candidates manually evaluated ...

Evaluation Data

All dependency bigrams with frequency > 5 classified into 6 groups:

5	kámen úrazu, slepá ulička, železná opona	7
4	bilý dum, černý trh, poslední slovo, pata kolmice	201
3	šifrovací klič, atomová energie, Baník Ostrava	2460
2	dávat přednost, minulé století, starosta města	443
1	na Slovensko, do Portugalska	484
0	(non-collocations)	18002

Evaluation Data

All dependency bigrams with frequency > 5 classified into 6 groups:

5	kámen úrazu, slepá ulička, železná opona	
4		
3	šifrovací klič, atomová energie, Baník Ostrava	3595
2	dávat přednost, minulé století, starosta města	
1	na Slovensko, do Portugalska	
0	(non-collocations)	18002

Evaluation Data

All dependency bigrams with frequency > 5 classified into 6 groups:

5	kámen úrazu, slepá ulička, železná opona	
4	bilý dum, černý trh, poslední slovo, pata kolmice	2668
3	šifrovací klíč, atomová energie, Baník Ostrava	
2	dávat přednost, minulé století, starosta města	
1	na Slovensko, do Portugalska	18929
0	(non-collocations)	

Basic Methods

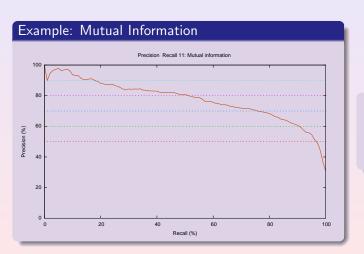
Pattern filtering

- Part of Speech pattern
- Dependecy pattern

Association measures and scores

- Cooccurrence statistics
- Likelihood measures
- Hypothesis testing
- Association estimation
- Information theory measures
- Context similarity measures

Evaluation: trading recall for precision


Precision

$$P = \frac{\# selected\ collocations}{\# selected\ bigrams} \in <0,1>$$

Recall

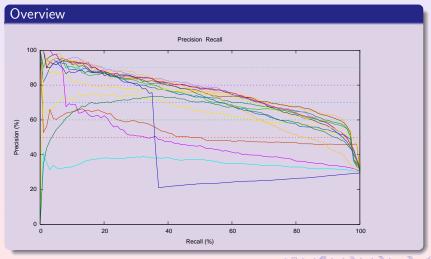
$$R = \frac{\# selected\ collocations}{\# all\ collocation} \in <0,1>$$

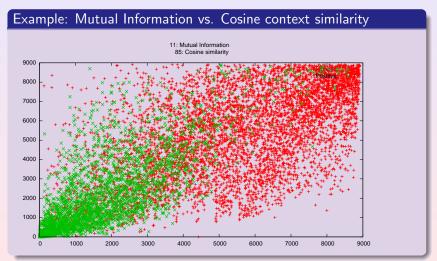
Recall and precision

 $log_2 \frac{P(xy)}{P(x)P(y)}$

Recall and precision

 $\frac{O_{11}-E_{11}}{\sqrt{O}_{11}}$


Recall and precision


 $\frac{O_{11}-E_{11}}{\sqrt{E}_{11}}$

Toolkit Data Basic Methods Evaluation Advanced Methods

Evaluation results

Advanced Methods: motivation

Advanced Methods: idea

Statistical learning problem

• for each bigram we get set of features (categories, scores etc.)

$$\mathbf{x_i} = (x_1, x_2, \dots x_{90})$$

each bigram we want to classify as collocation or noncolloc.

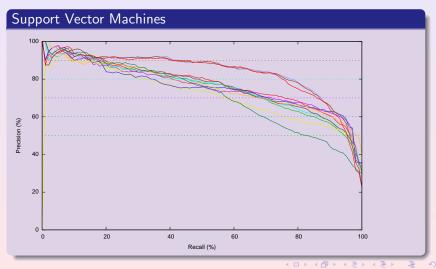
$$f(\mathbf{x_i}) = y_i, y_i = 0, 1$$

so we are looking for function that minimizes a risk functional

$$\min \sum_{i} Q(f(\mathbf{x_i}), y_i)$$

Advanced Methods: idea cont.

Statistical learning problem


• but classification might be hard, what about regression?

$$f(\mathbf{x_i}) = y_y, y_i \in \langle 0, 1 \rangle$$

- Isn't R⁹⁰ too much? What about feature selection?
- Yes! And how to do it?
 - Liner discriminant
 - General linear models logistic regresion
 - Neural networks
 - Support vector Machines

Result

Outline

- The notion of collocation
 - Motivation
 - Few definitions
 - Characteristic features, classification and categotization
- 2 Methodology of collocation extraction
 - Phrase Extraction
 - Collocation identification
- 3 Experiments
 - Toolkit
 - Data
 - Basic Methods Evaluation
 - Advanced Methods
- $oldsymbol{4}$ Summary
 - Conclusion, Future work, Used Tools

Conclusion

Achived results

- implementation and evaluation of basic methods for collocation extraction
- promising results with advanced methods

Future work

- experiments with advanced methods
- evaluation of advanced methods
- experiments on English data

Used tools and toolkits

R-project

- a language and environment for statistical computing and graphics
- extremelly powerfull
- GNU GPL license
- www.r-project.org

Torch

- machine learning library
- C++, BSD license
- www.torch.ch