Motivation
e some popular LLMs are closed-source

e lack of information on training data
raises questions about the credibility of LLM

perform

ance evaluation

e several attempts to address this issue

overlook the problem of indirect data leaks

Methodology & Findings

e We analyse 255 papers evaluating OpenAl’s

GPT-3.5 and GPT-4 on a variety of tasks
e We conclude that ~42% of the relevant

reviewed papers leaked data to GPT-3.5 and
GPT-4, for a total of ~4.7M samples across

263 benchmarks
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Evaluation fairness

Does the paper compare with previous SotA?
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NLP tasks: size/frequency corresponds to
the number of leaked datasets.

Number of times (y) we observed a specific
percentage of data leaked (x) from the given split

Suggested practices in closed-source LLM evaluation

e Access models in a non-leaky way: use the API or opt-out of data
collection (check vendor policy)

¢ Interpret performance with caution: incredible performance
may be explained by data leakage

e When possible, avoid using closed-source models

e Use a fair comparison: sufficiently large samples, same for all
methods, re-run experiments — do not copy & paste results

e Make evaluation reproducible: release code, prompts, model
versions, sample selection (if subsampling)

e Report indirect data leakage, e.g. on our webpage!




