# Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems

Jędrzej Warczyński, Mateusz Lango, Ondrej Dusek



Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



unless otherwise stated

### **Problem definition**

- **Data-to-text:** generate textual description for given data
- We focus on data expressed as **RDF triples**
- Example:

(Alex Plante, birth year, 1989), (Alex Plante, birth place, Manitoba)

 $\Rightarrow$ 

Alex Plante was born in 1989 in Manitoba.

### Two approaches towards data-to-text

#### • Rule-based systems

- manually written by human experts
- interpretable
- controllable
- typically quite fast, run on CPU

#### • Neural systems

- automatically trained by machine learning algorithm
- black-box models
- hallucinations
- need GPU/special hardware to deploy

### Two approaches towards data-to-text

#### • Rule-based systems

- manually written by human experts
- interpretable
- controllable
- typically quite fast, run on CPU

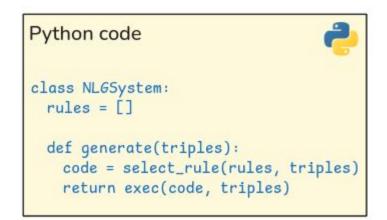
#### • Neural systems

- automatically trained by machine learning algorithm
- black-box models
- hallucinations
- need GPU/special hardware to deploy
- **RuLLeM** (this work): neurosymbolic approach using Large Language Model to write/train rule-based system in pure Python
  - automatically trained by machine learning algorithm
  - interpretable & controllable
  - reduced hallucinations (+ can be fixed manually)
  - very fast generation, runs on CPU

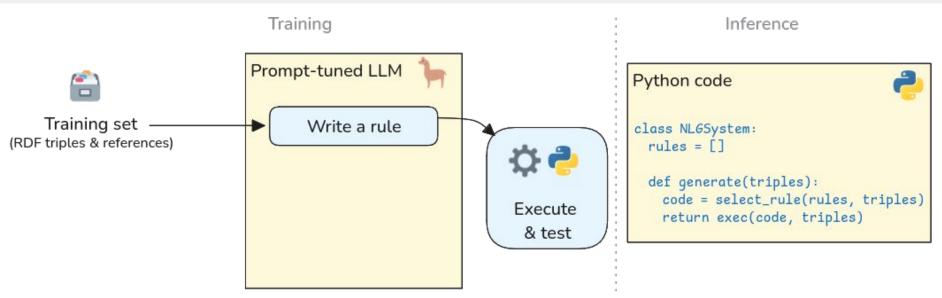
### **RuLLeM - overall system structure**

We start from a simplistic data2text implementation, containing:

- (empty) structure for storing rules
  - rule *specification*:
    - # input triples,
    - list of their predicates
  - rule code: Python code snippet
- rule selection procedure:
  - rule with matching specification  $\rightarrow$  run it
  - else: iteratively find rules to cover subsets  $\rightarrow$  run them & concatenate outputs

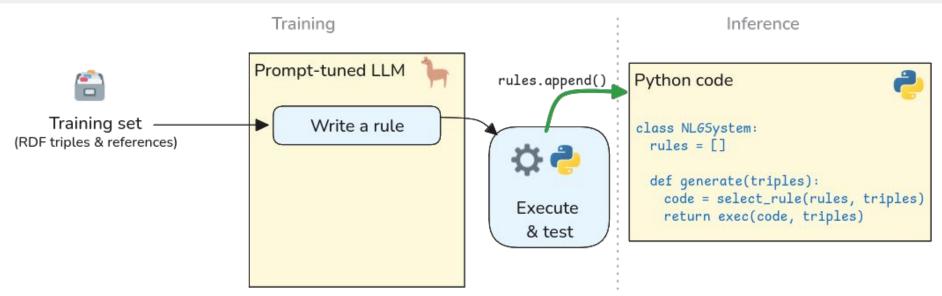


## **RuLLeM - training the system (1/4)**



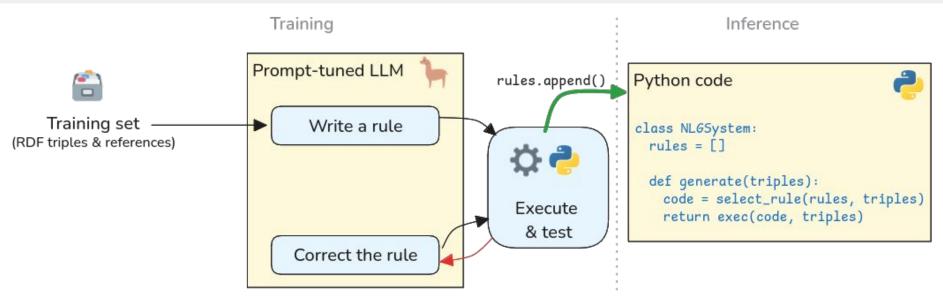
- We iterate over training examples & prompt LLM to write a rule for each
- The prompt contains:
  - Instruction to generate Python code, specifying input & output
  - "make it general to produce outputs for other triples"
  - Code snippet with overall program structure

## **RuLLeM - training the system (2/4)**



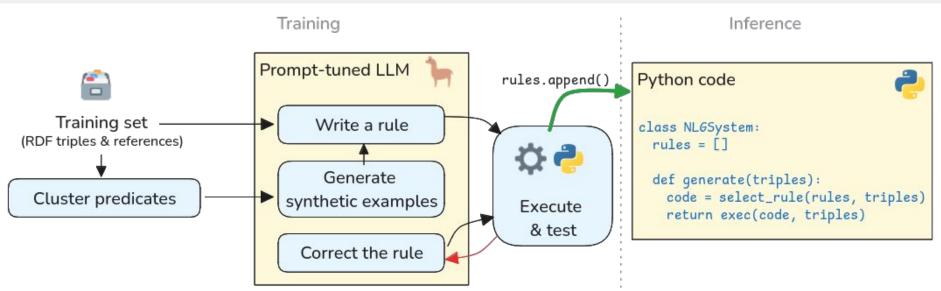
- The rule code is executed and tested.
- We assume the rule is correct if:
  - there's no syntax error
  - execution does not exceed timeout
  - Levenshtein distance between output & reference is within threshold

## **RuLLeM - training the system (3/4)**



- Incorrect rule → we ask LLM to fix it, given expected & received output
- Repeated 2x if needed

## **RuLLeM - training the system (4/4)**



- To improve generalizability, we construct rules for synthetic examples
  - We cluster triples based on co-occurrence in training set
  - LLM generates synthetic references

for all pairs, triples and quadruples of triples within cluster

## **Experimental setup**

- WebNLG dataset
- The performance measured on in-domain data only
- 2 neural baselines
  - Fine-tuned BART model
  - Prompted Llama 3 70B
- RuLLeM uses Llama 3 70B to produce rules
- 3,408 rules constructed from original training set

| Method          | Automatic metrics |              |              | Inference time |         | Interpretability |
|-----------------|-------------------|--------------|--------------|----------------|---------|------------------|
|                 | BLEU              | METEOR       | BLEURT       | GPU            | CPU     |                  |
| Llama 3 70B     | 38.26             | <u>0.680</u> | 0.113        | 6,360 s        | n/a     | $\bigcirc$       |
| Fine-tuned BART | 53.28             | 0.716        | 0.257        | 249 s          | 1,910 s | $\bigcirc$       |
| RuLLeM          | <u>42.51</u>      | 0.671        | <u>0.157</u> | -              | 3s      |                  |

### **Human evaluation**

- 75 instances from the test set of WebNLG annotated by 5 NLP experts for 3 systems (i.e. 225 system outputs in total)
- 5 binary questions, order of outputs randomized

|                 | minor<br>hallucinations | major<br>hallucinations | omissions   | disfluencies | repetitions |
|-----------------|-------------------------|-------------------------|-------------|--------------|-------------|
| Llama 3 70B     | <u>0.08</u>             | 0.07                    | 0.07        | 0.19         | 0.03        |
| Fine-tuned BART | 0.20                    | 0.33                    | 0.19        | <u>0.16</u>  | 0.07        |
| RuLLeM          | 0.04                    | <u>0.13</u>             | <u>0.08</u> | 0.13         | 0.03        |

## **Other experiments**

#### What about other LLMs than Llama 3 70B?

- We checked smaller LLMs: Llama 3 7B, Mistral 7B, Codellama 7B
- Not satisfactory, **large model seems to be needed** to develop rules

#### *Is the code of RuLLeM truly interpretable for a human?*

- We chose 5 hallucinations found in human evaluation and asked a Python programmer to fix it (without AI tools)
- The programmer got familiar with the code & **successfully fixed all the errors** in <15 minutes (3 min./example).



- We present an idea of using LLM to implement a NLG system
- The framework is very simple (e.g. no LLM fine-tuning, no optimization of NLG metrics)
- But the output quality is
  - ~ between few-shot prompted LLM and finetuned BART
- RuLLeM offers **full interpretability** and **very fast generation**

#### **Thanks**

Email: <u>lango@ufal.mff.cuni.cz</u>

Paper: https://aclanthology.org/2024.inlg-main.48.pdf

Code: <u>https://github.com/jwarczynski/RuLLeM</u>

This research was funded by the European Union (ERC, NG-NLG, 101039303) and National Science Centre, Poland (Grant No. 2022/47/D/ST6/01770). It used resources of the LINDAT/CLARIAH-CZ Research Infrastructure (Czech MEYS LM2018101).



15

# Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems

Jędrzej Warczyński, Mateusz Lango, Ondrej Dusek



Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



unless otherwise stated