MooseNet: Synthesized Speech Metric

MooseNet: A Trainable Metric for Synthesized Speech with a PLDA Module **Ondřej Plátek** and Ondřej Dušek {oplatek,odusek}@ufal.mff.cuni.cz

unless otherwise stated

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Content

- MOS Prediction task & Data
- MooseNet NN Model
- PLDA Intro & Use
- Experiments
- Summary
- Q&A

Paper: github.com/oplatek/moosenet-plda arxiv.org/abs/2301.07087

Personal: <u>oplatek@ufal.mff.cuni.cz</u> <u>linkedin.com/in/ondrejplatek</u>

International Action Contents of States

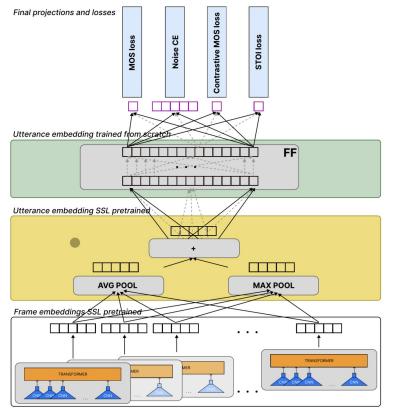
Task: Mean Opinion Scores Prediction

Task & Data: VoiceMOS Challenge

Task

- **Prediction** of speech utterance **score**
- Single score for utterance
- **Gold** score: **Mean** of annotators scores
- Large variance:
 - modelling annotator helps[2]
 - modelling data collection helps [2]
- Models based on SSL are SOTA
 - o 2022: Wav2vec 2.0[3], HuBERT [4]

Data[1]

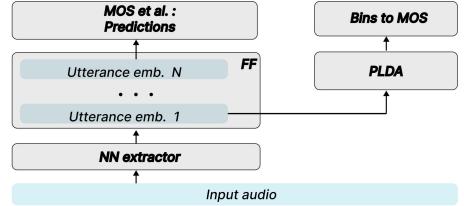

- VoiceMOS' two tracks: main & OOD
- Single isolated utterances
- Each rated by multiple annotators
- English and Chinese (OOD)
- Single *overall* score
- Main track from multiple datasets

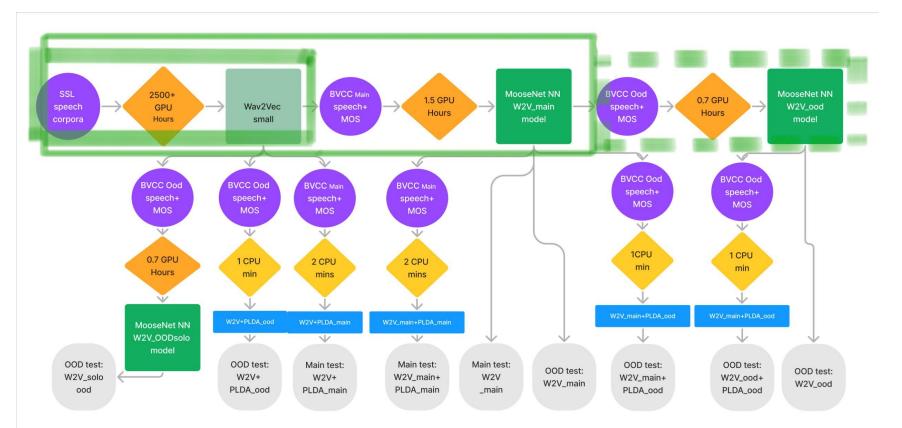
- 1. W.-C. Huang, E. Cooper, Y. Tsao, H.-M. Wang, T. Toda, and J. Yamagishi, The VoiceMOS Challenge 2022.
- 2. W.-C. Huang, E. Cooper, J. Yamagishi, and T. Toda, LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech
- 3. A. Baevski, H. Zhou, A. Mohamed, and M. Auli, Wav2Vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.
- 4. W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed, HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units

Task: MOS prediction

MooseNet NN Training

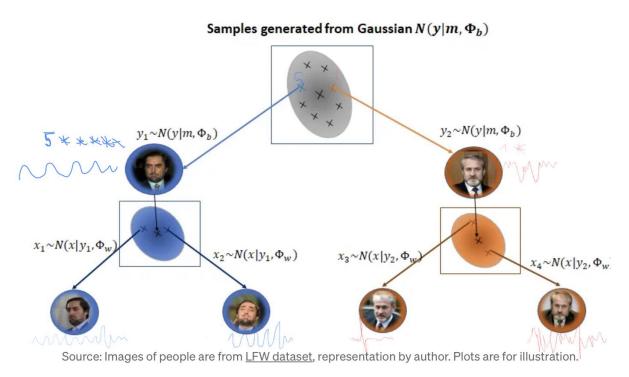
Neural Network (NN) Architecture & PLDA integration




Figure 1: *PLDA* can use any layer after global pooling as utterance level embedding as its features.

Utterance embedding for PLDA

SSL Models: Wav2vec 2.0 & XLSR[1]


[1]A. Babu et al., "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale."

MooseNet Training

Probabilistic Linear Discriminant Analysis (PLDA)

PLDA Generative Model for Audio Quality Classes

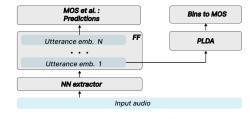


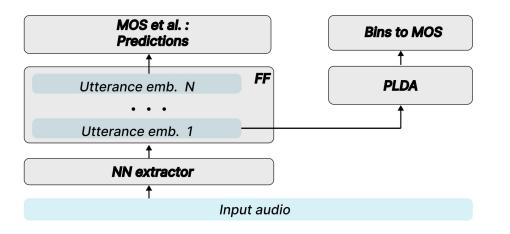
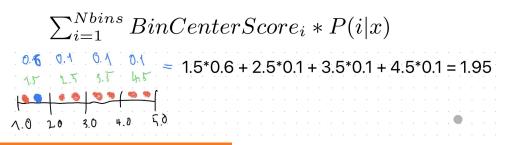
Figure 1: *PLDA can use any layer after global pooling as utterance level embedding as its features.*

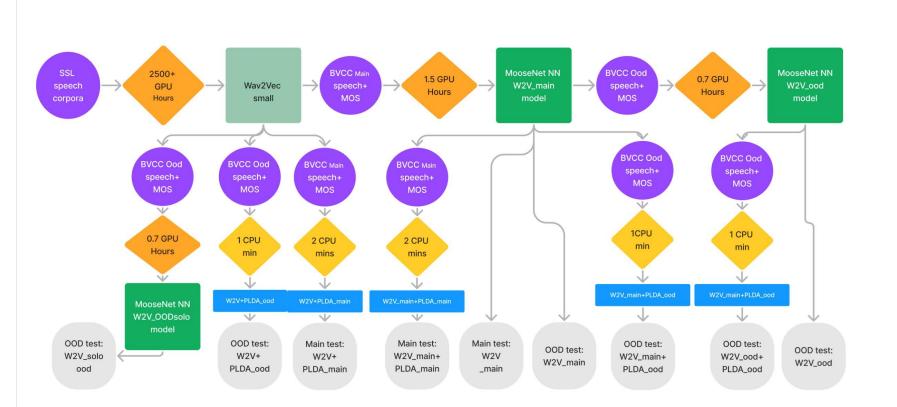
PLDA generative model

y ~ distribution models **different** classes

x ~ distribution models **similarity** for the class y_i

Audio Quality Classes - Binning MOS scores


Figure 1: *PLDA* can use any layer after global pooling as utterance level embedding as its features.

- PLDA needs classification.
- VoiceMOS main training set contains only 33 unique scores for 4974 utterances
 :)
- PLDA requires representant for each bin.
- Specify number of bins -> boundaries set to have equal number of samples.
- Posterior Probabilities used as weights.

Experiments & Results

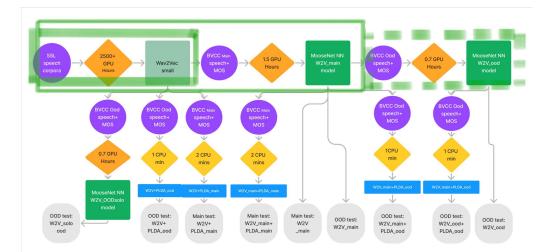
Experiments Overview

Baselines and RQ1 MooseNet NN on Main Track

Main test system-level:	MSE	SRCC
LDNet baseline SSL-Baseline (B01)	$0.178 \\ 0.148$	0.873 0.921
W2V_main w/o contrast W2V_main w/o augmnt. W2V_main w/o STOI W2V_main_logCosh/Gauss W2V_main	0.149 ± 0.033 0.137 ± 0.047 0.140 ± 0.033 0.159 ± 0.035 0.142 ± 0.032	$\begin{array}{c} 0.922 \pm 0.007 \\ 0.922 \pm 0.005 \\ 0.922 \pm 0.007 \\ 0.922 \pm 0.006 \\ \textbf{0.923} \pm 0.006 \end{array}$

- Faster convergence but no significant quality improvement.
- STOI multi task training with STOI regression computed for original and degraded audio.
- Contrastive Loss [1].
- We first used LogCosh loss[2] and then Gauss loss[3].
- We used dynamic volume and tempo augmentation.

[1]T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi, and H. Saruwatari, UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022.


[2]LearningResve A. Saleh, A.K.Md. Ehsanes Saleh, Statistical Properties of the log-cosh Loss Function Used in Machine Learning

 $\ensuremath{\left[3\right]}$ Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the target probability distribution"

RQ2 MooseNet Trained on Main. Evaluated on OOD Track.

OOD test system-level:	MSE	SRCC
LDNet baseline	0.091	0.934
SSL-Baseline (B01)	0.099	0.975
W2V_main	$2.657 {\pm} 0.399$	$0.710 {\pm} 0.040$

- Poor performance.
- Absolute values are nonsense.
- Still some correlation.

RQ3 PLDA benefits from fine-tuned MooseNet NN?

OOD test system-level:	MSE	SRCC
LDNet baseline	0.091	0.934
SSL-Baseline (B01)	0.099	0.975
W2V_main	$2.657 {\pm} 0.399$	$0.710 {\pm} 0.040$
XLSR_main	$2.630 {\pm} 0.301$	$0.748 {\pm} 0.041$
W2V_main+PLDA_ood	0.190 ±0.061	$0.860 {\pm} 0.042$
_XLSR_main+PLDA_ood	$0.197 {\pm} 0.051$	0.866 ±0.039
W2V_ood	$0.263 {\pm} 0.128$	$0.955 {\pm} 0.013$
XLSR_ood	0.058 ±0.011	$0.942{\pm}0.007$
W2V_ood+PLDA_ood	$0.063 {\pm} 0.008$	0.956 ±0.011
XLSR_ood+PLDA_ood	$0.062 {\pm} 0.008$	0.945 ± 0.004
W2V_solo-ood	$0.265 {\pm} 0.144$	$0.927 {\pm} 0.023$
W2V+PLDA_ood	0.057 ±0.009	0.955 ±0.001
XLSR+PLDA_ood	$0.145 {\pm} 0.012$	$0.886 {\pm} 0.018$

- Is more fine-tuning beneficial to PLDA?
- Yes it is :)
- Note also that PLDA improves the fine-tuned models W2v_ood and XLSR_ood :)

RQ4 Can PLDA Be Used without SSL Model Fine-tuning?

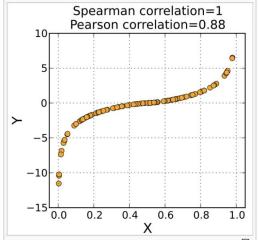
Main test system-level:	MSE	SRCC
LDNet baseline	0.178	0.873
SSL-Baseline (B01)	0.148	0.921
W2V_main w/o contrast	$0.149 {\pm} 0.033$	$0.922 {\pm} 0.007$
W2V_main w/o augmnt.	0.137±0.047	$0.922 {\pm} 0.005$
W2V_main w/o STOI	$0.140 {\pm} 0.033$	$0.922 {\pm} 0.007$
W2V_main_logCosh/Gauss	$0.159 {\pm} 0.035$	$0.922 {\pm} 0.006$
W2V_main	$0.142{\pm}0.032$	0.923 ±0.006
W2V_main 50% train	0.150 ±0.044	0.924 ±0.006
W2V_main 5% train	$0.307 {\pm} 0.176$	$0.884 {\pm} 0.006$
W2V_main 136 train	$0.289 {\pm} 0.072$	$0.853 {\pm} 0.006$
XSLR_main	$0.117 {\pm} 0.035$	$0.929 {\pm} 0.007$
W2V_main+PLDA_main	$0.105 {\pm} 0.009$	$0.922 {\pm} 0.006$
XSLR_main+PLDA_main	$\textbf{0.101}{\pm}0.010$	$0.929 {\pm} 0.005$
W2V+PLDA_main	$0.167 {\pm} 0.000$	0.867 ±0.000
XLSR+PLDA_main	0.076 ±0.326	$0.804 {\pm} 0.109$
OOD test system-level:	MSE	SRCC
LDNet baseline	0.091	0.934
SSL-Baseline (B01)	0.099	0.975
W2V_main	2.657±0.399	$0.710 {\pm} 0.040$
XLSR_main	$2.630 {\pm} 0.301$	$0.748 {\pm} 0.041$
W2V_main+PLDA_ood	0.190±0.061	$0.860 {\pm} 0.042$
XLSR_main+PLDA_ood	$0.197 {\pm} 0.051$	0.866 ±0.039
W2V_ood	0.263±0.128	0.955±0.013
XLSR_ood	0.058±0.011	$0.942 {\pm} 0.007$
		0.956±0.011
W2V_ood+PLDA_ood	$0.063 {\pm} 0.008$	0.950±0.011
W2V_ood+PLDA_ood XLSR_ood+PLDA_ood	0.063 ± 0.008 0.062 ± 0.008	0.936 ± 0.011 0.945 ± 0.004
XLSR_ood+PLDA_ood	$0.062 {\pm} 0.008$	$0.945 {\pm}~0.004$

- On Small OOD dataset PLDA performs the best.
- Interestingly, fine-tuning MooseNet NN on Main+OOD does not help much.
- Future work: Maybe the fine-tuning first on the main track is not beneficial for better discriminative features.
- On larger datasets the MooseNet NN performance is better will discuss on next slide.

RQ5 How is the NN and PLDA Data Hungry?

Main test system-level:	MSE	SRCC
LIDNet baseline	0.178	0.873
SSL-Baseline (B01)	0.148	0.921
W2V_main w/o contrast	$0.149{\pm}0.033$	0.922 ± 0.007
W2V_main w/o augmnt.	0.137±0.047	$0.922 {\pm} 0.005$
W2V_main w/o STOI	$0.140 {\pm} 0.033$	$0.922 {\pm} 0.007$
W2V_main_logCosh/Gauss	$0.159 {\pm} 0.035$	$0.922 {\pm} 0.006$
W2V_main	$0.142{\pm}0.032$	0.923 ±0.006
W2V_main 50% train	0.150 ±0.044	0.924 ±0.006
W2V_main 5% train	$0.307 {\pm} 0.176$	0.884 ± 0.006
W2V_main 136 train	$0.289 {\pm} 0.072$	$0.853 {\pm} 0.006$
XSLR_main	$0.117 {\pm} 0.035$	$0.929 {\pm} 0.007$
W2V_main+PLDA_main	0.105 ± 0.009	0.922 ± 0.006
XSLR_main+PLDA_main	$\textbf{0.101}{\pm}0.010$	0.929 ±0.005
W2V+PLDA_main	$0.167 {\pm} 0.000$	0.867 ±0.000
XLSR+PLDA_main	$0.076 {\pm} 0.326$	$0.804 {\pm} 0.109$
OOD test system-level:	MSE	SRCC
LDNet baseline	0.091	0.934
SSL-Baseline (B01)	0.099	0.975
W2V_main	2.657±0.399	0.710 ± 0.040
XLSR_main	$2.630 {\pm} 0.301$	$0.748 {\pm} 0.041$
W2V_main+PLDA_ood	0.190±0.061	$0.860 {\pm} 0.042$
XLSR_main+PLDA_ood	$0.197{\pm}0.051$	0.866 ±0.039
W2V_ood	$0.263 {\pm} 0.128$	0.955±0.013
XLSR_ood	0.058±0.011	$0.942 {\pm} 0.007$
W2V_ood+PLDA_ood	$0.063 {\pm} 0.008$	0.956±0.011
XLSR_ood+PLDA_ood	$0.062{\pm}0.008$	0.945 ± 0.004
W2V_solo-ood	0.265 ± 0.144	0.927±0.023
W2V+PLDA_ood	0.057±0.009	0.955±0.001
XLSR+PLDA_ood	$0.145 {\pm} 0.012$	$0.886 {\pm} 0.018$

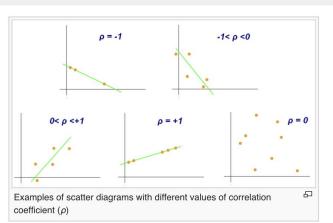
- Surprisingly the MooseNet NN improves quite quickly See the ablation study on main track.
- The experiments on OOD track shows that PLDA outperforms pure NN MooseNet
- However, we compared PLDA trained on full set with 5% of the main track data which is enough for MooseNet NN to beat SRCC ranking.
- 50% of the main train set beets the PLDA which used 100% of the data in both MSE and SRCC
- In general, PLDA excels in adjusting the scale but the NN feature are already very discriminative and can be easily further fine-tuned.

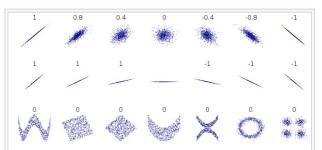

- MooseNet NN: Predicts MOS using regression on top of SSL model.
- MooseNet + PLDA:
- PLDA: classification into numerical labels which are weighted
 - PLDA clusters input features: Each cluster has a MOS label.
 - Posterior probabilities are used as weights for numerical labels.
- PLDA shines for small datasets.
- PLDA cannot improve SSL embeddings to be more discriminative ranking is not improved but improves scale.

https://github.com/oplatek/moosenet-plda

{oplatek,odusek}@ufal.mff.cuni.cz

Expected QA


SRCC metric - Spearman Correlation Coefficient



A Spearman correlation of 1 results when the two variables being compared are monotonically related, even if their relationship is not linear. This means that all data points with greater x values than that of a given data point will have greater y values as well. In contrast, this does not give a perfect Pearson correlation.

 Table 3: Linear correlation coefficients between system-level metrics, using the main track results.

	MSE	LCC	SRCC	KTAU
MSE	1.00	875	862	870
LCC	121	1.00	.997	.994
SRCC	-	- 1	1.00	.994
KTAU	-	-	-	1.00

Several sets of (x, y) points, with the correlation coefficient of x and y for each set. Note that the correlation reflects the strength and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of *Y* is zero.

- We use only SRCC and MSE.
- SRCC, KTAU and LCC correlate highly on VoiceMOS dataset.
- Pearson depends on scale, Spearman does not.
- Spearman evaluate ranking
- MSE evaluates absolute values.
- MSE and SRCC are complementary.

Table 3 is from W.-C. Huang, E. Cooper, Y. Tsao, H.-M. Wang, T. Toda, and J. Yamagishi, The VoiceMOS Challenge 2022.

The other two pictures are from https://en.m.wikipedia.org/wiki/Spearman%27s_r ank_correlation_coefficient

All Results and Experiments

Main test system-level:	MSE	SRCC										
LDNet baseline SSL-Baseline (B01)	0.178 0.148	0.873 0.921										
W2V_main w/o contrast W2V_main w/o augmnt. W2V_main w/o STOI W2V_main_logCosh/Gauss W2V_main	$\begin{array}{c} 0.149{\pm}0.033\\ \textbf{0.137}{\pm}0.047\\ 0.140{\pm}0.033\\ 0.159{\pm}0.035\\ 0.142{\pm}0.032\end{array}$	$\begin{array}{c} 0.922 {\pm} 0.007 \\ 0.922 {\pm} 0.005 \\ 0.922 {\pm} 0.007 \\ 0.922 {\pm} 0.006 \\ \textbf{0.923} {\pm} 0.006 \end{array}$	SSL	2500+		BVCC Main		Moos	seNet NN	BVCC Ood		MooseNet NN
W2V_main 50% train W2V_main 5% train W2V_main 136 train	0.150 ±0.044 0.307±0.176 0.289±0.072	0.924 ±0.006 0.884±0.006 0.853±0.006	speech corpora	GPU Hours		→ speech+ MOS	→ 1.5 GPU Hours	\rightarrow w2	2V_main →	speech+ MOS	0.7 GPU Hours	W2V_ood model
XSLR_main	$0.117{\pm}0.035$	$0.929 {\pm} 0.007$							\uparrow			
W2V_main+PLDA_main XSLR_main+PLDA_main	0.105±0.009 0.101 ±0.010	0.922±0.006 0.929 ±0.005		BVCC Ood speech+	BVCC Ood speech+	BVCC Main speech+	BVCC Main speech+		1	BVCC Ood speech+	BVCC Ood speech+	
W2V+PLDA_main XLSR+PLDA_main	0.167±0.000 0.076 ±0.326	0.867 ±0.000 0.804±0.109		MOS	Mos	Mos	Mos			MOS	Mos	
OOD test system-level:	MSE	SRCC		0.7 GPU	1 CPU	2 CPU	2 CPU		\sum	1CPU	1 CPU	7
LDNet baseline SSL-Baseline (B01)	0.091 0.099	0.934 0.975		Hours	min	mins	mins			min	min	
W2V_main XLSR_main W2V_main+PLDA_ood XLSR_main+PLDA_ood	$\begin{array}{c} 2.657 {\pm} 0.399 \\ 2.630 {\pm} 0.301 \\ \textbf{0.190} {\pm} 0.061 \\ 0.197 {\pm} 0.051 \end{array}$	$\begin{array}{c} 0.710 {\pm} 0.040 \\ 0.748 {\pm} 0.041 \\ 0.860 {\pm} 0.042 \\ \textbf{0.866} {\pm} 0.039 \end{array}$		MooseNet NN W2V_OODsolo model	W2V+PLDA_ood	W2V+PLDA_main	W2V_main+PLDA_main			W2V_main+PLDA_ood	W2V_main+PLDA_ood	
W2V_ood XLSR_ood W2V_ood+PLDA_ood XLSR_ood+PLDA_ood	0.263±0.128 0.058±0.011 0.063±0.008 0.062±0.008	$\begin{array}{c} 0.955 {\pm} 0.013 \\ 0.942 {\pm} 0.007 \\ \textbf{0.956} {\pm} 0.011 \\ 0.945 {\pm} \ 0.004 \end{array}$	OOD test: W2V_solo ood	<u> </u>	OOD test: W2V+ PLDA_ood	Main test: W2V+ PLDA_main	Main test: W2V_main+ PLDA_main	Main test: W2V _main	OOD test: W2V_main	OOD test: W2V_main+ PLDA_ood	OOD test: W2V_ood+ PLDA_ood	OOD test: W2V_ood

 $0.265 {\pm} 0.144$

0.057±0.009

 0.145 ± 0.012

 $0.927 {\pm} 0.023$

0.955±0.001

 $0.886 {\pm} 0.018$

W2V_solo-ood

W2V+PLDA_ood

XLSR+PLDA_ood