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The lack of details on training data for closed-source LLMs raised
concerns on the issue of data contamination.

Existing research overlooks when this happens indirectly - for example
when models are updated from user data containing benchmarks.

We review 255 papers causing an indirect data leak by evaluating GPT-3.5
and GPT-4 through the ChatGPT interface.

We find that these models have been exposed to millions of samples from
hundreds of NLP benchmarks.



Closed-Source LLMs & Data Contamination

e Closed-Source: LLMs only accessible via APIs or Uls

e For such models, researchers don't have access to:
® Model weights
® Training data
® Other infrastructural details

e Data contamination: pre-training data may contain training,
validation and test sets of NLP benchmarks
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Indirect Data Leakage
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Why is Indirect Data Leakage important?

1. It's more difficult to trace due to possible subtle alterations

2. It comes with instructions included

Leak, Cheat, Repeat: Data Contamination and Evaluation Malpractices in Closed-Source LLMs



Methodology

1. Identifying relevant work
2. Assessing quality and relevance
3. Summarizing the evidence

4. Evaluating reproducibility and fairness
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Results

We examined 255 papers, 212 of them interacted with closed-source models.

Out of these 212 papers, 90 (~42%) indirectly leaked data.

90 papers leaked ~4.7M samples form 263 NLP benchmarks.
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Timeline of Documented ChatGPT Access
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Results
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Portion of Dataset Leaked

e Leak overview:
® < 5% for 66 datasets (~25%)

® 5-50% for 47 datasets (~18%)
® 50-95% for 10 datasets (~4%)
® > 95% for 142 datasets (~53%)

Tasks suffering the highest leaks:
® Natural Language Inference

® Question Answering

® Natural Language Generation
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Results - Indirect Data Leak

e Mainly highly popular NLP benchmarks, e.g.:
® Semeval2016 Task 6 (Stance Detection)
® SAMSum (Dialogue Summarization)
® MultiwOZ 2.4 (Dialogue)

e Smaller number: high-quality custom datasets
® Often exams e.g., medicine, physics or law

® Not all released publicly - only the authors and OpenAl now have access
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Results - Reproducibility
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Results - Fairness

No Comparison
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Unfair comparison: comparing the performance on different samples of a dataset.
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Suggested practices

e Access the model in a way that does not leak data
e Interpret performance with caution

e When possible, avoid using closed-source models
e Adopt a fair and objective comparison

e Make the evaluation reproducible

e Reportindirect data leakage
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We are worried about indirect data leakage, and you should be too!
Please help us document data that has been leaked: e

https://leak-1lm.github.io/
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