Critic-Driven Decoding for Mitigating Hallucinations in Data-to-text Generation

Mateusz Lango, Ondřej Dušek

■ December 6-10, 2023

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

This work is about:

Data-to-text: generating textual description for given data
 Creation Example:

(Alex Plante, birth year, 1989), (Alex Plante, birth place, Manitoba) \Rightarrow Alex Plante was born in 1989 in Manitoba.

Hallucinations: generated text lacks grounding in the input data
 Can lead to inaccurate or misleading information
 Undermines quality and reliability of the output

- Current approaches: train a new model
 + require annotation / training procedure change / network architecture change
- Text classifiers: can find incoherence between data & generated text (e.g. NLI-based metrics)

Our approach:

- Can be used with any existing LM, only modifies decoding
- C Uses a **text critic classifier** to guide the decoding
- Checks match between data & text generated so far

- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

$$P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x)P(y_i|y_{\leq i-1}, x)$$

- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

```
P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x)P(y_i|y_{\leq i-1}, x)
```


- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

 $P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x)P(y_i|y_{\leq i-1}, x)$

- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

 $P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x)P(y_i|y_{\leq i-1}, x)$

- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

 $P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x)P(y_i|y_{\leq i-1}, x)$

- Text critic classifier: compares input data vs. text generated so far
- LM word probability multiplied by critic's assessment of correctness

 $P(y_i|y_{\leq i-1}, x, c) \propto P(c|y_{\leq i}, x) P(y_i|y_{\leq i-1}, x)$

Generating critic training data

• Positive training examples = all prefixes from LM training data

The A-Rosa Luna is powered by a MTU Friedrichshafen engine and is 125.8 metres in length.

\Rightarrow

The The A-Rosa The A-Rosa Luna The A-Rosa Luna is

Generating critic training data

Negative training examples: 5 approaches

1. **base** – replacing random words

"The Cruises", "The A-Rosa the", "The A-Rosa Luna located", ...

- 2. base with full sentences replacing random sentences
- 3. vanilla LM replacing words by sampling from (unconditioned) LM

"The United", "The A-Rosa is", "The A-Rosa Luna powers", ...

4. fine-tuned LM – words sampled from data-conditioned LM

"The A-Rosa Luna is 125.8m", "The A-Rosa Luna is supplied", , ...

5. fine-tuned LM with full sentences – full sentences from data-conditioned LM

Results - manual evaluation

- 100 instances from WebNLG test set
- Base LM: fine-tuned BART
- Minor and major hallucinations, omissions, disfluencies, repetitions
- Overall relative ranking of text quality

decoding approach	min. hal.	maj. hal.	omi.	disfl.	rep.	avg. rank
baseline	0.22	0.40	0.25	0.20	0.08	3.61
1. critic (base)	0.21	0.30	0.20	0.17	0.04	3.38
2. critic (base with full sent.)	0.21	0.29	0.27	0.11	0.08	3.43
3. critic (vanilla LM)	0.18	0.29	0.23	0.19	0.05	3.54
4. critic (fine-tuned LM)	0.22	0.37	0.26	0.21	0.07	3.53
5. critic (fine-tuned LM with full sent.)	0.20	0.37	0.26	0.18	0.07	3.54

- BLEU, METEOR, BERTScore, NLI, BLEURT on WebNLG and OpenDialKG
- C Stat. significant improvements of hallucination-oriented measures (NLI, BLEURT)
- C Text quality measures not affected (sometimes slight improvements)

- BLEU, METEOR, BERTScore, NLI, BLEURT on WebNLG and OpenDialKG
- C Stat. significant improvements of hallucination-oriented measures (NLI, BLEURT)
- C Text quality measures not affected (sometimes slight improvements)

Analysis of changes introduced by critics

௺ Many outputs intact (30-70%), most changes only a few words (2-5), length preserved

- BLEU, METEOR, BERTScore, NLI, BLEURT on WebNLG and OpenDialKG
- C Stat. significant improvements of hallucination-oriented measures (NLI, BLEURT)
- C Text quality measures not affected (sometimes slight improvements)

Analysis of changes introduced by critics

♂ Many outputs intact (30-70%), most changes only a few words (2-5), length preserved

In-domain and out-of-domain evaluation on WebNLG

🖒 Improvements on both, but more significant on out-of-domain

- BLEU, METEOR, BERTScore, NLI, BLEURT on WebNLG and OpenDialKG
- C Stat. significant improvements of hallucination-oriented measures (NLI, BLEURT)
- C Text quality measures not affected (sometimes slight improvements)

Analysis of changes introduced by critics

♪ Many outputs intact (30-70%), most changes only a few words (2-5), length preserved

In-domain and out-of-domain evaluation on WebNLG

🗘 Improvements on both, but more significant on out-of-domain

Additional results with beam search decoding

Consistent improvements, similar to greedy (baseline) decoding

Takeaways

- Critic-driven decoding a general method which can be coupled with different LMs and decoding strategies
- Critic training data can be generated with simple strategies (like replacing random words)
- The approach **significantly reduces hallucinations** without any changes to base LM
- Paper: https://t.ly/HXnl9 Code: https://t.ly/563XE

Mateusz Lango @LangoMateusz

Ondřej Dušek @tuetschek

This research was supported by the European Research Council (Grant agreement No. 101039303 NG-NLG). It used resources provided by the LINDAT/CLARIAH-CZ Research Infrastructure (Czech Ministry of Education, Youth, and Sports project No. LM2018101).

