
The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 31–40

MTMonkey: A Scalable Infrastructure
for a Machine Translation Web Service

Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina
Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
We present a web service which handles and distributes JSON-encoded HTTP requests for

machine translation (MT) among multiple machines running an MT system, including text
pre- and post-processing. It is currently used to provide MT between several languages for
cross-lingual information retrieval in the EU FP7 Khresmoi project. The software consists of an
application server and remote workers which handle text processing and communicate trans-
lation requests to MT systems. The communication between the application server and the
workers is based on the XML-RPC protocol. We present the overall design of the software and
test results which document speed and scalability of our solution. Our software is licensed
under the Apache 2.0 licence and is available for download from the Lindat-Clarin repository
and Github.

1. Introduction

In this paper, we describe an infrastructure for a scalable machine translation web
service capable of providing MT services among multiple languages to remote clients
posting JSON-encoded requests.

The infrastructure was originally developed as a component of the EU FP7 Khres-
moi project, a multilingual multimodal search and access system for biomedical in-
formation and documents (Aswani et al., 2012), to provide MT services for real-time
translation of user queries and retrieved document summaries. The service is used
with three language pairs (Czech–English, French–English, and German–English) in
both directions within the Khresmoi project, but the system is designed to be langu-
age-independent and capable of serving multiple translation directions.

© 2013 PBML. All rights reserved. Corresponding author: tamchyna@ufal.mff.cuni.cz
Cite as: Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina. MTMonkey: A Scalable Infrastructure for a
Machine Translation Web Service. The Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 31–40.
doi: 10.2478/pralin-2013-0009.



PBML 100 OCTOBER 2013

For Khresmoi to run smoothly, the translation system must be able to quickly and
reliably react to translation requests, typically with multiple requests arriving at the
same time. Since machine translation is a highly computationally demanding task,
solutions as efficient as possible must be sought. The system must also contain error
detection and recovery mechanisms to ensure uninterrupted operation of the service.
Moreover, the solution must be naturally scalable to allow for flexible increase of com-
putational power to reach higher performance if required by its customers’ demand.

In this paper, we describe the structure of our translation system, and detail the
results of several performance tests. We make the system available as free software,
licensed under the Apache 2.0 licence.1 MTMonkey 1.0 is published via the Lindat-
Clarin repository,2 updated code is released on GitHub and open for comments and
further contributions.3

2. Pre-considerations

We build upon Moses (Koehn et al., 2007), a statistical machine translation system.
Koehn (2013, Section 3.3.22) explains how to operate Moses as Moses Server respond-
ing to translation requests on a given port. Support for using multiple translation
directions was originally available as Using Multiple Translation Systems in the Same
Server (Koehn, 2013, p. 121), later to be replaced by more general Alternate Weight Set-
tings (Koehn, 2013, p. 135), which is still under development and currently does not
work with multi-threaded decoding. We therefore decided to handle different trans-
lation directions using separate stand-alone Moses Server instances.

Moses does not provide any built-in support for load balancing, which is needed
to distribute the translation requests evenly among the Moses instances. We there-
fore explored RabbitMQ,4 a robust open-source messaging toolkit which can be used
to implement even complex application communication scenarios. However, we con-
cluded that for our relatively simple task where the main focus is on efficiency, its
overhead is unpleasant while the benefits it brings are only moderate. We therefore
decided to implement our own solution for request distribution and load balancing.

We implement our solution in Python, which was chosen due to its relatively high
efficiency combined with the comfortable programming experience it offers.

There are several remote procedure call (RPC) protocols available that could be
used in our system. For the public API, we use JSON-RPC,5 which is simple and
lightweight in comparison to other RPC protocols, making it highly suitable for RPC

1http://www.apache.org/licenses/LICENSE-2.0
2http://hdl.handle.net/11858/00-097C-0000-0022-AAF5-B
3https://github.com/ufal/mtmonkey
4http://www.rabbitmq.com/
5http://www.jsonrpc.org/

32



Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

over the Internet (other formats could be easily added if needed). Moses Server im-
plements XML-RPC,6 which is similar to JSON-RPC, although not as lightweight. We
employ XML-RPC for the internal API as well, since it has a native Python implemen-
tation, which is more efficient and seamless than JSON-RPC Python libraries.

MTMonkey is in its architecture very similar to the MT Server Land system (Fe-
dermann and Eisele, 2010), which uses XML-RPC as a response format and focuses
more on the possibility of comparing different MT systems for the same translation
direction than on low-latency processing of a large number of simultaneous requests.
A similar approach to ours was also taken by Arcan et al. (2013), who built a multi-
lingual financial term translation system on top of Moses.7 They make their system
freely available through both a web GUI and a RESTful service, using JSON as the re-
sponse format. They provide lists of n-best translations and allow the users to upload
their own dictionaries, which are used to override the SMT system-generated transla-
tions. The WebTranslation toolkit8 for translating web pages which is built into Moses
also supports distributing translation requests to multiple instances of Moses servers
but this solution is a proof of concept only and not designed for production environ-
ments.

3. Implementation

MTMonkey consists of an application server and a set of workers. The application
server handles translation request arriving through the public API and uses the inter-
nal API to distribute them to the workers, which perform the translations. The sys-
tem is able to handle multiple incoming translation requests by load balancing and
queuing. Self-check mechanisms are also included. The architecture of the system is
visualized in Figure 1 and described in detail in Sections 3.1–3.6.

The application server and workers are implemented in Python and are compatible
with Python versions 2.6 and 2.7. The installation and support scripts are written in
Bash. In addition, we provide a very simple PHP-based web client that allows for an
easy interactive testing of the service and serves as an example client implementation.
We tested the whole system under Ubuntu 10.04, but it should be able to operate on
any Unix-like system.

3.1. Public API

The application server provides a public API based on the REST9 principles, ac-
cepting requests over HTTP in the JSON format as objects with the following keys:

6http://www.xmlrpc.com/
7http://monnet01.sindice.net/monnet-translation/
8http://www.statmt.org/moses/?n=Moses.WebTranslation
9http://en.wikipedia.org/wiki/Representational_state_transfer

33



PBML 100 OCTOBER 2013

Figure 1. The overall architecture of the translation system. English-to-German
translation is shown in detail.

sourceLang the ISO 639-1 code of the source language (cs, de, en, fr);
targetLang the ISO 639-1 code of the target language (cs, de, en, fr);
text the text to be translated, in the UTF-8 character encoding;
detokenize detokenize the translation (boolean);
alignmentInfo request alignment information (boolean).

The response is a JSON object with the following keys:

errorCode 0, or error code;
translation the translation, in the UTF-8 character encoding;
alignment-raw alignment information (if requested by alignmentInfo) as a list of

objects containing indexes of start- and end-tokens of correspond-
ing source and target text chunks.

The only currently implemented advanced feature is the option to request align-
ment information, which can be used to determine which part of the input texts cor-
responds to which part of the translation. There are several other fields reserved for
future use, such as nBestSize to request multiple translation options.10 For simplic-
ity, we omit description of parts of the API that are unused at the moment or that are
only technical.

10Due to preparation for a future implementation of the nBestSize option, the actual structure of the
response is more complicated than described, with the actual text of the translation being wrapped in an
object that itself is a member of an array of translation options.

34



Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

3.2. Application Server

The application server distributes incoming translation requests to individual wor-
kers. Available workers are listed in a simple configuration file – for each worker, its
IP address, port, and translation direction (source and target language) are given. Be-
cause the workers are identified by a combination of the IP address and port number,
there can be multiple workers on one machine listening on different ports.

If there are multiple workers available for a given translation direction, a simple
round-robin load balancing is used. No other information, such as text length or
worker configuration, is taken into account. However, we found that such a sim-
ple approach is sufficient for our needs, and at the same time it is fast enough not to
unnecessarily increase the response time, making the application server lightweight
enough to require only moderate computational resources. If more machines support
several translation directions, a set of translation requests for that direction can be dis-
tributed relatively evenly among all the respective machines. The number of workers
is potentially unlimited, i.e. the only limit is the available computational power.

3.3. Internal API

The application server communicates with workers through XML-RPC. A worker
implements two XML-RPC methods:

process_task used to request a translation, returning the translated text (with ad-
ditional information if requested, such as the alignment);

alive_check tests if the worker is running.

3.4. Workers

Each worker uses one instance of Moses providing translation in one direction and
another instance of Moses that performs recasing. The only configuration parameters
of a worker are the ports on which the Moses servers listen. The worker communicates
with the Moses servers through XML-RPC. Workers run as multi-threaded XML-RPC
servers which allows for transparent and light-weight asynchronous processing and
parallelism. One physical machine may house multiple instances of a worker, each
using its own MT system instance, providing translation in a different direction. Only
the available RAM and hard drive space are the limits on the number of running
worker instances.

3.5. Text Processing Tools

The input texts have to be preprocessed before translation. We use the usual pi-
peline of a sentence splitter and a lowercasing tokenizer. The sentence splitter is our
reimplementation of the Moses sentence splitter in Python and uses the same non-
breaking prefixes definition files.

35



PBML 100 OCTOBER 2013

Due to our system being used as a component of a complex project, the sources of
incoming translation requests are varied, and the texts to be translated can appear in
various tokenizations. We therefore implemented our own language-independent to-
kenizer, which is robust with respect to possible pre-tokenization. We achieve this by
“aggressive tokenization”: splitting the text on any punctuation, including hyphens
compounds and full stops in abbreviations (but keeping sequences of identical punc-
tuation marks unsplit, as in “…”). Although such approach might hurt translation
fluency, it helps prevent data sparsity. The same approach must be applied on the
training data.

As a post-processing step, we use a Moses instance to perform recasing and a deto-
kenizer, which is our reimplementation of the Moses detokenizer in Python.

3.6. Fault Recovery

To ensure uninterrupted operation, worker machines may be configured to per-
form scheduled self-tests and automatically restart the worker application as well as
Moses servers in case of an error. We provide a testing script that may be added to
the machines’ crontab.

In addition, we run automatic external tests that are scheduled to translate a test
sentence and notify the administrator of the service by e-mail in case of any error.
These tests connect to the service in exactly the same way as other clients, i.e. they
reflect the actual service state from the outside.

4. Evaluation

The evaluation presented in this section is focused on efficiency. We measure how
fast the system is in serving various numbers of simultaneous requests.

4.1. System Configuration

We test the system using eight worker machines, each with four CPUs and 32 GB
RAM. Each of the machines runs three worker instances (each for a different transla-
tion direction), i.e. there are four workers for each translation direction.

We use binarized models (for both the phrase-table and the language model) with
lazy loading in Moses, which causes a slight decrease in translation speed.11 However,
this setup gives us more flexibility as it allows us to fit multiple instances of Moses
into RAM on a single machine and begin translating almost instantly after starting
the Moses servers. More details about the setup of the Moses translation system itself
can be found in Pecina et al. (2012).

11The decrease in speed is noticeable even for batch translation using a single system.

36



Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

4.2. Load Testing

To generate translation requests, we use two data sets, both created within the
Khresmoi project. The first set consists of sentences from the medical domain with
16.2 words per sentence on average. The second set consists of medical search queries
with an average length of 2.1 words per query.

In each of the tests, we run a number of clients simultaneously, either for one trans-
lation direction at a time, or for all six of them. Each of the clients sends 10 syn-
chronous translation requests to the application server and reports the time elapsed
for all of them to complete, which (divided by 10) gives the average response time.
To test the scalability of our solution, we also run some of the tests with a reduced
number of workers. The one-translation-direction tests were run separately for each
of the six translation directions.12 The tests were repeated 10 times with different
parts of the test data.13 The results were then averaged and the standard deviation
was computed.

The results are shown in Table 1. We average the results over all translation di-
rections since we observed that there are only little differences in performance with
respect to the translation direction (less than 15% of the average response time). We
can see that when moving from one client to 10 clients, the number of parallel re-
quests rises faster than the average time needed to complete them. This indicates
that the parallelization and load balancing function properly. However, the standard
deviation is relatively large, which indicates that the load balancing probably could
be improved. If we multiply the number of parallel requests by 10 one more time,
the average request time gets also approximately multiplied by 10, indicating that the
parallelization capacity has already been reached at that point.

The scalability tests revealed that with a large number of parallel requests, dou-
bling the number of workers reduces the response time to approximately a half. This
shows that the system scales well, with a possibility to reach low response times even
under high load (the minimum average response time being around 550ms for sen-
tence translations in our setup) provided that sufficient computational power is avail-
able.

In spite of the queries being more than seven times shorter than the sentences on
average, the query translation was observed to be only up to five times faster than
the sentence translation under low load, and becomes consistently only about twice
as fast with higher numbers of parallel requests. This indicates that the length of the
input texts is not as crucial for the system performance as other parameters.

12The 6-translation-directions tests were not run with 100 clients per direction since we are technically
unable to run 600 clients in parallel.

13Except for the 100-client test which uses all of the data and was therefore run only once.

37



PBML 100 OCTOBER 2013

Data Translation Clients per Workers per Response time [ms]
type directions direction direction avg std dev

sentences 1 1 1 539 132
sentences 1 1 2 510 134
sentences 1 1 4 554 151
sentences 1 10 1 2,178 506
sentences 1 10 2 897 259
sentences 1 10 4 567 171
sentences 1 100 1 14,941 2,171
sentences 1 100 2 10,189 1,588
sentences 1 100 4 5,560 794
sentences 6 1 1 620 137
sentences 6 1 2 571 143
sentences 6 1 4 592 196
sentences 6 10 1 4,792 857
sentences 6 10 2 2,103 408
sentences 6 10 4 1,029 280
queries 1 1 4 112 29
queries 1 10 4 247 149
queries 1 100 4 2,593 526
queries 6 1 4 174 110
queries 6 10 4 545 91

Table 1. Load testing results.

5. Conclusion

We described a successful implementation of a machine translation web service
that is sufficiently robust and fast enough to handle parallel translation requests in
several translation directions at once and can be easily scaled to increase performance.

Our future plan is to implement worker hot-plugging for an even more flexible
scalability, as currently adding or removing workers requires a restart of the applica-
tion server. We also intend to add the drafted advanced features of the API, such as
requesting and returning multiple translation options and their scores. We are also
planning to develop a simple confidence-estimation module to assess the quality of
produced translations.

We further plan to enrich the APIs with a method capable of retrieving diagnos-
tic and statistical information, such as the list of supported translation directions, the
number of workers for each translation direction, average response time or the num-
ber of requests served in the last hour. We would also like to add support for other
MT decoders besides Moses.

38



Tamchyna, Dušek, Rosa, Pecina MTMonkey: Scalable Infrastructure for MT (31–40)

Acknowledgements

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°
257528 (KHRESMOI) and the project DF12P01OVV022 of the Ministry of Culture of
the Czech Republic (NAKI – Amalach).

This work has been using language resources developed and/or stored and/or
distributed by the LINDAT-Clarin project of the Ministry of Education of the Czech
Republic (project LM2010013).

Bibliography

Arcan, Mihael, Susan Marie Thomas, Derek De Brandt, and Paul Buitelaar. Translating the FIN-
REP taxonomy using a domain-specific corpus. In Machine Translation Summit XIV, Nice,
France, 2013.

Aswani, Niraj, Thomas Beckers, Erich Birngruber, Célia Boyer, Andreas Burner, Jakub Bystroň,
Khalid Choukri, Sarah Cruchet, Hamish Cunningham, Jan Dědek, Ljiljana Dolamic, René
Donner, Sebastian Dungs, Ivan Eggel, Antonio Foncubierta-Rodríguez, Norbert Fuhr,
Adam Funk, Alba García Seco de Herrera, Arnaud Gaudinat, Georgi Georgiev, Julien
Gobeill, Lorraine Goeuriot, Paz Gómez, Mark Greenwood, Manfred Gschwandtner, Al-
lan Hanbury, Jan Hajič, Jaroslava Hlaváčová, Markus Holzer, Gareth Jones, Blanca Jordan,
Matthias Jordan, Klemens Kaderk, Franz Kainberger, Liadh Kelly, Sascha Kriewel, Marlene
Kritz, Georg Langs, Nolan Lawson, Dimitrios Markonis, Ivan Martinez, Vassil Momtchev,
Alexandre Masselot, Hélène Mazo, Henning Müller, Pavel Pecina, Konstantin Pentchev,
Deyan Peychev, Natalia Pletneva, Diana Pottecherc, Angus Roberts, Patrick Ruch, Matthias
Samwald, Priscille Schneller, Veronika Stefanov, Miguel A. Tinte, Zdeňka Urešová, Alejan-
dro Vargas, and Dina Vishnyakova. Khresmoi: Multimodal multilingual medical informa-
tion search. In Proceedings of the 24th International Conference of the European Federation for
Medical Informatics, 2012. URL http://publications.hevs.ch/index.php/attachments/
single/458.

Federmann, Christian and Andreas Eisele. MT Server Land: An open-source MT architecture.
Prague Bulletin of Mathematical Linguistics, 94:57–66, 2010.

Koehn, Philipp. Moses, statistical machine translation system, user manual and code guide,
July 2013. URL http://www.statmt.org/moses/manual/manual.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P07/P07-2045.

39



PBML 100 OCTOBER 2013

Pecina, Pavel, Jakub Bystroň, Jan Hajič, Jaroslava Hlaváčová, and Zdeňka Urešová. Deliver-
able 4.3: Report on results of the WP4 first evaluation phase. Public deliverable, Khresmoi
project, 2012. URL http://www.khresmoi.eu/assets/Deliverables/WP4/KhresmoiD43.
pdf.

Address for correspondence:
Aleš Tamchyna
tamchyna@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics,
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

40


