Reference Data for Czech Collocation Extraction MWE 2008 Shared Task Resource

Pavel Pecina

 ${\tt pecina@ufal.mff.cuni.cz}$

Institute of Formal and Applied Linguistics Charles University, Prague

June 1, 2008

Introduction

Motivation

to create the reference data set for empirical evaluation of methods for extraction of Czech collocations

Evaluation data sets

- 1. dependency (syntactical) bigrams from Prague Dependency Treebank (PDT-Dep)
- 2. surface (adjacent) bigrams from Prague Dependency Treebank (PDT-Surf)
- 3. instances of PDT-Surf in Czech National Corpus (CNC-Surf)

Main features

- annotated as collocational and non-collocational and also assigned to finer-grained categories
- associated with corpus frequency information for easy computation of AM scores
- publicly available from the MWE wiki page http://multiword.wiki.sourceforge.net/.

Outline

- 1. Introduction
- 2. Corpus details
- 3. Linguistic annotation
- 4. Candidate data extraction
 - Normalization
 - POS fitlering
 - Frequency filtering
- 5. Candidate data details
- 6. Manual annotation
- 7. Summary

Prague Dependecy Treebank 2.0

- developed by the Institute of Formal and Applied Linguistics and the Center for Computational Linguistics, Charles University, Prague
- ▶ 1504847 tokens in 87980 sentences and 5338 documents
- complex and interlinked annotation on morphological, analytical (surface syntax), and tectogrammatical (deep syntax) layer
- the annotation is based on the long-standing Praguian linguistic tradition, adapted for the current Computational Linguistics research needs
- available from LDC (catalog number LDC2006T01)
- ▶ also available for MWE Shared Task purposes from CU directly

Czech National Corpus

- a project with the aim to build up a large corpus, containing mainly written Czech developed at Institute of CNC, Charles University, Prague
- ► SYN 2000 and 2005 synchronous corpora containing 242 million tokens
- no manual annotation (no morphology, no syntax)
- automatically assigned part-of-speech taggs (96% accuracy)

genre	SYN2000	SYN2005
fiction	15 %	40 %
technical literature	25 %	27 %
newspaper, journals	60 %	33 %

PDT Morphological layer

each word form (token) is assigned a lemma and a morphological tag

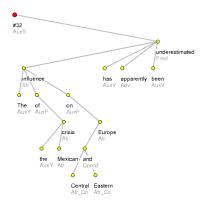
Lemma (two parts)

- lemma proper a unique identifier of the lexical item possibly followed by a number distinguishing different lemmas with the same base forms
- technical suffix containing additional information about the lemma (semantic or derivational information) - optional.

Morphological tag

is a string of 15 characters where every position encodes one morphological category using one character

```
<f> ničení <l> ničení (*3it) <t> NNNS2----A----
```


PDT Morphological categories

Pos	Name	Description	# Values
1	POS	Part of speech	12
2	SubPOS	Detailed part of speech	60
3	Gender	Gender	9
4	Number	Number	5
5	Case	Case	8
6	PossGender	Possessor's gender	4
7	PossNumber	Possessor's number	3
8	Person	Person	4
9	Tense	Tense	5
10	Grade	Degree of comparison	3
11	Negation	Negation	2
12	Voice	Voice	2
13	Reserve 1	Reserve	-
14	Reserve 2	Reserve	-
15	Var	Variant, style	10

(tagset size: \sim 5000)

PDT Analytical layer

- encoding sentence dependency structures
- each word is linked to its head word and assigned its analytical function (dependency type)
- ▶ dependency structure is a tree a directed acyclic graph having one root

PDT Analytical functions

Afun	Description
Pred	Predicate, a node not depending on another node
Sb	Subject
Obj	Object
Adv	Adverbial
Atr	Attribute
AtrAtr	An attribute of any of several preceding (syntactic) nouns
AtrAdv	Structural ambiguity between adverbial and adnominal dependence
AdvAtr	Dtto with reverse preference
AtrObj	Structural ambiguity between object and adnominal dependency
ObjAtr	Dtto with reverse preference
Atv	Complement (determining), hung on a non-verb. element
AtvV	Complement (determining), hung on a verb, no 2nd gov. node
Pnom	Nominal predicate, or nom. part of predicate with copula be
Coord	Coordinated node
Apos	Apposition (main node)
ExD	Main element of a sentence without predicate, or deleted item
AuxV	Auxiliary vb. be
AuxT	Reflex. tantum
AuxR	Ref., neither Obj
AuxP	Primary prepos., parts of a secondary p.
AuxC	Conjunction (subord.)
Aux0	Redundant or emotional item, 'coreferential' pronoun
AuxZ	Emphasizing word
AuxX	Comma (not serving as a coordinating conj.)
AuxG	Other graphic symbols, not terminal
AuxY	Adverbs, particles not classed elsewhere
AuxK	Terminal punctuation of a sentence

Morphological normalization

- Goal: to canonize morphological variants of words so each collocation can be identified regardless its actual morphological form.
- pure lemmatization (using lemmas instead words) not adequate (cf. secure area – insecure area, big mountain – (the) highest mountain)
- our apporach: transforming words into combination of:
 - 1. lemma proper technical suffixes of lemma ignored
 - 2. reduced tag comprising: part-of-speech, gender, grade, and negation.

Morphological normalization: example

Surface form

Id	Form	Lemma	Full Tag	Parent Id	Afun
1	Zbraně	zbraň	NNFP1A	0	ExD
2	hromadného	hromadný	AANS21A	3	Atr
3	ničení	ničení_^(*3it)	NNNS2A	1	Atr

Normalized form

ld	Lemma Proper	Reduced Tag	Parent Id	Afun
1	zbraň	NF-A	0	Head
2	hromadný	AN1A	3	Atr
3	ničení	NN-A	1	Atr

Part-of-speech filtering

Justeson and Katz (1995): focus on precision

- the collocation candidates are passed through a filter which only lets through the patterns that are likely to be 'phrases' (potential collocations)
- patterns suggested A:N (adjective-noun) and N:N (noun-noun)
- a simple heuristics that improves results of collocation extraction methods

Our approach: focus on recall

 filter out candidates having POS patterns that never form a collocation (to keep the cases with POS patterns that can possibly form a collocation)

Part-of-speech filtering

Pattern	Example	Translation
A:N	trestný čin	criminal act
N:N	doba splatnosti	term of expiration
V:N	kroutit hlavou	shake head
R:N	bez problémů	no problem
C:N	první republika	First Republic
N:V	zranění podlehnout	succumb
N:C	Charta 77	Charta 77
D:A	volně směnitelný	free convertible
N:A	metr čtvereční	squared meter
D:V	těžce zranit	badly hurt
N:T	play off	play-off
N:D	MF Dnes	MF Dnes
D:D	jak jinak	how else

A – adjectives, N – nouns, C – numerals, V – verbs, D – adverbs, R – prepositions, T – particles

Frequency filtering

- limit on bigrams occurring more than five times.
- motivation: not to bias the evaluation
- the less frequent candidates do not meet the requirement of sufficient evidence of observations needed by some methods

Candidate Data Sets

PDT-Dep

▶ 12 232 dependency bigrams from PDT consisting of a normalized head word and its modifier, plus their dependency type

PDT-Surf

- 10 021 surface bigrams (pairs of adjacent words) from PDT consisting of normalized components
- 974 of these bigrams do not appear in PDT-Dep test sets (if we ignore the syntactical information)

CNC-Surf

- ▶ 9868 surface bigrams from PDT occuring in SYN2000 and SYN2005
- ▶ 153 do not occur in SYN2000 and SYN2005 corpora more than five times

Manual annotation

Definition:

"A collocation expression is a syntactic and semantic unit whose exact and unambiguous meaning or connotation cannot be derived directly from the meaning or connotation of its components." Choueka (1988)

- The annotation was performed independently by three experts without knowledge of context
- The annotators were instructed to judge any bigram which could eventually appear in a context where it has a character of collocation, as a collocation
- During the annotation the annotators also attempted to classify each collocation into one of the following categories.

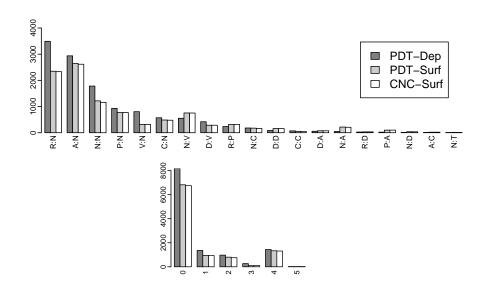
Annotation categories

- 1. stock phrases, frequent unpredictable usages zásadní problém (major problem), konec roku (end of a year)
- names of persons, organizations, geographical locations, and other entities Pražský hrad (Prague Castle), Červený kříž (Red Cross)
- support verb constructions
 mít pravdu (to be right), činit rozhodnutí (make decision)
- 4. technical terms předseda vlády (prime minister), očitý svědek (eye witness)
- idiomatic expressions studená válka (cold war), visí otazník (hanging question mark ~ open question)
- not intended as a result of the process but rather as a way how to clarify and simplify the annotation
- any bigram assigned to any of the categories by all annotattors we considered a collocation

Interannotator agreement

Agreement scores

annotations	fine grained		merged		
	accuracy Fleiss' κ		accuracy	Fleiss' κ	
A1–A2	72.1	0.49	79.5	0.55	
A2-A3	71.1	0.47	78.6	0.53	
A1-A3	75.4	0.53	82.2	0.60	
A1-A2-A3	61.7	0.49	70.1	0.56	


Confusion matrices

(fine grained and merged categories)

		0	1	2	3	4	5	
Ī	0	7 066	644	135	78	208	3	
	1	590	265	125	0	96	0	
	2	13	8	621	0	46	1	(
	3	74	0	1	185	0	0	-
	4	409	442	87	0	1075	7	
	5	25	3	2	2	15	6	

	0	1
0	7 066	1 068
1	1 111	2 987

Annotation: POS pattern and category distribution

Summary statistics

Reference Data Set	PDT-Dep	PDT-Surf	CNC-Surf
sentences	87	980	15 934 590
tokens	1 504	4 847	242 272 798
words (no punctuation)	1 282	2 5 3 6	200 498 152
bigram types	635 952	638 030	30 608 916
after frequency filtering	26 450	29 035	2 941 414
after part-of-speech filtering	12 232	10 021	1 503 072
collocation candidates	12 232	10 021	9 868
sample size (%)	100	100	0.66
true collocations	2 557	2 293	2 263
baseline precision (%)	21.02	22.88	22.66

Thank you!