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Introduction

Common industry scenario:

A statistical MT system trained and tuned on general domain data
needs to be adapted to a specific domain for which no or only very
limited in-domain parallel data is available.

In this work, we show how:

1. performance of such systems drops when applied to specific domains
2. perplexity of test data correlates with translation quality

3.

4. such systems can be adapted successfully by cross/no tuning

system parameters changes when tuned on in-domain data
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3.

4. such systems can be adapted successfully by cross/no tuning

system parameters changes when tuned on in-domain data

. in context of Panacea and Khresmoi (EU FP7 projects).
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Phrase-Based Statistical Machine Translation in Moses

Log-linear model:
based on the noisy channel model
input sentence f split into phrases, that are translated, ev. reordered

translation @ searched for by maximizing translation probability
formulated as log-linear combination of functions h; and weights A;

€ = arg max p(el|f p(elf) hef
g max p(elf) (elf) H

Components (Moses):
1. phrase translation model ensuring phrase translation adequacy(hg—hi2)
2. language model ensuring translations fluency (hg)
3. reordering model allowing phrases reordering (h1—h7)
4

. word penalty regulating translation length (h14)

Features trained on training data, weights tuned by MERT on dev data.
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System description

Baseline system (general-domain):

sentences tokens

trained on Europarl v5 English—French 1,725K  47M
max phrase length 7; 5-gram LM English—Greek 964K 27M

Development and test sets:
1. General — WPT 2005 test and development sets from Europarl
2. Natural environment — web-crawled within the Panacea project
3. Labour legislation — web-crawled within the Panacea project
4. Medicine — extracted from the EMEA parallel corpus

English—French English—Greek

gen env  lab  med gen env  lab  med

dev 2,000 1,392 1,411 1,064 dev 2,000 1,000 506 1,064
test 2,000 2,000 2,000 2,000 test 2,000 2,000 2,000 2,000
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Baseline system performance — trained and tuned on general domain
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Baseline system performance — trained and tuned on general domain

is optimal when applied to general domain
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Baseline system performance — trained and tuned on general domain

is optimal when applied to general domain

is suboptimal when applied to specific domains
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The average decrease over all translation directions/domains is 53.97%.
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Domain divergence and its correlation with translation quality

Translation quality depends on the extent to which the test domain
differs from the training domain.
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Parameter tuning on in-domain data
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Development sets contain only several hundred sentence pairs each.
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The overall average increase of BLEU is 33.16% relative.
Development sets contain only several hundred sentence pairs each.

The main models remain the same, only the weigh vector changes.
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Moses weights optimized on general domain (EN-FR)
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1. Direct phrase translation probability (h11): high weight — high reward
for hypotheses consisting of phrases with high translation probability

2. Phrase penalty (h13): low negative weights — the systems prefer
hypotheses consisting of fewer but longer phrases.
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Moses weights optimized on general domain (EN-FR)
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1. Direct phrase translation probability (h11): high weight — high reward
for hypotheses consisting of phrases with high translation probability

2. Phrase penalty (h13): low negative weights — the systems prefer
hypotheses consisting of fewer but longer phrases.

3. Reordering model (hi1_7): weights around zero, reordering not preferred

8/22



Moses weights optimized on general vs. specific domain |.  (EN-FR)
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Direct phrase translation probability (h11): weights decrease rapidly

The translation tables do not provide enough good quality
translations for the specific domains

The best translation hypotheses consist of phrases with varying
translation probability scores.
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Moses weights optimized on general vs. specific domain Il. (EN-FR)
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Phrase penalty (h13): weights increase from negative to positive
Hypotheses consisting of few and long phrases not rewarded

In most cases such hypotheses are penalized and hypotheses
consisting of more (and short) phrases are preferred.
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Moses weights optimized on general vs. specific domain Ill. (EN-FR)
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Reordering model (h1—h7): weights increased substantially

For specificcdomain data the model significantly prefers hypotheses
with altered phrase/word order.
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Moses weights optimized on general vs. specific domain IV. (EN-FR)
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Weights of other features do not change substantially

Their importance is similar on general- and specific-domain data.
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Analysis of phrase-length distribution in test translations (EN-FR)
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gen/gen — system uses long phrases — optimal translation quality
gen/spec — system trained to use long phrases — sub-optimal quality

spec/spec — system trained to use shorter phrases — improved quality
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SMT system overtraining

This situation can be interpreted as overtraining: the model overfits the
training/tuning data and on different domain it fails to find the best
possible translations.

Solutions:

In-domain parameter tuning — already discussed
Reducing development data size — how much data we need
No tuning at all — using default parameter values

Cross-domain tuning — tuning on different domains
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Reducing development data size — how much data we need?  (EN-FR)
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Development set size

gen/gen — increasing dev set size is beneficial up to 600 sentences
gen/spec — no benefit from using general-domain dev data at all

spec/spec — the plateau is reached much earlier, as few as 200-300
sentence pairs are usually enough to get reasonable results.
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No parameter tuning — using default parameter values
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No parameter tuning — using default parameter values
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» In-domain tuning: +33.16%
» Using default vector weight: +24.75%
» Using flat vector weight: +21.10%
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Cross-domain tuning — tuning on different domains
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Cross-domain tuning — tuning on different domains
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Reducing maximum phrase length (EN-FR)
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Reducing maximum phrase length (EN-FR)
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Reducing maximum phrase length (EN-FR)
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gen/gen — increasing max phrase length is beneficial even beyond 7
gen/spec — optimum reached at 2-3, for higher values BLEU decreases

spec/spec — optimum reached at 3-4, longer phrases not needed.
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Conclusions
1. Systems trained and tuned on general domain perform poorly on
specific domains

2. Perplexity of the source side of the test data given the source side of
the training nicely correlates with the translation quality

3. Tuning the systems trained on general domain on specific target
domain data recovers a large amount of the loss

4. In-domain tuning requires about 100-200 sentence pairs to achieve
decent translation quality

5. Using the default model parameters, performs surprisingly well and
always outperforms systems tuned on general domain.

6. Cross-domain tuning offers a good solution when no in-domain
development data is available
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Complete data overview

dom set sentences LI tokens/ voc L2 tokens / wvoc
o gen train 1,725,096 47,956,886 73,645 53,262,628 103,436
Q dev 2,000 58,655 5,734 67,295 6,913
o test 2,000 57,951 5,649 66,200 6,876
|.|I. env  dev 1,392 41,382 4,660 49,657 5,542
= test 2,000 58,865 5,483 70,740 6,617
%ﬂo lab  dev 1,411 52,156 4,478 61,191 5,535
5 test 2,000 71,688 5,277 84,397 6,630
med  dev 1,064 16,807 3,484 18,932 4,865
test 2,000 31,725 5,268 34,884 7,331
gen train 964,242 27,446,726 61,497 27,537,853 173,435
<5 dev 2,000 58,655 5,734 63,349 9,191
& test 2,000 57,951 5,649 62,332 9,037
O env  dev 1,000 27,865 3,586 30,510 5467
< test 2,000 58,073 4,893 63,551 8,229
= lab  dev 506 15,129 2,227 16,089 3,333
S test 2,000 62,953 4,022 66,770 7,056
med  dev 1,064 16,807 3,484 20,625 3,893
test 2,000 31,725 5,268 38,614 5,754
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Complete results (BLEU)

test dev English—French French—English English—Greek Greek—English
gen gen 49.12 0.00 57.00 0.00 42.24 0.00 44.15 0.00
env 4151 -15.49 4163 -26.96 30.82 -27.04 33.99 -2301
lab 38.66 -21.32 4473 -21.53 29.75 -29.57 37.01 -16.17
med 3440 -29.97 37.52 -34.18 31.02 -26.56 3443 -22.02
def 39.53 -19.52 4287 -24.79 3093 -26.78 32.88 -25.53
env gen 28.03 0.00 31.79 0.00 20.20 0.00 29.23 0.00
env 3581 +27.76 39.04 +22.81 26.18 +29.60 34.16 +16.87
lab 36.16 +29.00 38.78 +21.99 26.13 +29.36 3385 +15.81
med 3240 +15.59 36.89 +16.04 2489 +2322 34.01 +416.35
def 34.94 +24.65 34.05 +7.11  26.09 +29.16 31.33 +7.18
flat 3222 +14.95 37.66 +18.46 2191 +8.47 32.84 +12.35
lab gen 22.26 0.00 27.00 0.00 2292 0.00 31.71 0.00
env 30.13 +35.35 33.21 +423.00 2836 +2373 37.57 +18.48
lab 30.84 +38.54 33.52 +424.15 28.79 +25.61 37.55 +18.42
med  27.04 +21.47 3077 +13.96 26.85 +17.15 37.52 +18.32
def 20.26 +31.45 29.73 +10.11 28.48 +24.26 3495 +10.22
flat 2716 +22.01 3224 +19.41 2513 +9.64 35.79 +12.87
med  gen 12.32 0.00 15.33 0.00 8.96 0.00 14.79 0.00
env  18.74 +52.11 2375 +54.92 13.89 +55.02 17.88 +20.89
lab 18.91 +53.49 2373 +54.79 13.69 +52.79 17.62 +19.13
med 1847 +49.92 24.42 +59.30 14.57 +62.61 18.10 +22.38
def 18.20 +47.73 21.15  +37.96 13.82  +54.24 16.70 +12.91
flat 17.06 +38.47  23.02 +50.16 11.99 +33.82 17.71  +19.74
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