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Abstract

This paper describes the participation of the Charles University in Cleaneval 2007, the shared task and
competitive evaluation of automatic systems for cleaning arbitrary web pages with the goal of preparing
web data for use as a corpus in the area of computational linguistics and natural language processing.
We try to solve this task as a sequence-labeling problem and our experimental system is based on Con-
ditional Random Fields exploiting a set of features extracted from textual content and HTML structure
of analyzed web pages for each block of text. Labels assigned to these blocks then discriminate between
different types of content blocks containing useful material that should be preserved in the document and
noisy blocks of no linguistics interest that should be eliminated.
Keywords : Web page cleaning, Sequence labeling, Conditional random fields.

1. Introduction
The web with its enormous amounts of textual materials is a rich and easily accessible
source of linguistic data that can be used to create extremely large corpora with rela-
tively low cost and within a short period of time (compared to the traditional way of
building text corpora which is an expensive and time-consuming process). The idea of
having a corpus “as large as the web” recently attracted attention of many researchers
in computational linguistics, natural language processing, and related areas, who would
greatly benefit from such amount of data. Creating such a corpus comprises two steps:
a) web crawling - automatic browsing the web and keeping a copy of visited pages and
b) cleaning the pages to be included in the corpus. In this work we focus on the latter.

Apart from the main content, a typical web page contains other material of no linguistic
interest, such as navigation bars, panels, and frames, page headers and footers, copyright
and privacy notices, advertisements and other data (often called boilerplate). The goal
is to detect and remove such parts from an arbitrary web page.

Although this task might seem too heterogeneous for methods based on supervised train-
ing to be appropriate, we solve it as a sequence-labeling problem with Conditional Ran-
dom Fields trained on a manually cleaned set of web pages. Our primary goal is an
attempt to explore whether supervised training methods can perform well enough to be
successfully used in this task.
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2. Related Work
Although web page cleaning is a crucial step in the procedure of building a web corpus,
only a relatively little work has been done in this area. Most of it originated in the area
of web mining and search engines, e.g. (Cooley et al. 1999) or (Lee et al. 2000).
In (Bar-Yossef & Rajagopalan 2002), a notion of pagelet determined by the number of
hyperlinks in the HTML element is employed to segment a web page; pagelets whose
frequency of hyperlinks exceeds a threshold are removed. (Lin & Ho 2002) extract
keywords from each block content to compute its entropy, and blocks with small entropy
are identified and removed. In (Yi et al. 2003) and (Yi & Liu 2003), a tree structure
is introduced to capture the common presentation style of web pages and entropy of
its elements is computed to determine which element should be removed. In (Chen
et al. 2006), a two-stage web page cleaning method is proposed. First, web pages are
segmented into blocks and blocks are clustered according to their style features. Second,
the blocks with similar layout style and content are identified and deleted. As far as the
authors know, none of the published method was based on sequence labeling or a similar
learning algorithm.

3. System Overview
The system for web page cleaning presented in this paper is based on sequence labeling
with CRF++ 1 implementation of Conditional Random Fields (Lafferty et al. 2001).
It is aimed at cleaning arbitrary web pages as specified in the Cleaneval shared task
description 2. The cleaning process consists of several steps:

1) Standardizing HTML code

The raw HTML input is passed through Tidy 3 in order to get a valid and parsable HTML
tree. During development, we found only one significant problem with Tidy, namely
interpreting JavaScript inside the <script> element, and employed a simple workaround
for it in our system. Except for this particular problem which occurred only once in our
training data, Tidy has proved to be a good choice.

2) Precleaning

Afterwards, the HTML code is parsed and parts that are guaranteed not to carry any
useful text (e.g. scripts, style definitions, embedded objects, etc.) are removed from the
HTML structure. The result is a valid HTML code.

3) Text block identification

In this step, the precleaned HTML text is again parsed with a HTML parser and inter-
preted as a sequence of text blocks separated by one or more HTML tags. For example,
the snippet �<p>Hello <b>world</b>!</p>� would be split into three blocks, �Hello�,
�world�, and �!�. Each of the blocks is then a subject of the labeling task and cleaning.

1 http://crfpp.sourceforge.net/
2 http://cleaneval.sigwac.org.uk/
3 http://tidy.sourceforge.net/
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4) Feature extraction

In this step, a feature vector is generated for each block. The list of features and their
detailed description is presented in the next section. The features must have a finite
set of values 4. The mapping of integers and real numbers into finite sets was chosen
empirically and is specified in the configuration. Most features are generated separately
by independent modules. This allows for adding other features and switching between
them for different tasks.

5) Learning

In accordance to the Cleaneval annotation guidelines and definition of the markup tags,
each content block occurring in our training data was manually assigned one of the
following labels: header, paragraph, list, and continuation for blocks that are in fact
continuations of preceding content blocks of any type. Other blocks are considered as
noisy blocks and are assigned the label other.

The sequence of feature vectors including labels extracted for all blocks from the train-
ing data are then transformed into the actual features used for training the CRF model
according to offset specification described in a template file.

6) Cleaning

Having estimated parameters of the CRF model, an arbitrary HTML file can be passed
through steps 1–4, and its blocks can be labeled with the same set of labels as described
above. These automatically assigned labels are then used to produce a cleaned output.
Blocks labeled as header, paragraph, or list remain in the document and are marked by
a corresponding markup tag (<h>, <p>, <l>), blocks labeled as continuation remains in
the document as they are (no tag is inserted) and blocks labeled as other are deleted.

4. Features
Features recognized by the system can be divided by their scope into three subsets:
features based on the HTML markup, features based on textual content of the blocks,
and features related to the document.

Markup-based Features

container.p, container.a, container.u, container.img, container.class-header,
container.class-bold, container.class-italic, container.class-list, container.class-form

For each parent element of a block, a corresponding container.* feature will be
set to 1, e.g. a hyperlink inside a paragraph will have the features container.p and
container.a set to 1. This feature is especially useful for classifying blocks: For
instance a block contained in one of the <hx > elements is likely to be a header, a
container.li feature suggests a list item, etc. The container.class-* features refer to
classes of similar elements rather than to elements themselves.

4 This is a limitation of the CRF tool used.
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split.p, split.br, split.hr, split.class-inline, split.class-block

For each opening or closing tag encountered since the last block, we generate a
corresponding split.* feature. This is needed to decide, whether a given block
connects to the text of the previous block (classified as continuation) or not. Also,
the number of encountered tags of the same kind is recorded in the feature. This
is mainly because of the <br> tag; a single line break does not usually split a
paragraph, while two or more <br> tags usually do. The split.class-* features
again refer to classes of similar elements.

Content-based Features

char.alpha-rel, char.num-rel, char.punct-rel, char.white-rel, char.other-rel

These features represent the absolute and relative counts of characters of different
classes (letters, digits, punctuation, whitespace and other) in the block.

token.alpha-rel, token.num-rel, token.mix-rel, token.other-rel token.alpha-abs,
token.num-abs, token.mix-abs, token.other-abs

These features reflect counts distribution of individual classes of tokens 5. The
classes are words, numbers, mixture of letters and digits, and other.

sentence.count

Number of sentences in a block. We use a naive algorithm basically counting peri-
ods, exclamation marks and question marks, without trying to detect abbreviations.
Given that the actual count is mapped into a small set of values anyway, this does
not seem to be a problem.

sentence.avg-length

Average length of a sentence, in words.

sentence-begin, sentence-end

These identify text blocks that start or end a sentence. This helps recognizing head-
ers and list items (as these usually do not end with a period) as well as continuation
blocks (sentence-end=0 in the previous blocks and sentence-start=0 in the current
block suggest a continuation).

first-duplicate, duplicate-count

The duplicate-count feature counts the number of blocks with the same content
(ignoring white space and non-letters). The first block of a group of twins is then
marked with first-duplicate. This feature serves two purposes: On pages where
valid text interleaves with noise (blogs, news frontpages, etc), the noise often con-
sists of some phrases like “read more...”, “comments”, “permalink”, etc, that re-
peat multiple times on the page. The second purpose of this feature is to identify

5 Tokens being sequences of characters separated by whitespace for this purpose.
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quotes in discussions, which are deleted in the Cleaneval development set. The
first-duplicate feature is then used to recognize the original post.

regexp.url, regexp.date, regexp.time

While we try to develop a tool that works independently of the human language of
the text, some language-specific features are needed nevertheless. The configura-
tion defines each regexp.* feature as an array of regular expressions. The value of
the feature is the number of the first matching expression (or zero for no match).
We use three sets of regular expressions: to identify times and dates (lines with
creation date/time are marked as header in Cleaneval data) and URLs (these are
usually cleaned away in the Cleaneval data).

bullet

This is a specialized version of the regexp.* features, matching different patterns
that suggest a list item (number or a single letter, closing parenthesis, dash, etc).
Each combination of matches results in a different value of the feature, so that lists
can be recognized as a sequence of blocks with the same bullet value.

div-group.word-ratio, td-group.word-ratio

The layout of many web pages follows a similar pattern: The main content is en-
closed in one big <div> or <td> element, as are the menu bars, advertisements etc.
To recognize this feature and express it as a number, the parser groups blocks that
are direct descendants of the same <div> element (<td> element respectively). A
direct descendant in this context means that there is no other <div> element (<td>
element respectively) in the tree hierarchy between the parent and the descendant.
For example in this markup

<div> a <div> b c </div> d <div> e f </div> g </div>

the div-groups would be (a, d, g), (b,c) and (e, f). The div-group.word-ratio and
td-group.word-ratio express the relative size of the group in number of words. To
better distinguish between groups with noise (e.g. menus) and groups with text,
only words not enclosed in <a> tags are considered.

Document-related features

position

This feature reflects a relative position of the block in the document (counted in
blocks, not bytes). The rationale behind this feature is that parts close to the be-
ginning and the end of documents usually contain noise.

document.word-count, document.sentence-count, document.block-count

This feature represents the number of words, sentences and text blocks in the doc-
ument.
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document.max-div-group, document.max-td-group

The maximum over all div-group.word-ratio and a maximum over all td-group.word-
ratio features. This allows us to express “fragmentation” of the document – docu-
ments with a low value of one of these features are composed of small chunks of
text (e.g. web bulletin boards).

5. Data and Evaluation
For our development purposes we had 104 manually cleaned HTML documents avail-
able: 51 of them were provided by Cleaneval and the rest was randomly selected, down-
loaded, and cleaned following the same guidelines by a volunteer. In this development
data set, 22 501 blocks were identified and assigned appropriate labels. Their distribu-
tion is shown in the following table.

label count
header 1 996
list 1 149
paragraph 3 419
continuation 3 380
total (content) 9 944
other (noise) 12 557

Table 1. Labels distribution in the development data set.

The data set was randomly split into six subsets and for better estimation of performance
measures used in a six-fold crossvalidation. Evaluation measures were of two types:
a) labeling accuracy – the ratio of correctly assigned block labels (1) from the full label
set and (2) distinguishing only between content and noisy blocks;
b) cleaning performance – the official Cleaneval scoring measures based on (3) edit
distance and the extent to which the markup tags indicate blocks of text starting and
ending in the same place and (4) alignment of text alone, ignoring the markup tags plus
(5) a combination of the latter two referred as the total score.

6. Experiments and Results
First, we have performed a series of experiments where we disabled each of the 46
features one by one with the following observations:

The variance among the results on the six crossvalidation subsets was relatively high in
all experiments; the total score ranged from 66% to 80%. This is partially caused by
the relatively small amount of training and test data in each run but it also proves the
heterogenous character of the task.

In contrast, the difference among the results of all experiments was relatively low. The
total scores ranged from 71.9% to 74.5%. A possible explanation is a certain redundancy
in the feature set.
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Disabling some of the features slightly improved the results. The total score with all
features enabled was 73.9%, while disabling the document.word-count feature resulted
in a score of 74.6%. Although this difference is probably not statistically significant we
used this criterion and disabled some features for cleaning the evaluation data.

We also performed two other experiments: one with only the content-based features
enabled and one with only the markup-based features enabled. Surprisingly, the results
only dropped to 65.3% for markup-only and 66.5% for content-only features. This gives
us an idea how much information is taken from these two types of features and how
much we gain from their combination.

For the Cleaneval evaluation, we have chosen three experimental settings: Exp-1 with
all features enabled, Exp-2 with the features word-ratio, numeric-count, mixed-count
and nonword-count disabled, and Exp-3 with two more additionally disabled features
regexp.url and document.word-count. The cross-validated results on the development
data set for these experiments are displayed in Table 2.

labeling accuracy (%) cleaning performance (%)
(1) full set (2) content-noise (3) markup-only (4) text-only (5) total

Exp-1 74.45 82.60 66.71 81.11 73.92
Exp-2 75.09 83.09 67.31 81.68 74.50
Exp-3 75.01 82.88 68.46 81.83 75.15

Table 2. Labeling accuracy and cleaning performance on the development data.

7. Conclusion
We proposed a method for web page cleaning based on sequence labeling with Condi-
tional Random Fields and presented a few initial experiments evaluated on the develop-
ment data for Cleaneval 2007. With very limited costs and manual work we were able to
achieve encouraging results. Using supervised training methods seems as a reasonable
approach and we believe that a better set of features can bring additional performance
improvement.
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