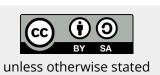
Leak, Cheat, Repeat: Data Contamination and Evaluation Malpractices in Closed-Source LLMs

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek



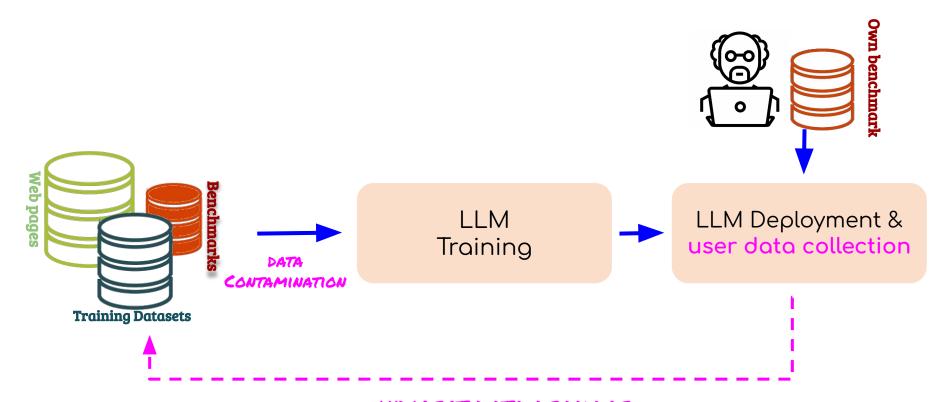
Overview

- The lack of details on training data for closed-source LLMs raised concerns on the issue of data contamination.
- Existing research overlooks when this happens indirectly for example when models are updated from user data containing benchmarks.
- We review 255 papers causing an indirect data leak by evaluating GPT-3.5 and GPT-4 through the ChatGPT interface.
- We find that these models have been exposed to millions of samples from hundreds of NLP benchmarks.

Closed-Source LLMs & Data Contamination

- Closed-Source: LLMs only accessible via APIs or UIs
- For such models, researchers don't have access to:
 - Model weights
 - Training data
 - Other infrastructural details
- Data contamination: pre-training data may contain training,
 validation and test sets of NLP benchmarks

Indirect Data Leakage



INDIRECT DATA LEAKAGE

Why is Indirect Data Leakage important?

1. It's more difficult to trace due to possible subtle alterations

2. It comes with instructions included

Methodology

1. Identifying relevant work

2. Assessing quality and relevance

3. Summarizing the evidence

4. Evaluating reproducibility and fairness

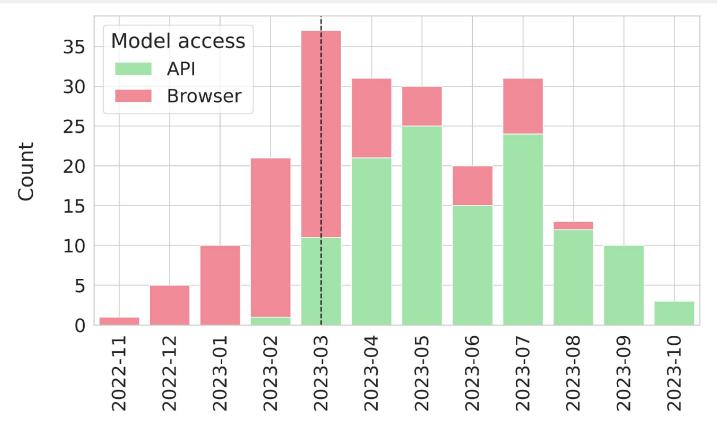
Results

We examined 255 papers, 212 of them interacted with closed-source models.

Out of these **212** papers, **90** (~**42%**) indirectly leaked data.

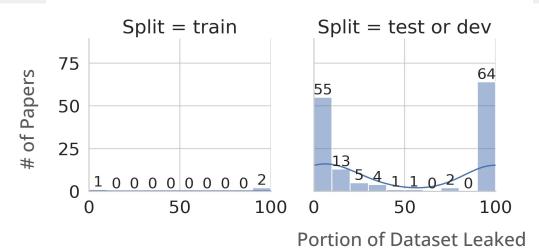
90 papers leaked ~4.7M samples form 263 NLP benchmarks.

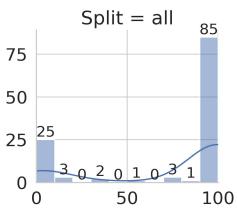
Timeline of Documented ChatGPT Access



Date (earliest draft evaluating ChatGPT)

Results





Leak overview:

- < 5% for 66 datasets (~25%)
- 5-50% for 47 datasets (~18%)
- **50-95%** for **10** datasets (~**4%**)
- > 95% for 142 datasets (~53%)

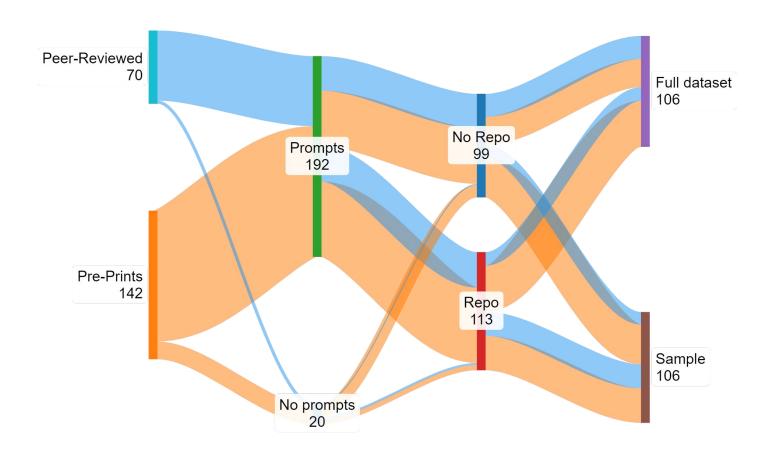
Tasks suffering the highest leaks:

- Natural Language Inference
- Question Answering
- Natural Language Generation

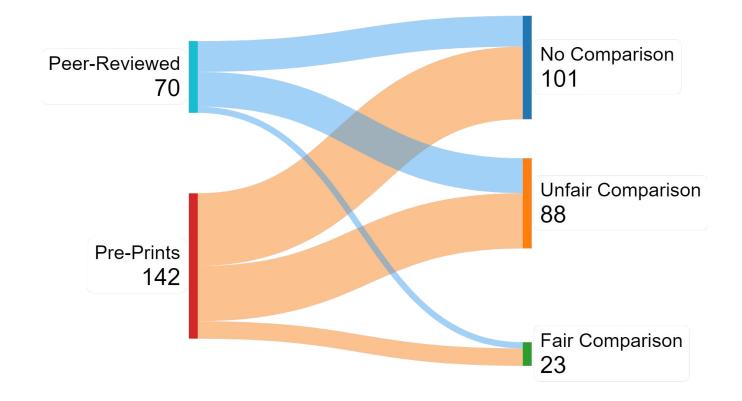
Results – Indirect Data Leak

- Mainly highly popular NLP benchmarks, e.g.:
 - Semeval2016 Task 6 (Stance Detection)
 - SAMSum (Dialogue Summarization)
 - MultiWOZ 2.4 (Dialogue)
- Smaller number: high-quality custom datasets
 - Often exams e.g., medicine, physics or law
 - Not all released publicly only the authors and OpenAI now have access

Results - Reproducibility



Results – Fairness



Unfair comparison: comparing the performance on different samples of a dataset.

Suggested practices

- Access the model in a way that does not leak data
- Interpret performance with caution
- When possible, avoid using closed-source models
- Adopt a fair and objective comparison
- Make the evaluation reproducible
- Report indirect data leakage

Leak, Cheat, Repeat: Data Contamination and Evaluation Malpractices in Closed-Source LLMs

schmidtova

lango @ufal.mff.cuni.cz

odusek

We are worried about indirect data leakage, and you should be too! Please help us document data that has been leaked:

https://leak-llm.github.io/

