Lexical Association Measures Collocation Extraction

Pavel Pecina

pecina@ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics Charles University in Prague

LOEWE Digital Humanities Goethe University Frankfurt am Main 12.7.2012

Talk outline

- 1. Introduction
- 2. Collocation extraction
- 3. Lexical association measures
- 4. Reference data
- 5. Empirical evaluation
- 6. Combining association measures
- 7. Conclusions

Semantic association

- reflects semantic relationship between words
- Synonymy, antonymy, hyponymy, meronymy, etc. → stored in a thesaurus sick – ill, baby – infant, dog – cat

Cross-language association

- corresponds to potential translations of words between languages
- translation equivalents → stored in a dictionary
 maison_(FR) house_(EN), baum_(GE) tree_(EN), květina_(CZ) flower_(EN)

Collocational association

- restricts combination of words into phrases (beyond grammar!
- collocations / multiword expressions → stored in a lexicor crystal clear, cosmetic surgery, cold war

- reflects semantic relationship between words
- synonymy, antonymy, hyponymy, meronymy, etc. stored in a thesaurus sick - ill, baby - infant, dog - cat

Cross-language association

- corresponds to potential translations of words between languages
- translation equivalents → stored in a dictionary $maison_{(FN)} - house_{(FN)}$, $baum_{(GF)} - tree_{(FN)}$, $kv\check{e}tina_{(CZ)} - flower_{(FN)}$

Semantic association

- reflects semantic relationship between words
- Synonymy, antonymy, hyponymy, meronymy, etc. → stored in a thesaurus sick – ill, baby – infant, dog – cat

Cross-language association

- corresponds to potential translations of words between languages
- translation equivalents → stored in a dictionary
 maison_(FR) house_(EN), baum_(GE) tree_(EN), květina_(CZ) flower_(EN)

Collocational association

- restricts combination of words into phrases (beyond grammar!)
- ► collocations / multiword expressions → stored in a lexicon crystal clear, cosmetic surgery, cold war

Motivation

automatic acquisition of associated words (into a lexicon/thesarus/dictionary)

Tool: Lexical association measures

 mathematical formulas determining strength of association between two (or more) words based on their occurrences and cooccurrences in a corpus

Applications

- lexicography, natural language generation, word sense disambiguation
- bilingual word alignment, identification of translation equivalents
- information retrieval, cross-lingual information retrieva
- keyword extraction, named entity recognition
- syntactic constituent boundary detection
- collocation extraction

Motivation

automatic acquisition of associated words (into a lexicon/thesarus/dictionary)

Tool: Lexical association measures

 mathematical formulas determining strength of association between two (or more) words based on their occurrences and cooccurrences in a corpus

Applications

- lexicography, natural language generation, word sense disambiguation
- bilingual word alignment, identification of translation equivalents
- information retrieval, cross-lingual information retrieval
- keyword extraction, named entity recognition
- syntactic constituent boundary detection
- collocation extraction

Measuring lexical association

Motivation

automatic acquisition of associated words (into a lexicon/thesarus/dictionary)

Tool: Lexical association measures

 mathematical formulas determining strength of association between two (or more) words based on their occurrences and cooccurrences in a corpus

Applications

- lexicography, natural language generation, word sense disambiguation
- bilingual word alignment, identification of translation equivalents
- information retrieval, cross-lingual information retrieval
- keyword extraction, named entity recognition
- syntactic constituent boundary detection
- collocation extraction

Goal

application of lexical association measures to collocation extraction

Objectives

- to compile a comprehensive inventory of lexical association measures
- 2. to build reference data sets for collocation extraction
- 3. to evaluate the lexical association measures on these data sets
- to explore the possibility of combining these measures into more complex models and advance the state of the art in collocation extraction

Limitations

- focus on bigram (two-word) collocations
 (limited scalability to higher-order n-grams; limited corpus size)
- binary (two-class) discrimination only (collocation/non-collocation)

Goal

application of lexical association measures to collocation extraction

Objectives

- 1. to compile a comprehensive inventory of lexical association measures
- to build reference data sets for collocation extraction
- to evaluate the lexical association measures on these data sets
- 4. to explore the possibility of combining these measures into more complex models and advance the state of the art in collocation extraction

Limitations

- focus on bigram (two-word) collocations
 (limited scalability to higher-order n-grams; limited corpus size)
- binary (two-class) discrimination only (collocation/non-collocation)

Goals, objectives, and limitations

3/30

Goal

application of lexical association measures to collocation extraction

Objectives

- to compile a comprehensive inventory of lexical association measures
- to build reference data sets for collocation extraction
- to evaluate the lexical association measures on these data sets
- 4. to explore the possibility of combining these measures into more complex models and advance the state of the art in collocation extraction

Limitations

- focus on bigram (two-word) collocations
 (limited scalability to higher-order n-grams; limited corpus size)
- ✓ binary (two-class) discrimination only (collocation/non-collocation)

Collocability

- the ability of words to combine with other words in text
- governed by a system of rules and constraints: syntactic, semantic, pragmatic
 *Colorless green ideas sleep furiously (N. Chomsky)
- must be adhered to in order to produce correct, meaningful, fluent utterances
- ranges from almost free word combinations to very fixed word expressions
- specified intensionally: by general rules based on common properties of words or extensionally: by specific constraints for particular words

Collocations

- word combinations with extensionally restricted collocability
- should be listed in a lexicon and learned in the same way as single words

Types of collocations

idioms (to kick the bucket), proper names (New York), technical terms (hard disk), phrasal verbs (to look after), light verb compounds (to take a nap), lexically restricted expressions (broad daylight), etc.

Collocational association

4/30

Collocability

- the ability of words to combine with other words in text
- governed by a system of rules and constraints: syntactic, semantic, pragmatic
 *Colorless green ideas sleep furiously (N. Chomsky)
- must be adhered to in order to produce correct, meaningful, fluent utterances
- ranges from almost free word combinations to very fixed word expressions
- specified intensionally: by general rules based on common properties of words or extensionally: by specific constraints for particular words

Collocations

- word combinations with extensionally restricted collocability
- should be listed in a lexicon and learned in the same way as single words

Types of collocations

idioms (to kick the bucket), proper names (New York), technical terms (hard disk), phrasal verbs (to look after), light verb compounds (to take a nap), lexically restricted expressions (broad daylight), etc.

Collocational association

Collocability

- the ability of words to combine with other words in text
- governed by a system of rules and constraints: syntactic, semantic, pragmatic
 *Colorless green ideas sleep furiously (N. Chomsky)
- must be adhered to in order to produce correct, meaningful, fluent utterances
- ranges from almost free word combinations to very fixed word expressions
- specified intensionally: by general rules based on common properties of words or extensionally: by specific constraints for particular words

Collocations

- word combinations with extensionally restricted collocability
- should be listed in a lexicon and learned in the same way as single words

Types of collocations

idioms (to kick the bucket), proper names (New York), technical terms (hard disk), phrasal verbs (to look after), light verb compounds (to take a nap), lexically restricted expressions (broad daylight), etc.

Collocation properties

Semantic non-compositionality

 exact meaning cannot be (fully) inferred from the meaning of components to kick the bucket

Syntactic non-modifiability

syntactic structure cannot be freely modified (word order, word insertions etc.) poor as a church mouse vs. poor as a *fat church mouse

Lexical non-substitutability

components cannot be substituted by their synonyms or other words stiff breeze vs. *stiff wind

Translatability into other languages

 translation cannot generally be performed blindly, in a word-by-word manner ice cream – zmrzlina

Domain dependency

Collocation properties

Semantic non-compositionality

 exact meaning cannot be (fully) inferred from the meaning of components to kick the bucket

Syntactic non-modifiability

syntactic structure cannot be freely modified (word order, word insertions etc.) poor as a church mouse vs. poor as a *fat church mouse

Lexical non-substitutability

components cannot be substituted by their synonyms or other words
 stiff breeze Vs. *stiff wind

Translatability into other languages

 translation cannot generally be performed blindly, in a word-by-word manner ice cream – zmrzlina

Domain dependency

Collocation properties

Semantic non-compositionality

 exact meaning cannot be (fully) inferred from the meaning of components to kick the bucket

Syntactic non-modifiability

syntactic structure cannot be freely modified (word order, word insertions etc.) poor as a church mouse vs. poor as a *fat church mouse

Lexical non-substitutability

components cannot be substituted by their synonyms or other words stiff breeze vs. *stiff wind

Translatability into other languages

translation cannot generally be performed blindly, in a word-by-word manner ice cream – zmrzlina

Domain dependency

Semantic non-compositionality

 exact meaning cannot be (fully) inferred from the meaning of components to kick the bucket

Syntactic non-modifiability

syntactic structure cannot be freely modified (word order, word insertions etc.) poor as a church mouse vs. poor as a *fat church mouse

Lexical non-substitutability

components cannot be substituted by their synonyms or other words stiff breeze vs. *stiff wind

Translatability into other languages

 translation cannot generally be performed blindly, in a word-by-word manner ice cream – zmrzlina

Domain dependency

troduction Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Collocation properties

Semantic non-compositionality

 exact meaning cannot be (fully) inferred from the meaning of components to kick the bucket

Syntactic non-modifiability

syntactic structure cannot be freely modified (word order, word insertions etc.) poor as a church mouse vs. poor as a *fat church mouse

Lexical non-substitutability

components cannot be substituted by their synonyms or other words stiff breeze vs. *stiff wind

Translatability into other languages

translation cannot generally be performed blindly, in a word-by-word manner ice cream – zmrzlina

Domain dependency

Collocation extraction

6/30

Task

- to extract a list of collocations (types) from a text corpus
- no need to identify particular occurrences (instances) of collocations

Methods

- based on extraction principles verifying characteristic collocation properties
- i.e. hypotheses about word occurences and cooccurrences in the corpus
- formulated as lexical association measures
- compute association score for each collocation candidate from the corpus
- the scores indicate a chance of a candidate to be a collocation

Extraction principles

- "Collocation components occur together more often than by chance"
- 2. "Collocations occur as units in information-theoretically noisy environment"
- 3. "Collocations occur in different contexts to their components"

Task

- to extract a list of collocations (types) from a text corpus
- no need to identify particular occurrences (instances) of collocations

Methods

- based on extraction principles verifying characteristic collocation properties
- i.e. hypotheses about word occurences and cooccurrences in the corpus
- formulated as lexical association measures
- compute association score for each collocation candidate from the corpus
- ▶ the scores indicate a chance of a candidate to be a collocation

Extraction principles

- "Collocation components occur together more often than by chance"
- 2. "Collocations occur as units in information-theoretically noisy environment"
- "Collocations occur in different contexts to their components"

Collocation extraction

Task

- to extract a list of collocations (types) from a text corpus
- no need to identify particular occurrences (instances) of collocations

Methods

- based on extraction principles verifying characteristic collocation properties
- i.e. hypotheses about word occurences and cooccurrences in the corpus
- formulated as lexical association measures
- compute association score for each collocation candidate from the corpus
- the scores indicate a chance of a candidate to be a collocation

Extraction principles

- "Collocation components occur together more often than by chance"
- "Collocations occur as units in information-theoretically noisy environment"
- "Collocations occur in different contexts to their components"

Extraction principle I

"Collocation components occur together more often than by chance"

- the corpus is interepreted as a sequence of randomly generated words
- word (*marginal*) probability ML estimations: $p(x) = \frac{f(x)}{NT}$
- bigram (*joint*) probability ML estimations: $p(xy) = \frac{f(xy)}{N}$
- the chance \sim the null hypothesis of independence: H_0 : $\hat{p}(xy) = p(x) \cdot p(y)$

AM: Log-likelihood ratio, χ^2 test, Odds ratio, Jaccard, Pointwise mutual information

Extraction principle I

"Collocation components occur together more often than by chance"

- the corpus is interepreted as a sequence of randomly generated words
- word (*marginal*) probability ML estimations: $p(x) = \frac{f(x)}{N}$
- bigram (*joint*) probability ML estimations: $p(xy) = \frac{f(xy)}{N}$
- ▶ the chance \sim the null hypothesis of independence: H_0 : $\hat{p}(xy) = p(x) \cdot p(y)$

AM: Log-likelihood ratio, χ^2 test, Odds ratio, Jaccard, Pointwise mutual information

Example: Pointwise Mutual Information

$$\begin{array}{lll} \textit{Data: } f(\textit{iron curtain}) = 11 & \textit{MLE: } p(\textit{iron curtain}) = 0.000007 \\ f(\textit{iron}) = 30 & p(\textit{iron}) = 0.000020 \\ f(\textit{curtain}) = 15 & p(\textit{curtain}) = 0.000010 \\ \end{array}$$

$$\textit{AM:} \quad PMI(\textit{iron curtain}) = log \frac{p(xy)}{\hat{p}(xy)} = log \frac{0.000007}{0.000000000020} = 18.417$$

"Collocations occur as units in information-theoretically noisy environment"

- the corpus again interpreted as a sequence of randomly generated words
- at each point of the sequence we estimate:
 - 1. probability distribution of words occurring after/before: $\mathbf{p}(w|C_{xy}^r)$, $\mathbf{p}(w|C_{xy}^l)$
 - 2. uncertainty (entropy) what the next/previous word is: $H(\mathbf{p}(w|C_{xy}^r)), H(\mathbf{p}(w|C_{xy}^l))$
- points with high uncertainty are likely to be collocation boundaries
- points with low uncertainty are likely to be located within a collocation

AM: Left context entropy, Right context entropy

"Collocations occur as units in information-theoretically noisy environment"

- the corpus again interpreted as a sequence of randomly generated words
- at each point of the sequence we estimate:
 - 1. probability distribution of words occurring after/before: $\mathbf{p}(w|C_{xy}^r)$, $\mathbf{p}(w|C_{xy}^l)$
 - 2. uncertainty (entropy) what the next/previous word is: $H(\mathbf{p}(w|C_{xy}^r)), H(\mathbf{p}(w|C_{xy}^l))$
- points with high uncertainty are likely to be collocation boundaries
- points with low uncertainty are likely to be located within a collocation

AM: Left context entropy, Right context entropy

n Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Extraction principle III

"Collocations occur in different contexts to their components"

- non-compositionality: meaning of a collocation must differ from the union of the meaning of its components
- modeling meanings by empirical contexts: a bag of words occurring within a specified context window of a word or an expression
- the more different the contexts of an expression to its components are, the higher the chance is that the expression is a collocation

AM: J-S divergence, K-L divergence, Skew divergence, Cosine similarity in vector space

Example: C_{xy} , C_{x}

...prestal. V patách za krízí vistoupil do Běléhradu černý trh , pašování a zvýšená kriminalita. Překopnici provážejí ...
...nebyli z toho obvinění. Řídí gangy, které kontrolují černý trh a okrádají cizince. Oba byli zbavení funkci a byl ...
...nebyli z toho obvinění. Řídí gangy, které kontrolují černý trh a okrádají cizince. Oba byli zbavení funkci a byl ...
...antidrogové hysterii. Následkem toho nevestoval ani černý trh , protože nebylo na čenny vydětávat. V roce 1957 bylo ...
...dorovený k rychlému zpracování. Naplno se již rozjíždí černý trh se vstupenkami. Na závod na 5000 m v rychlobruslařů ...
...na čelném místě obchodu se zbraněmi. Zatímco černý trh se zbraněmi se pro celý svět stává čim dál tím větší ...
...čelním v pariamentu. Věřím, že brzy bude regulovat černý trh se ohroženými druhy zvýrita, míní. Promoravské strany ...
...jako malí čtyřiett a pětiletí kluci. Byl to dobytčí trh jako z minulého století. Se vším všudy prodávalí ...
...přání než reálných možnosti. Na rozdíl od dolaru se trh amerických státních duhopisů nezměnil. A novými ...
...opětnému nárůstu. Podle Plan Econu si český kapitálový trh bude v nejblížším roce počínat o něco lépe. Většína ...
...To by mohlo vzhledem k propojení přes mezibankovní trh depozit věst k řetězovým reakcím. Přiliv kapitálu ...
...PVT, na ceně ztratil také indexový Tabák. Volný trh má však naštěstí i světlě stránky. K nim patří například ...
...spoluzakladatel. Také v Maďarsku se uvolní mediání trh již letos. Maďarsko jako první z postkomunistických ...
...Mež ně patří i OřticePorte Voice, který byl na trh uveden pod heslem "vice než modem". Obsahuje totů ...

Introduction Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Extraction principle III

"Collocations occur in different contexts to their components"

- non-compositionality: meaning of a collocation must differ from the union of the meaning of its components
- modeling meanings by empirical contexts: a bag of words occurring within a specified context window of a word or an expression
- the more different the contexts of an expression to its components are, the higher the chance is that the expression is a collocation

AM: J-S divergence, K-L divergence, Skew divergence, Cosine similarity in vector space

```
Example: C_{xy}, C_x

...není, Maltské liry lze nakoupit pouze ve směnárnách, černý trh s valutami neexistuje. Na Maltě je v porovnání s ...
...přestal. V patách za krizí vstoupil do Bělehradu černý trh , pašování a zvýšená kriminalita. Překupníci provážejí ...
...nebyli z toho obvinění. Řídí gangy, které kontrolují černý trh a okrádají cizince. Oba byli zbavení funkcí a byl ...
...anidrogové hysterií. Následkem toho neexistoval ani černý trh , protože nebylo na čern vydlělaval. V roce 1957 bylo ...
...doručeny k rychlěmu zpracování. Naplno se již rozijždí černý trh se vstupenkami. Na závod na 5000 m v rychlobruslařů ...
...na čelném místě obchodu se zbraněmi. Zatímco černý trh se zbraněmi se pro celý svět stává čím dát tím větší. ...
čením v parlamentu. Věřím, že brzy bude regulovat černý trh s ohroženými druhy zvířat, míní. Promoravské strany ...
...jako malí čtyřietí a pětiletí kluci. Byl to dobytí trh jako z minulého století. Se vším všudy prodávalí ...
...přání než reálných možností. Na rozdíl od dolaru se trh amerických státních dluhopisů nezměnil. A novými ...
...opětnému nárústu. Podle Plan Econu si český kapitálový trh bude v nejbližším roce počínat o něco lépe. Většina ...
... To by mohlo vzhledem k propojení přes mezibankovní trh depozit vést k řetězovým reakcím. Příliv kapitálu ...
... PVT, na ceně ztratil také indexový Tabák. Volný trh má však naštěstí i světlé stránky. K nim patří například ...
... plazakladatel. Také v Maďarsku se uvolní mediální trh již letos. Maďarsko jako proz z postkomunistických ...
... Mezi ně patří i OfficePorte Voice, který byl na trh uveden pod heslem "vice než modem". Obsahuje totiž ...
```

ř	Name	Formula
	Joint probability	P(xy)
	Conditional probability	P(y x)
	Reverse conditional probability	P(x y)
4.	Pointwise mutual information	$\log \frac{P(xy)}{P(xz)P(xy)}$
5.	Mutual dependency (MD)	$\log \frac{P(xy)^2}{P(x)P(xy)}$
6.	Log frequency biased MD	$\log \frac{P(xy)^2}{P(xz)P(zy)} + \log P(xy)$
7.	Normalized expectation	
8.	Mutual expectation	$\frac{f(xx)+f(xy)}{2f(xy)}$ $\frac{f(xx)+f(xy)}{f(xx)+f(xy)}$. $P(xy)$
	Salience	$\log \frac{P(xy)^2}{P(xy)^2} \cdot \log f(xy)$
10.	Pearson's y ² test	f(x)=f(x) f(x)=f(x) f(x)=f(x) f(x)=f(x) f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=f(x)=
11	Fisher's exact test	f(x+)!f(x+)!f(+y)!f(+y)!
	t test	N!f(ay)!f(ay)!f(ay)!f(ay)! f(ay)-f(ay)
12.	t test	$\sqrt{f(xy)(1-(f(xy)/N))}$
13.	z score	$\frac{f(xy)-f(xy)}{\sqrt{f(xy)(1-(f(xy)/N))}}$
1.1	Poison significance measure	$f(xy) - f(xy) \log f(xy) + \log f(xy)!$ $\log N$
	Log likelihood ratio	$-2\sum_{i,j} f_{ij} \log f_{ij} / \hat{f}_{ij}$
		-2 Z _{i,j} Jij 10g Jij/Jij
	Squared log likelihood ratio Russel-Rao	$-2\sum_{i,j} \log f_{ij}^2/\hat{f}_{ij}$
	Sokal-Michiner	a+b+c+d a+d
	Rogers-Tanimoto	4+4
	Hamann	a+20+2c+d (a+d)-(b+c) a+0+c+d
	Third Sokal-Sneath	4+8+c+d b+c a+d
	Jaccard	
	First Kulczynsky	a+b+c
	Second Sokal-Sneath	##
	Second Kulczynski	$\frac{a}{a+2(b+c)}$ $\frac{1}{2}(\frac{a}{a+b} + \frac{a}{a+c})$
	Fourth Sokal-Sneath	1 (2+3 + 2+2) 1 (2+3 + 2+2 + 2+3 + 2+2)
	Odds ratio	ad a+6 " a+c " d+6 " d+c)
	Yulle's ω	<u>lo</u> √ <u>ad</u> – √ <u>lo</u>
	Yulle's O	√ad+√bc ad+bc ad+bc
	Driver-Kroeber	ad+bc
		$\sqrt{(a+b)(a+c)}$
	Fifth Sokal-Sneath	$\sqrt{(a+b)(a+c)(d+b)(d+c)}$
	Pearson	$\sqrt{(a+b)(a+c)(d+b)(d+c)}$
	Baroni-Urbani	$\frac{a+\sqrt{ad}}{a+b+c+\sqrt{ad}}$
34.	Braun-Blanquet	$\max(a+b,a+c)$
35.	Simpson	min(a+b,a+c)
36.	Michael	$\frac{4(ad-ba)}{(a+d)^2+(b+a)^2}$
37.	Mountford	26 2hr+ab+ac
38.	Fager	$\frac{a}{\sqrt{(a+b)(a+c)}} - \frac{1}{2} \max(b,c)$
39.	Unigram subtuples	$\log \frac{ad}{bc} - 3.29 \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$
40.	U cost	$log(1 + \frac{min(b,c)+a}{max(b,c)+a})$
41.	S cost	$log(1 + \frac{min(b,c)}{a+1})^{-\frac{1}{2}}$
42.	R cost	$log(1 + \frac{a}{a+b}) \cdot log(1 + \frac{a}{a+c})$
43.	T combined cost	$\sqrt{U \times S \times R}$
44.	Phi	$\frac{P(xy)-P(xz)P(xy)}{\sqrt{P(xz)P(xy)(1-P(xz))(1-P(xy))}}$
45.	Kappa	$\sqrt{P(xs)P(sy)(1-P(xs))(1-P(sy))}$ $\frac{P(xy)+P(\bar{x}\bar{y})-P(xs)P(sy)-P(\bar{x}s)P(s\bar{y})}{1-P(xs)P(sy)-P(\bar{x}s)P(s\bar{y})}$
		$1-F(x*)F(*y)-F(x*)P(*\hat{y})$

	Name	Formula
÷	I measure	
	,	$\max[P(xy) \log \frac{P(y x)}{P(xy)} + P(x\bar{y}) \log \frac{P(\bar{y} x)}{P(xy)},$ $P(xy) \log \frac{P(\bar{y} x)}{P(xx)} + P(\bar{x}y) \log \frac{P(\bar{y} x)}{P(\bar{x}x)}]$
	0.11.1	$\frac{1}{2} \left(\frac{xy}{xy} \log \frac{p(xx)}{p(xx)} + \Gamma(xy) \log \frac{p(xx)}{p(xx)} \right)$
47.	Gini index	$\max[P(x*)(P(y x)^{2} + P(\bar{y} x)^{2}) - P(*y)^{2} + P(\bar{x}*)(P(y \bar{x})^{2} + P(\bar{y} \bar{x})^{2}) - P(*\bar{y})^{2},$
		$P(*y)(P(x y)^2 + P(y x)^2) - P(*y)^2$, $P(*y)(P(x y)^2 + P(x y)^2) - P(x*)^2$
		$+P(*\bar{y})(P(x \bar{y})^2 + P(x \bar{y})^2) - P(\bar{x}*)^2$
48.	Confidence	$\max[P(y x), P(x y)]$
49.	Laplace	$\max[\frac{NP(xy)+1}{NP(xx)+2}, \frac{NP(xy)+1}{NP(xy)+2}]$
50.	Conviction	$\max[\frac{P(x+)P'(+y)}{P(x\hat{y})}, \frac{P(\hat{x}+)P'(+y)}{P(\hat{x}\hat{y})}]$
51	Piatersky-Shapiro	P(xy) - P(x+y)P(x+y)
	Certainity factor	$\max[\frac{P(y x)-P(xy)}{1-P(xy)}, \frac{P(x y)-P(xx)}{1-P(xx)}]$
	Added value (AV)	$\max[P(u v) - P(uv) P(v u) - P(vu)]$
	Collective strength	$\max_{\substack{P(x y) + P(\bar{x}\bar{y}) \\ P(x*)P(y) + P(\bar{x}\bar{x})P(x*)}} P(x y) - P(x y) - P(x*) \\ \frac{1 - P(x*)P(y) - P(\bar{x}\bar{x})P(x*)}{1 - P(xy) - P(\bar{x}\bar{y})}$
55.	Klosgen	$\sqrt{P(xy)} \cdot AV$
	Context entropy	$-\sum_{w} P(w C_{xy}) \log P(w C_{xy})$
	Left context entropy	$-\sum_{w} P(w C_{vw}^{l}) \log P(w C_{vw}^{l})$
	Right context entropy	$-\sum_{w}^{w} P(w C_{xy}^{l}) \log P(w C_{xy}^{l})$ $-\sum_{w}^{w} P(w C_{xy}^{l}) \log P(w C_{xy}^{l})$
	Left context divergence	$P(x*) \log P(x*) - \sum_{w} P(w C_{xy}^{l}) \log P(w C_{xy}^{l})$
60.	Right context divergence	$P(*y) \log P(*y) - \sum_{w} P(w C_{xy}^{v}) \log P(w C_{xy}^{v})$
	Cross entropy	$-\sum_{w} P(w C_x) \log \overline{P}(w C_y)$
	Reverse cross entropy	$-\sum_{w} P(w C_x) \log P(w C_y)$ $-\sum_{w} P(w C_y) \log P(w C_x)$ $\geq C_x \cap C_y $
	Intersection measure	
	Euclidean norm	$\sqrt{\sum_{w}}(P(w C_x) - P(w C_y))^2$
65.	Cosine norm	$\sqrt{\sum_{w} (P(w C_x) - P(w C_y))^2} $ $= \sum_{w} P(w C_x)P(w C_y) $ $= \sum_{w} P(w C_x)^2 \cdot \sum_{w} P(w C_y)^2$
66.	L1 norm	$\sum_{w} P(w C_x) - P(w C_y) $
67.	Confusion probability	$\sum_{w} \frac{P(x C_{w})P(y C_{w})P(w)}{P(x*)}$
68.	Reverse confusion probability	$\sum_{w} \frac{P(y(Cw)P(x)Cw)P(w)}{P(+y)}$
69.	Jensen-Shannon divergence	$\frac{1}{2} D(p(w C_x)) \frac{1}{2}(p(w C_x) + p(w C_y)))$
		$+D(p(w C_y) \frac{1}{2}(p(w C_x) + p(w C_y)))]$
70.	Cosine of pointwise MI	$+D[p(w C_y)] \frac{1}{2}(p(w C_x) + p(w C_y))) $ $\sum_w M\{(w,x)M\{(w,y)\}$ $\sqrt{\sum_w M\{(w,x)^2} \cdot \sqrt{\sum_w M\{(w,y)^2}$ $\sum_v P(w C_v)\log_v P(w C_y)$
71.	KL divergence	$\sum_{w} P(w C_x) \log \frac{P(w C_x)}{P(w C_x)}$
72.	Reverse KL divergence	$\sum_{w} P(w C_y) \log \frac{P(w C_y)}{P(w C_x)}$
	Skew divergence	$D(p(w C_x) \alpha p(w C_y) + (1 - \alpha)p(w C_x))$
	Reverse skew divergence	$D(n(w C) \alpha n(w C) + (1 - \alpha)n(w C))$
75.	Phrase word coocurrence	$\frac{1}{2}\left(\frac{f(s C_{xy})}{f(s)} + \frac{f(s C_{xy})}{f(s)}\right)$
76.	Word association	$\frac{1}{2}\left(\frac{f(x C_{xy})}{f(xy)} + \frac{f(y C_{xy})}{f(xy)}\right) \\ \frac{1}{2}\left(\frac{f(x C_y) - f(xy)}{f(xy)} + \frac{f(y C_x) - f(xy)}{f(xy)}\right)$
Cos	ine context similarity:	$\frac{1}{2}(\cos(\mathbf{c}_x, \mathbf{c}_{xy}) + \cos(\mathbf{c}_y, \mathbf{c}_{xy}))$
		$\mathbf{c}_z = (z_i); \cos(\mathbf{c}_z, \mathbf{c}_y) = \frac{\sum z_i y_i}{\sqrt{\sum z_i z^2} \cdot \sqrt{\sum y_i z^2}}$
77.	in boolean vector space	$z_i = \delta(f(w_i C_s))$ $\sqrt{\sum x_i^2 \cdot \sqrt{\sum y_i^2}}$
	in tf vector space	$z_i = f(w_i C_i)$
	in tf · idf vector space	$z_i = f(w_i C_x) \cdot \frac{N}{df(w_i)}$; $df(w_i) = \{x : w_i \epsilon C_x\} $
Dic	e context similarity:	$\frac{1}{\pi}(\text{dice}(\mathbf{c}_{x}, \mathbf{c}_{xu}) + \text{dice}(\mathbf{c}_{y}, \mathbf{c}_{xu}))$
	-	$\mathbf{c}_{z} = (z_{i}); \operatorname{dice}(\mathbf{c}_{z}, \mathbf{c}_{y}) = \frac{2 \sum_{x} x_{i} y_{i}}{\sum_{x} z_{i} + \sum_{y} z_{i}}$
80.	in boolean vector space	$z_i = \delta(f(w_i C_z))$
	in tf vector space	$z_i = f(w_i C_z)$
	in tf · idf vector space	$z_i = f(w_i C_x) \cdot \frac{N}{df(w_i)}$; $df(w_i) = \{x : w_i \epsilon C_x\} $

Extraction pipeline

11/30

- 1. linguistic preprocessing (morphological and syntactic level)
- identification of collocation candidates (dependency/surface/distance bigrams)
- 3. extraction of occurrence and cooccurrence statistics (frequency, contexts)
- 4. filtering the candidates to improve precision (*POS patterns*)
- 5. application of a choosen lexical association measure to all candidates
- 6. ranking/classification of collocation candidates according to their scores

- identification of collocation candidates (dependency/surface/distance bigrams)
- extraction of occurrence and cooccurrence statistics (frequency, contexts)
- 4. filtering the candidates to improve precision (POS patterns)
- 5. application of a choosen lexical association measure to all candidates
- 6. ranking/classification of collocation candidates according to their scores

Ranking		
red cross	15.66	
decimal point	14.01	
arithmetic operation	10.52	
paper feeder	10.17	
system type	3.54	
and others	0.54	
program in	0.35	
level is	0.25	

- 1. linguistic preprocessing (morphological and syntactic level)
- identification of collocation candidates (dependency/surface/distance bigrams)
- extraction of occurrence and cooccurrence statistics (frequency, contexts)
- 4. filtering the candidates to improve precision (POS patterns)
- 5. application of a choosen lexical association measure to all candidates
- 6. ranking/classification of collocation candidates according to their scores

Ranking	
red cross	15.66
decimal point	14.01
arithmetic operation	10.52
paper feeder	10.17
system type	3.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
decimal point	1
arithmetic operation	1
paper feeder	1
system type	0
and others	0
program in	0
level is	0

Reference data set

12/30

Source corpus

- Prague Dependency Treebank 2.0, 1.5 mil. tokens
- manually annotated with morphological and syntactic dependency information

Collocation candidates

- dependency bigrams: direct dependency relation between components
- morphological normalization (lemma proper + pos + gender + degree + negation)
- part-of-speech filter (A:N, N:N, V:N, R:N, C:N, N:V, N:C, D:A, N:A, D:V, N:T, N:D, D:D
- ▶ frequency filter (*minimal frequency required*, *f* >5)

Annotation

- three independent parallel annotations (no context; full agreement required)
- ► 6 categories, merged into two: collocations (1-5), non-collocations (0)
 - 5 idiomatic expressions
 - 4 technical terms
 - 3. support verb constructions
 - proper names
 - 1. frequent unpredictable usages
 - non-collocations
- ▶ 12 232 candidates = 2 557 true collocations + 9 675 true non-collocations

Introduction Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Reference data set

12/30

Source corpus

- Prague Dependency Treebank 2.0, 1.5 mil. tokens
- manually annotated with morphological and syntactic dependency information

Collocation candidates

- dependency bigrams: direct dependency relation between components
- morphological normalization (lemma proper + pos + gender + degree + negation)
- part-of-speech filter (A:N, N:N, V:N, R:N, C:N, N:V, N:C, D:A, N:A, D:V, N:T, N:D, D:D)
- ▶ frequency filter (*minimal frequency required*, *f* > 5)

Annotation

- three independent parallel annotations (no context; full agreement required
- ► 6 categories, merged into two: collocations (1-5), non-collocations (0)
 - 5 idiomatic expressions
 - 4 technical terms
 - 3. support verb constructions
 - 2. proper names
 - 1. frequent unpredictable usages
 - non-collocations
- ▶ 12 232 candidates = 2 557 true collocations + 9 675 true non-collocations

Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Reference data set

12/30

Source corpus

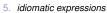
- Prague Dependency Treebank 2.0, 1.5 mil. tokens
- manually annotated with morphological and syntactic dependency information

Collocation candidates

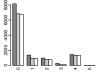
- dependency bigrams: direct dependency relation between components
- morphological normalization (lemma proper + pos + gender + degree + negation)
- part-of-speech filter (A:N, N:N, V:N, R:N, C:N, N:V, N:C, D:A, N:A, D:V, N:T, N:D, D:D)
- ▶ frequency filter (*minimal frequency required*, *f* > 5)

Annotation

- three independent parallel annotations (no context; full agreement required)
- 6 categories, merged into two: collocations (1-5), non-collocations (0):



- 4. technical terms
- 3. support verb constructions
- 2. proper names
- 1. frequent unpredictable usages
- non-collocations



▶ 12 232 candidates = 2 557 true collocations + 9 675 true non-collocations

Reference data

- split into 7 stratified folds of the same size (the same ratio of true collocations)
- 1 fold put aside as held-out data
- 6 folds used for evaluation of AMs

Evaluation

- based on quality of ranking (ranking performance)
- evaluation measures estimated on each eval fold separately and averaged

Significance testing

- methods compared by paired Wilcoxon signed-ranked test on the 6 eval folds
- \triangleright significance level $\alpha = 0.05$

Experimental design

13/30

Reference data

- split into 7 stratified folds of the same size (the same ratio of true collocations)
- 1 fold put aside as held-out data
- 6 folds used for evaluation of AMs

Evaluation

- based on quality of ranking (ranking performance)
- evaluation measures estimated on each eval fold separately and averaged

Significance testing

- methods compared by paired Wilcoxon signed-ranked test on the 6 eval folds
- significance level $\alpha = 0.05$

Experimental design

13/30

Reference data

- split into 7 stratified folds of the same size (the same ratio of true collocations)
- 1 fold put aside as held-out data
- 6 folds used for evaluation of AMs

Evaluation

- based on quality of ranking (ranking performance)
- evaluation measures estimated on each eval fold separately and averaged

Significance testing

- methods compared by paired Wilcoxon signed-ranked test on the 6 eval folds
- ▶ significance level $\alpha = 0.05$

 $Recall = \frac{|correctly \ classified \ collocations|}{|total \ collocations|}$

1) $Precision = \frac{|correctly\ classified\ collocations|}{|total\ classified\ as\ collocations|}$

1) $Precision = \frac{|correctly classified collocations|}{|total classified as collocations|}$

 $\textit{Recall} = \frac{|\textit{correctly classified collocations}|}{|\textit{total collocations}|}$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

1) $Precision = \frac{|correctly classified collocations|}{|total classified as collocations|}$

 $\textit{Recall} = \frac{|\textit{correctly classified collocations}|}{|\textit{total collocations}|}$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

 $Recall = \frac{|correctly classified collocations|}{|correctly classified collocations|}$ 1) $Precision = \frac{|correctly\ classified\ collocations|}{|total\ classified\ as\ collocations|}$ |total collocations|

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	0
arithmetic operation	0
paper feeder	0
new book	0
round table	0
new wave	0
gas station	0
system type	0
central part	0
and others	0
program in	0
level is	0

1) $Precision = \frac{|correctly\ classified\ collocations|}{|total\ classified\ as\ collocations|}$ $\textit{Recall} = \frac{|\textit{correctly classified collocations}|}{|\textit{total collocations}|}$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	0
arithmetic operation	0
paper feeder	0
new book	0
round table	0
new wave	0
gas station	0
system type	0
central part	0
and others	0
program in	0
level is	0

llocational

 $1) \ \ \textit{Precision} = \frac{|\textit{correctly classified collocations}|}{|\textit{total classified as collocations}|}$

 $Recall = \frac{|correctly \, classified \, collocations|}{|total \, collocations|}$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	0
arithmetic operation	0
paper feeder	0
new book	0
round table	0
new wave	0
gas station	0
system type	0
central part	0
and others	0
program in	0
level is	0

Precision	Recall
100%	50 %

 $Recall = \frac{|correctly classified collocations|}{|correctly classified collocations|}$ $1) \ \ \textit{Precision} = \frac{|\textit{correctly classified collocations}|}{|\textit{total classified as collocations}|}$ |total collocations|

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	1
arithmetic operation	0
paper feeder	0
new book	0
round table	0
new wave	0
gas station	0
system type	0
central part	0
and others	0
program in	0
level is	0

Precision	Recall
100%	50%
80 %	50 %

 $Recall = \frac{|correctly class|}{|correctly class|}$ 1) $Precision = \frac{|correctly classified collocations|}{|total classified as collocations|}$ total collocations

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

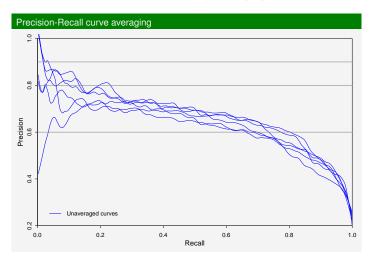
Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	1
arithmetic operation	1
paper feeder	1
new book	1
round table	1
new wave	1
gas station	1
system type	1
central part	1
and others	1
program in	1
level is	1

Precision	Recall
100%	12%
100%	25 %
100%	37%
100%	50 %
80 %	50 %
83 %	62%
85 %	75 %
75 %	75 %
77%	87%
70 %	87%
72%	100%
66 %	100%
61%	100%
57%	100%
53 %	100%
50 %	100%

measured within the entire interval of possible threshold values

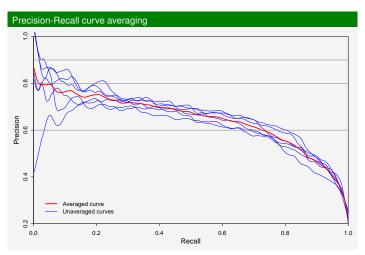
Visual evaluation: Precision-Recall curves

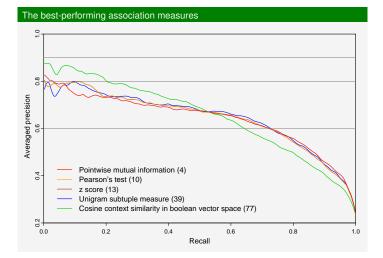
- graphical plots of recall vs. precision
- the closer to the top and right, the better ranking performance
- estimated for each eval fold and vertically averaging



Visual evaluation: Precision-Recall curves

- graphical plots of recall vs. precision
- the closer to the top and right, the better ranking performance
- estimated for each eval fold and vertically averaging





Evaluation measure: Average Precision

 $AP = \frac{1}{r} \sum_{i=1}^{r} p_i$ $E[P(R)], R \sim U(0, 1)$ 2) Average Precision:

1
1
1
1
1
1
1
1

Evaluation measure: Average Precision

2) Average Precision: $E[P(R)], R \sim U(0,1)$ $AP = \frac{1}{r} \sum_{i=1}^{r} p_i$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	1
arithmetic operation	1
paper feeder	1
new book	1
round table	1
new wave	1
gas station	1
system type	1
central part	1
and others	1
program in	1
level is	1

Precision	Recall
100%	12%
100%	25%
100%	37%
100%	<i>50</i> %
80 %	50 %
83 %	62%
<i>85</i> %	<i>75</i> %
75 %	<i>75</i> %
77%	87%
70 %	87%
72%	100%
66 %	100%
61%	100%
57%	100%
53 %	100%
50 %	100%

Evaluation measure: Average Precision

2) Average Precision: $E[P(R)], R \sim U(0,1)$ $AP = \frac{1}{r} \sum_{i=1}^{r} p_i$

Ranking	
red cross	15.66
iron curtain	15.23
decimal point	14.01
coupon book	13.83
book author	11.05
arithmetic operation	10.52
paper feeder	10.17
new book	10.09
round table	7.03
new wave	6.59
gas station	6.04
system type	3.54
central part	1.54
and others	0.54
program in	0.35
level is	0.25

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	1
arithmetic operation	1
paper feeder	1
new book	1
round table	1
new wave	1
gas station	1
system type	1
central part	1
and others	1
program in	1
level is	1

Precision	Recall
100%	12%
100%	25%
100%	37%
100%	<i>50</i> %
80 %	50 %
83 %	62%
<i>85</i> %	<i>75</i> %
75 %	<i>75</i> %
77%	87%
70 %	87%
72%	100%
66 %	100%
61%	100%
57%	100%
53 %	100%
50%	100%

89.6% = AP

2) Average Precision: $E[P(R)], R \sim U(0,1)$ $AP = \frac{1}{r} \sum_{i=1}^{r} p_i$

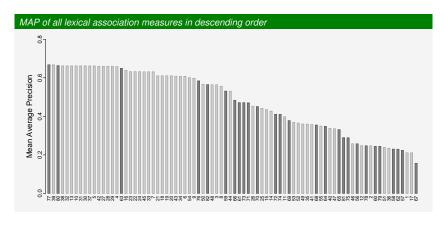
red cross 15.66 iron curtain 15.23	3
iron curtain 15.25	
IIOII Cuitaiii 13.20	
decimal point 14.01	!
coupon book 13.83	3
book author 11.05	5
arithmetic operation 10.52	2
paper feeder 10.17	7
new book 10.09)
round table 7.03	3
new wave 6.59)
gas station 6.04	1
system type 3.54	1
central part 1.54	1
and others 0.54	1
program in 0.35	5
level is 0.25	5

Classification	
red cross	1
iron curtain	1
decimal point	1
coupon book	1
book author	1
arithmetic operation	1
paper feeder	1
new book	1
round table	1
new wave	1
gas station	1
system type	1
central part	1
and others	1
program in	1
level is	1

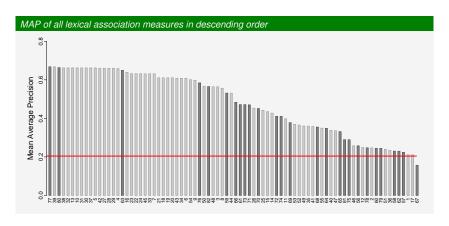
Precision	Recall
100%	12%
100%	25%
100%	37%
100%	<i>50</i> %
80%	50 %
83%	62%
<i>85</i> %	<i>75</i> %
75 %	<i>75</i> %
77%	87%
70 %	87%
72%	100%
66 %	100%
61%	100%
57%	100%
53 %	100%
50 %	100%

3) Mean Average Precision: E[AP] $MAP = \frac{1}{6} \sum_{i=1}^{6} AP_i$

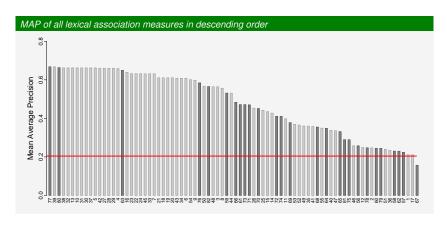
89.6% = AP



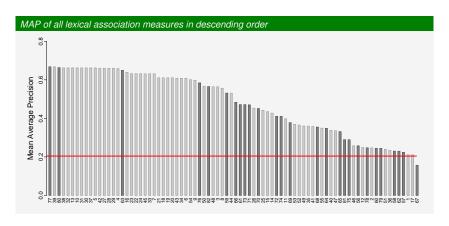
- Baseline (ratio of true collocations): 21.02 %
- ▶ Best context-based measure (■): Cosine similarity in vector space: 66.79 %
- ▶ Best statistical association measure (■): Unigram subtuple measure: 66.72 %
- lacktriangle Best 16 measures statistically indistinguishable MAP \sim current state of the art



- Baseline (ratio of true collocations): 21.02%
- ▶ Best context-based measure (■): Cosine similarity in vector space: 66.79 %
- ▶ Best statistical association measure (■): Unigram subtuple measure: 66.72 %
- lacktriangle Best 16 measures statistically indistinguishable MAP \sim current state of the art



- Baseline (ratio of true collocations): 21.02%
- ▶ Best context-based measure (■): Cosine similarity in vector space: 66.79 %
- ▶ Best statistical association measure (■): Unigram subtuple measure: 66.72 %
- lacktriangle Best 16 measures statistically indistinguishable MAP \sim current state of the art



- Baseline (ratio of true collocations): 21.02%
- ▶ Best context-based measure (■): Cosine similarity in vector space: 66.79 %
- ▶ Best statistical association measure (■): Unigram subtuple measure: 66.72 %
- lacktriangle Best 16 measures statistically indistinguishable MAP \sim current state of the art

- Baseline (ratio of true collocations): 21.02%
- ▶ Best context-based measure (■): Cosine similarity in vector space: 66.79 %
- ▶ Best statistical association measure (■): Unigram subtuple measure: 66.72 %
- $lue{}$ Best 16 measures statistically indistinguishable MAP \sim current state of the art

Combining association measures

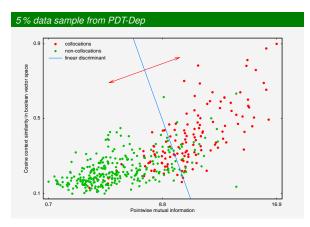
19/30

Motivation

- different association measures discover different groups/types of collocations
- existence of uncorrelated association measures

Motivation

- different association measures discover different groups/types of collocations
- existence of uncorrelated association measures

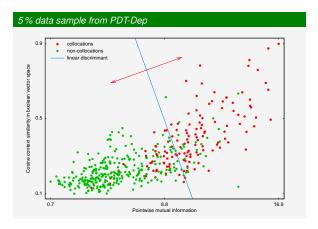


Combining association measures

19/30

Motivation

- different association measures discover different groups/types of collocations
- existence of uncorrelated association measures



Note: So far all methods - unsupervised, the combination methods - supervised

Combination models

20/30

Framework

- each collocation candidate \mathbf{x}^i is described by the feature vector $\mathbf{x}^i = (x_1^i, \dots, x_{82}^i)^T$ consisting of scores of all association measures
- ▶ and assigned a label $y^i \in \{0,1\}$ indicating whether the bigram is considered to be a true collocation (y=1) or not (y=0)

we look for a ranker function $f(\mathbf{x}^i)$ determining the strength of lexical

- association between components of a candidate \mathbf{x}^i
- e.g. linear combination of association scores: $f(\mathbf{x}^i) = w_0 + w_1 x_1^i + \ldots + w_{82} x_{82}^i$

Methods

- Linear logistic regression
- 2. Linear discriminant analysis
- 3. Support vector machines
- Neural networks
- in the training phase used as regular classifiers on two-class data
- in the application phase no classification threshold applies

Framework

- each collocation candidate \mathbf{x}^i is described by the feature vector $\mathbf{x}^i = (x_1^i, \dots, x_{82}^i)^T$ consisting of scores of all association measures
- and assigned a label $y^i \in \{0,1\}$ indicating whether the bigram is considered to be a true collocation (y=1) or not (y=0)

we look for a ranker function $f(\mathbf{x}^i)$ determining the strength of lexical

- association between components of a candidate \mathbf{x}^i
- lacktriangle e.g. linear combination of association scores: $f(\mathbf{x}^i) = w_0 + w_1 x_1^i + \ldots + w_{82} x_{82}^i$

Methods

- Linear logistic regression
- Linear discriminant analysis
- 3. Support vector machines
- Neural networks
- in the training phase used as regular classifiers on two-class data
- in the application phase no classification threshold applies

Combination models

20/30

Framework

each collocation candidate \mathbf{x}^i is described by the feature vector $\mathbf{x}^i = (x_1^i, \dots, x_{82}^i)^T$ consisting of scores of all association measures

we look for a ranker function $f(\mathbf{x}^i)$ determining the strength of lexical

- and assigned a label $y^i \in \{0,1\}$ indicating whether the bigram is considered to be a true collocation (y=1) or not (y=0)
- association between components of a candidate \mathbf{x}^i
- lacktriangle e.g. linear combination of association scores: $f(\mathbf{x}^i) = w_0 + w_1 x_1^i + \ldots + w_{82} x_{82}^i$

Methods

- Linear logistic regression
- Linear discriminant analysis
- 3. Support vector machines
- 4. Neural networks
- in the training phase used as regular classifiers on two-class data
- in the application phase no classification threshold applies

Combination models: Evaluation

21/30

Evaluation scheme

- 6-fold crossvalidation on the 6 evaluation folds
- ► 5 folds for training (*fitting parameters*), 1 fold for testing (*ranking performance*)
- PR curve and AP score estimated on each test fold and averaged

train₁	train ₂	train₃	train₄	train₅	test ₆	held-out
--------	--------------------	--------	--------	--------	-------------------	----------

74.88	
75.16	
77.36	
80.87	
	66.72 66.79 73.03 74.88 75.16 77.36

Combination models: Evaluation

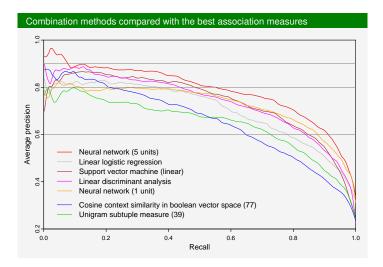
21/30

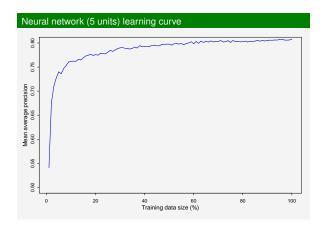
Evaluation scheme

- 6-fold crossvalidation on the 6 evaluation folds
- ► 5 folds for training (*fitting parameters*), 1 fold for testing (*ranking performance*)
- PR curve and AP score estimated on each test fold and averaged

train₁	train ₂	train₃	train₄	train₅	test ₆	held-out
--------	--------------------	--------	--------	--------	-------------------	----------

method	MAP	+%
Unigram subtuple measure	66.72	_
Cosine similarity in vector space	66.79	0.00
Support Vector Machine	73.03	9.35
Neural Network (1 unit)	74.88	12.11
Linear Discriminant Analysis	75.16	12.54
Linear Logistic Regression	77.36	15.82
Neural Network (5 units)	80.87	21.08





- ▶ 100% of training data = 5 training folds (8737 annotated collocation candidates)
- 95% of the final MAP achieved with 15% of training data
- 99% of the final MAP achieved with 50% of training data

Adding linguistic features

24/30

Idea

- improving the combination models by adding linguistic features
- categorical features can be transformed to binary dummy features

New feature:

- ▶ Part-of-Speech pattern: combination of component POS (A:N, N:N, ...)
- ▶ Syntactic relation: dependency type (attribute, object, ...)

Adding linguistic features

24/30

Idea

- improving the combination models by adding linguistic features
- categorical features can be transformed to binary dummy features

New features

- ► Part-of-Speech pattern: combination of component POS (A:N, N:N, ...)
- Syntactic relation: dependency type (attribute, object, ...)

Adding linguistic features

24/30

Idea

- improving the combination models by adding linguistic features
- categorical features can be transformed to binary dummy features

New features

- ▶ Part-of-Speech pattern: combination of component POS (A:N, N:N, ...)
- Syntactic relation: dependency type (attribute, object, ...)

method	MAP	+%
Unigram subtuple measure	66.72	-
Cosine similarity in vector space	66.79	0.00
NNet/5 (AM)	80.87	21.08
NNet/5 (AM+POS)	82.79	24.09
NNet/5 (AM+POS+DEP)	84.53	26.69

Model reduction

25/30

Motivation

- "Ocama's razor"
- combination of all 82 association measures is too complex
- models should be reduced: redundant variables removed

Two issues

- groups of highly correlated measures
- measures with no or minimal contribution to the mode

Two-step solution

- 1. correlation based clustering; one representative selected from each cluster
- 2. step-wise procedure removing variables one by one

Motivation

- "Ocama's razor"
- combination of all 82 association measures is too complex
- models should be reduced: redundant variables removed

Two issues

- groups of highly correlated measures
- 2. measures with no or minimal contribution to the model

Two-step solution

- 1. correlation based clustering; one representative selected from each cluster
- 2. step-wise procedure removing variables one by one

Motivation

- "Ocama's razor"
- combination of all 82 association measures is too complex
- models should be reduced: redundant variables removed

Two issues

- groups of highly correlated measures
- measures with no or minimal contribution to the model

Two-step solution

- 1. correlation based clustering; one representative selected from each cluster
- 2. step-wise procedure removing variables one by one

Model reduction: 1) Clustering

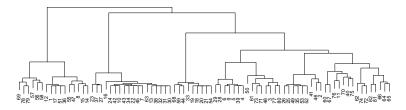
26/30

Agglomerative hierarchical clustering

- groups the measures with the same/similar contribution to the model
- begins with each measure as a separate cluster and merge them into successively larger clusters
- distance metrics = 1- | Pearson's correlation | (estimated on the held-out fold)

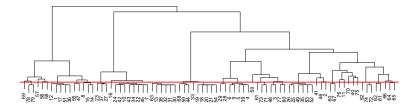
Agglomerative hierarchical clustering

- groups the measures with the same/similar contribution to the model
- begins with each measure as a separate cluster and merge them into successively larger clusters
- distance metrics = 1- | Pearson's correlation | (estimated on the held-out fold)



Agglomerative hierarchical clustering

- groups the measures with the same/similar contribution to the model
- begins with each measure as a separate cluster and merge them into successively larger clusters
- distance metrics = 1- | Pearson's correlation | (estimated on the held-out fold)



- number of the final clusters empirically set to 60
- the best performing measure (by MAP on the held-out fold) selected as the representative from each cluster

Model reduction: 2) Stepwise variable removal

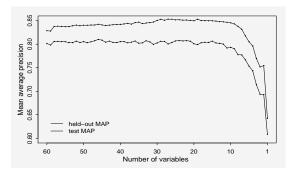
27/30

Iterative procedure

- initiated with the 60 variables/measures
- in each iteration we remove the variable causing minimal performance degradation when not used in the model (by MAP on the held-out fold)
- stops before the degradation becomes statistically significant

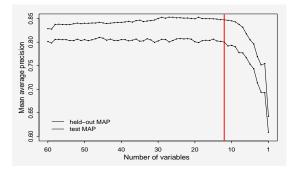
Iterative procedure

- initiated with the 60 variables/measures
- in each iteration we remove the variable causing minimal performance degradation when not used in the model (by MAP on the held-out fold)
- stops before the degradation becomes statistically significant



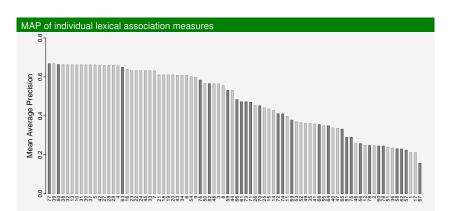
Iterative procedure

- initiated with the 60 variables/measures
- in each iteration we remove the variable causing minimal performance degradation when not used in the model (by MAP on the held-out fold)
- stops before the degradation becomes statistically significant



the final model contains 13 variables/lexical association measures

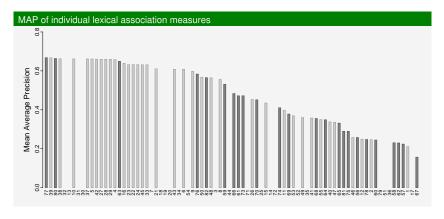
Model reduction: Process overview



- procedure initiated with all 82 association measures
- highly correlated measures removed in the first phase (clustering)
- 13 measures left after the second phase (stepwise removal)
 - = 4 statistical association mesaures (■) + 9 context-based measures (■)

Model reduction: Process overview

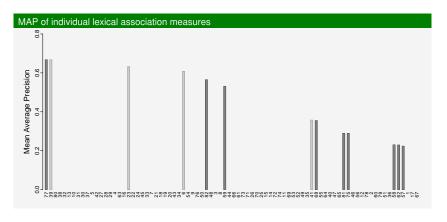
28/30



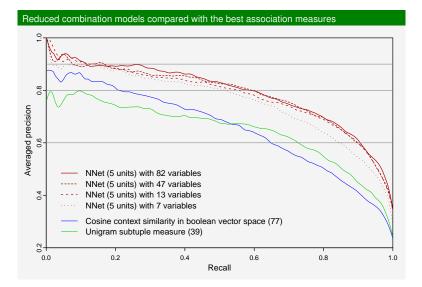
- procedure initiated with all 82 association measures
- highly correlated measures removed in the first phase (clustering)
- 13 measures left after the second phase (stepwise removal)
 - = 4 statistical association mesaures () + 9 context-based measures ()

Model reduction: Process overview

28/30



- procedure initiated with all 82 association measures
- highly correlated measures removed in the first phase (clustering)
- 13 measures left after the second phase (stepwise removal)
 - = 4 statistical association mesaures (■) + 9 context-based measures (■)



Main results

- 1. inventory of 82 lexical association measures
- 4 reference data sets
- all lexical association measures evaluated on these data sets
- 4. combining association measures improved state of the art in collocation extraction
- 5. combination models reduced to 13 measures without performance degradation

Other contribution of the thesis

- overview of different notions of collocation (definitions, typology, classification)
- evaluation scheme (Mean Average Precision, crossvalidation, significance tests)
- reference data sets used in MWE 2008 Shared Task

Main results

- inventory of 82 lexical association measures
- 4 reference data sets
- all lexical association measures evaluated on these data sets
- 4. combining association measures improved *state of the art* in collocation extraction
- 5. combination models reduced to 13 measures without performance degradation

Other contribution of the thesis

- overview of different notions of collocation (definitions, typology, classification)
- evaluation scheme (Mean Average Precision, crossvalidation, significance tests)
- reference data sets used in MWE 2008 Shared Task

Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclus

List of relevant publications

Pavel Pecina: Lexical Association Measures and Collocation Extraction, Multiword expressions: Hard going or plain sailing? Special issue of the International Journal of Language Resources and Evaluation, 44:137-158, 2010.

- Pavel Pecina: Lexical Association Measures: Collocation Extraction, volume 4 of Studies in Computational and Theoretical Linguistics, UFAL, Praha, Czech Republic, 2009.
- Pavel Pecina: Machine Learning Approach to Multiword Expression Extraction, In Proceedings of the sixth International Conference on Language Resources and Evaluation (LREC) Workshop: Towards a Shared Task for Multiword Expressions, Marrakech, Morocco, 2008.
- Pavel Pecina: Reference Data for Czech Collocation Extraction, In Proceedings of the sixth International Conference on Language Resources and Evaluation (LREC) Workshop: Towards a Shared Task for Multiword Expressions, Marrakech, Morocco, 2008.
- Pavel Pecina, Pavel Schlesinger: Combining Association Measures for Collocation Extraction, In Proceedings of the 21th International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (COLING/ACL), Sydney, Australia, 2006.
- Silvie Cinková, Petr Podveský, Pavel Pecina, Pavel Schlesinger: Semi-automatic Building of Swedish Collocation Lexicon, In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC), Genova, Italy, 2006.
- Pavel Pecina: An Extensive Empirical Study of Collocation Extraction Methods, In Proceedings of the Association for Computational Linguistics Student Research Workshop (ACL), Ann Arbor, Michigan, USA, 2005.

on Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusion

Additional data sets

PDT-Surf

- analogous to PDT-Dep (corpus, filtering, annotation)
- collocation candidates extracted as surface bigrams: pairs of adjacent words
- assumption: collocations cannot be modified by insertion of another word
- annotation consistent with PDT-Dep

CNC-Surf

- collocation candidates instances of PDT-Surf in the Czech National Corpus
- SYN 2000 and 2005, 240 mil. tokens, morphologicaly tagged and lemmatized
- annotation consistent with PDT-Surf

PAR-Dist

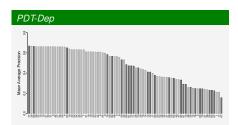
- source corpus: Swedish Parole, 22 mil. tokens
- automatic morphological tagging and lemmatization
- distance bigrams: word pairs occurring within a distance of 1–3 words
- annotation: non-exhaustive manual extraction of support verb constructions
- no frequency filter applied

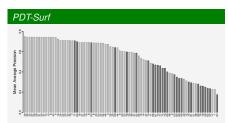
Reference data summary

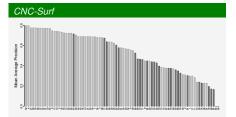
PDT C	ONC PAROLE
Czech Cze	
	ech Swedish
nanual a	uto auto
none no	one none
urface surfa	ace distance
04 847 242 272	798 22 883 361
38 030 30 608	916 13 370 375
29 035 2 941	414 13 370 375
10 021 1 503	072 898 324
10 021 9	868 17 027
100% 0.6	1.90%
2293 2	263 1 292
22.88 22	2.66 7.59
	urface surface surface surface surface surface surface 04 847 242 272 38 030 30 608 29 035 2 941 10 021 1 503 10 021 9 100 % 0.6 2293 2

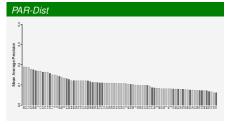
ion Collocation Extraction Association Measures Reference Data Empirical Evaluation Combining Association Measures Conclusions

Context-based vs. statistical association measures



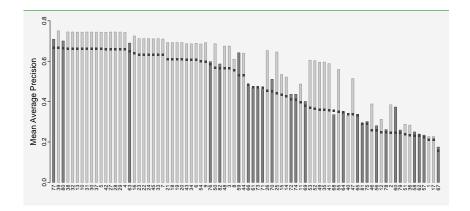






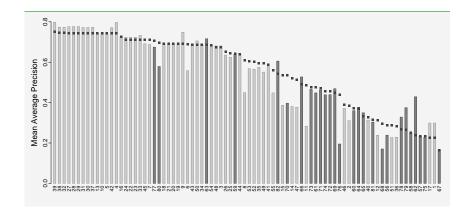
Results / Mean average precision: PDT-Dep vs. PDT-Surf

Dependency bigrams vs. surface bigrams



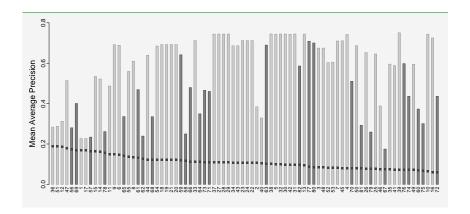
Results / Mean average precision: PDT-Surf vs. CNC-Surf

Small source corpus vs. large source corpus



Results / Mean average precision: PAR-Dist vs. PDT-Dep

Different corpus, different language, different task



Comparison of AM evaluation results on different data sets

