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Overview
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e Parallel datasets for sentiment transfer (style transfer) in 8 languages
o expanding our previous work on English & Bangla
e Benchmark model experiments, analysis & insights

e Showing significance of parallel data in style transfer

Style Transfer:

Example:

Style /
Sentiment -
{Neg , Pos}

Source

Style

..........................

The food is
tasteless.

...........................

...........................

..........................

......................

The food is
delicious.
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Details
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"o 1000+1000 positive+negative style-parallel sentences
éo Hindi, Magahi, Malayalam, Marathi, Odia, Punjabi, Urdu, Telugu

‘@ Benchmark models:
. o Parallel (finetuned mBART), Cross-lingual, Joint multilingual
o Non-parallel:
m Auto-encoder (AE) & Back-translation (BT) reconstruction
m Masked Style Filling (MSF)
o LLMs: Llama2, GPT-3.5

o Evaluation:
o Style Transfer Accuracy: Sentiment Classifier
o Content Preservation: BLEU, embedding similarity (CS)
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e English Yelp restaurant reviews (Li et al. 2018),
revised in our previous work
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e native translator & validator for each language
e Issues: ambiguity, cultural references, language differences

| won't be going back and suffering at this terrible place'!
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Parallel: balanced performance

Non-parallel: generally underperform parallel

Cross-lingual: competitive results

Joint: strong, esp. English, Malayalam, Telugu & Urdu

Performance of Models Across Languages for ACC

Performance of Models Across Languages for BLEU

e GPT-3.5 leads, but smaller & open models trained on little data can tie it
e Lower accuracy in lower-resource languages: more challenging

Performance of Models Across Languages for CS
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Sentiment Accuracy vs. CS Score

BLEU vs. CS Score
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https://github.com/souro/multilingual_tst
https://github.com/panlingua/multilingual-tst-datasets

