Robust Data-to-text Generation with Pretrained Language Models

Ondřej Dušek

collaboration with Zdeněk Kasner and Joannis Konstas

DSML Seminar

26.01.2023

Data-to-text Generation

- data-to-text NLG = verbalizing structured outputs
 - RDF triples (=2 entities & relation), tables, dialogue acts ... → text



Gruppo Bertone, of Turin Italy, designed the Abarth 1000 GT Coupe.

main usage:

- reports based on data (weather, sports...)
- dialogue systems (Siri/Google/Alexa...)

Team	Win	Loss	Pts	
Mavericks	31	41	86	
Raptors	44	29	94	_

Player	AS	RB	PT	
Patrick Patterson	1	5	14	
Delon Wright	4	3	8	_
				_

 The Toronto Raptors, which were leading at halftime by 10 points (54-44), defeated the Dallas Mavericks by 8 points (94-86).

NLG

· Patrick Patterson provided 14 points on 5/6 shooting, 5 rebounds, 3 defensive rebounds, 2 offensive rebounds and 1 assist.

(Kasner et al., 2021) https://aclanthology.org/2021.inlg-1.25

Give me the weather in Prague for 22 March

Here's the forecast for Tuesday, the 22nd.

Cortana

Neural NLG vs. older methods

• Older methods:

- templates fill in blanks
 - most commercial systems still!
 - safe, tried & tested
 - needs handcrafting
- rules/grammars
- pipelines of statistical models
- Neural models:
 - 1 step, end-to-end
 - Train fully from input-output pairs (no additional rules etc.)
 - Much more fluent outputs
 - Needs more training data (~10k range, 10x more than before)
 - Opaque & has no guarantees on accuracy

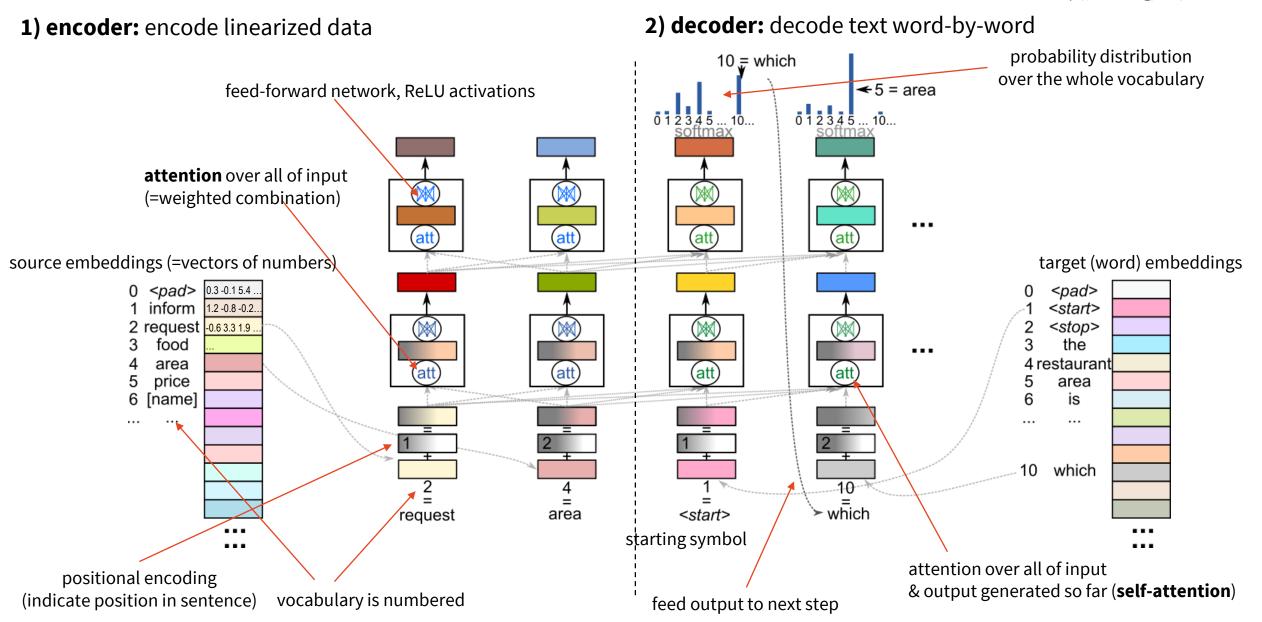
[name] is a [eat_type] in the [area] area.

Blue Spice is a pub in the riverside area.

Accuracy in NLG

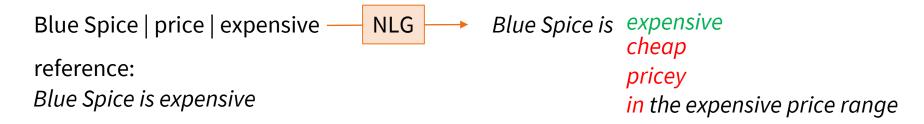
- NLG semantic accuracy (fidelity) = input-output correspondence
- Basic error types:
 - hallucination = output not grounded in input
 - extrinsic = information unrelated to the input
 - intrinsic = information conflicting with input, input facts used wrongly
 - omission = input not verbalized

- Approx. measure: logical entailment (NLI)
 - output entailed by data & vice-versa, neural models available (BART-NLI)

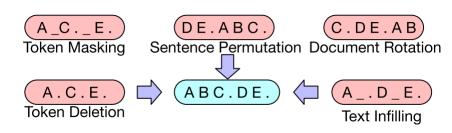


Neural NLG: (Pre-)Training

- Trained to produce sentence in data
 - low-level: exact word at each position



- Pretrained language models:
 - 1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
 - text-to-text: autoencoding & denoising
 - 2. Fine-tune for your own task on your smaller data (supervised)
 - models available online
 - get pretrained model, finetune yourself



(Lewis et al., 2020)

End-to-end NLG with a Pretrained LM

- Use a pretrained LM
 - e.g. (m)BART (GPT-2, T5... ~ 100M-1B params)
- Linearize data
 - concatenate, tokenize data
- Finetune PLM
 - direct data-text mapping: black box
- Needs domain-specific data
 - not enough training examples available (~10k)
 - data is noisy (comes from crowdsourcing)
- alternative: prompting LLMs (GPT3, ChatGPT... ~10-100B params)
 - little data needed, but even less controllable

Arrabiata sauce | country | Italy ► Italy | capital | Rome

Arrabiata sauce is found in Italy where capital city is Rome.

Good

- Generally fluent and accurate
- Robust on input perturbations
- Can be multilingual

Bad

- Fails to generalize
 - factual or grammar errors
 - specifically on unseen relations
- Hallucinations
 - connects unrelated data

```
in: Bakewell tart | ingredient | Frangipane
```

out: Франжипан - один из ингредиентов тарта Бейквелл. (=Frangipane is one of the ingredients of the Bakewell tart.)

```
in: Ciudad_Ayala | populationMetro | 1777539out: The population metro of Ciudad Ayala is 1777539.
```

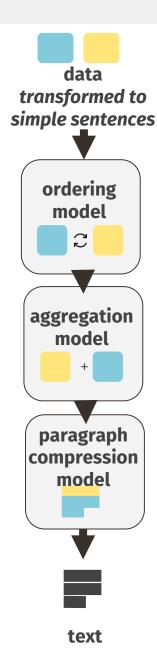
not seen in training data

```
in: Nurhan Atasoy | birth date | 1934-01-01 ►
Nurhan Atasoy | residence | Istanbul ►
Nurhan Atasoy | nationality | Turkish people
```

Nurhan Atasoy was born on January 1, 1934 in Istanbul and is a Turkish national.

residence, not birthplace!

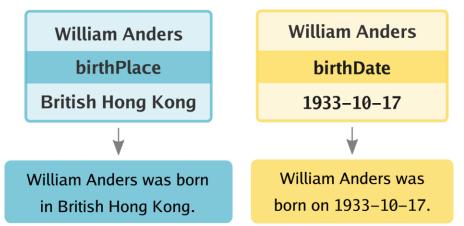
- Represent input triples by templates
 - handcrafted preprocessing step
- Neural LMs to fuse & rephrase:
 - All text-to-text steps (=editing only)
 - 1) order (put related stuff together)
 - 2) aggregate (into sentences)
 - **3) compress** (produce shorter sentences)
- Less space for semantic errors
 - Only use LMs for what they're good at fluency
- Can use large general-domain data (~1M+)
- Works **zero-shot** needs no in-domain data (just the templates)



Templates

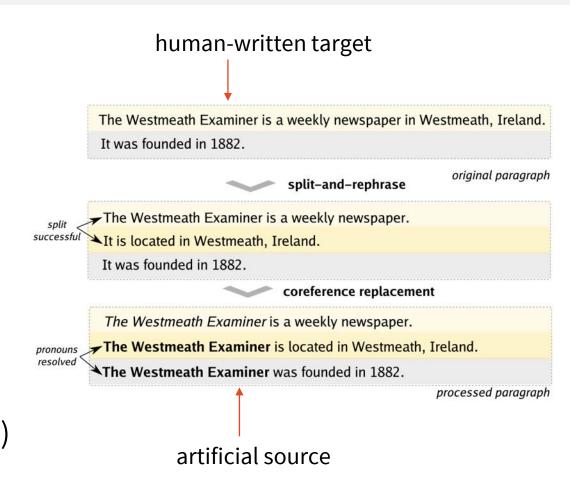
- 1 template per relation in data
 - Not so many needed (usually)
 - 354 for WebNLG DBPedia knowledge
 - 8 for E2E restaurants
 - Balances manual workload & controllability
 - Entities are then inserted verbatim
- Guaranteed accurate
- No need for high fluency
 - Some entities may need adjusting
 - LMs in the pipeline should deal with that

dataset	predicate	template
WebNLG	instrument countryOrigin width	<s> plays <o>. <s> comes from <o>. <s> is <o> wide.</o></s></o></s></o></s>
E2E	eatType food area	<s> is a <o>. <s> serves <o> food. <s> is in the <o>.</o></s></o></s></o></s>



WikiFluent Corpus

- ~1M sentences from Wikipedia 1st paragraphs
 - human-written sentences as targets
 - creating artificial source data, which looks like single-triple templates
- Data creation process:
 - split sentences (split & rephrase LM)
 - 2) replace pronouns
 - 3) randomize order
 - 4) opt. filter by logical entailment (NLI LM)
- much bigger than in-domain data
- used to train all LMs in the pipeline



Pipeline modules

Ordering

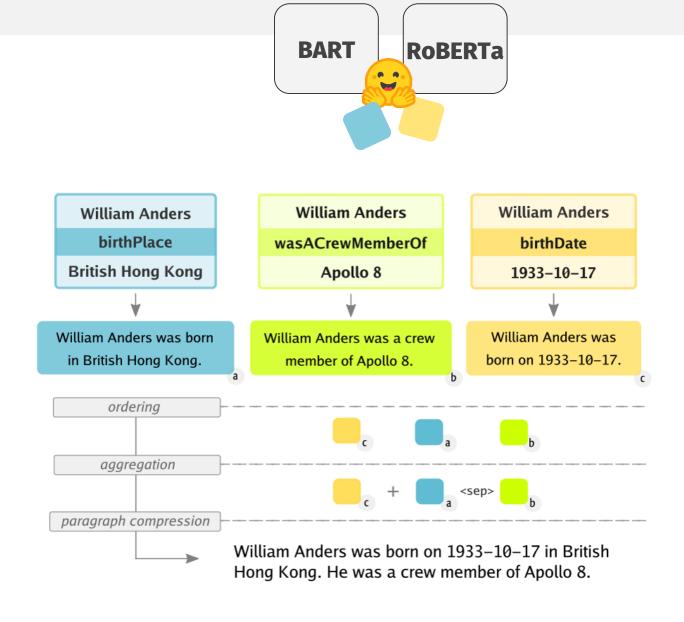
BART with a pointer network

2) Aggregation

- RoBERTa + token classification
- 0/1: same/other sentence

3) Paragraph compression

- BART generation
- close to pretraining tasks
- All trained on WikiFluent
 - 1M general-domain data
 - no in-domain data



Templates + Neural Fuse & Rephrase

- Good accuracy
 - perfect for simpler data (E2E restaurants)
 - worse for complex data (WebNLG DBPedia)
 - still merging unrelated facts on WebNLG
- Slightly lower fluency (~older neural systems)
 - much better than templates
- 3-stage setup better than 1-stage (~end-to-end edit)
 - compared under the same setup
 - both on fluency and accuracy
- Manual templates are cumbersome
 (→→)

E2E	BLEU	Omission/ #facts	Hallucination /#examples
Older neural	40.73	0.016	0.083
Templates	24.19	0.000	0.000
Ours 1-stage	30.81	0.009	0.122
Ours 3-stage	36.04	0.001	0.001

WebNLG	BLEU	Omission/ #facts	Hallucination /#examples
Rule-based	38.65	0.075	0.101
Older neural	45.13	0.237	0.202
Templates	37.18	0.000	0.000
Ours 1-stage	39.08	0.071	0.204
Ours 3-stage	42.92	0.051	0.148

Example outputs

E₂E

input: The Cricketers | eatType | restaurant ▶ The Cricketers | near | All Bar One ▶ The Cricketers | priceRange | cheap ▶ The Cricketers | food | Chinese ▶ The Cricketers | customerRating | average ▶ The Cricketers | familyFriendly | yes templates: The Cricketers is a restaurant. The Cricketers is near All Bar One. The Cricketers has cheap price range. The Cricketers serves Chinese food. The Cricketers has average customer rating. The Cricketers is family-friendly.

output: The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly, has cheap price range and average customer rating.

WebNLG

input: Allen Forrest | background | solo singer ► Allen Forrest | genre | pop music ► Allen Forrest | birthplace | Dothan, Alabama templates: Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.

output: Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.

input: Juan Perón | party | Labour Party (Argentina) ► Alberto Teisaire | inOfficeWhilePresident | Juan Perón ► Alberto Teisaire |
nationality | Argentina ► Argentina | language | Spanish language

templates: Juan Perón belongs to the Labour Party Argentina. Alberto Teisaire was in office while Juan Perón was a president. Alberto Teisaire is from

Argentina. Spanish language is spoken in Argentina.

output: Alberto Teisaire is from Argentina, who was in office while Juan Perón was a president. He belongs to the Labour Party Argentina. Spanish

language is spoken in Argentina. disfluent

and the last of th

bad pronoun coreference

input: Alfa Romeo 164 | relatedMeanOfTransportation | Fiat Croma ► Alfa Romeo 164 | assembly | Italy ► Italy | capital | Rome

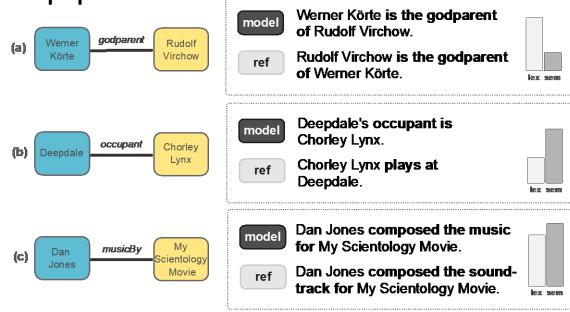
templates: Alfa Romeo 164 is related to Fiat Croma. Alfa Romeo 164 was assembled in Italy. Italy's capital is Rome.

output: Alfa Romeo 164 was assembled in Italy's capital, Rome. It is related to Fiat Croma.

mixing unrelated facts

Describing relations with PLMs

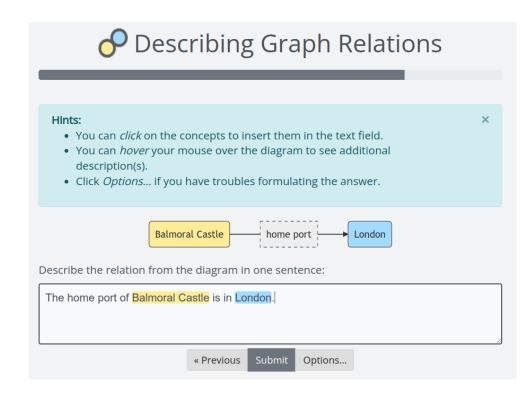
- Removing the data → template step in the pipeline
 - go 100% neural, zero-shot
- Relations are most important
 - entities can be copied verbatim
- Relation labels often difficult
 - relation direction often unclear
 - other label ambiguities
 - dependence on entities
- How good are PLMs at this?



relation	possible verbalization
is part of	X is part of Y.
duration	X lasted for Y.
platform	X is available on Y.
	X runs on Y.
country	X was born in Y.
	X is located in Y.
parent	X is the parent of Y.
	$\overline{\mathbf{Y}}$ is the parent of $\overline{\mathbf{X}}$.
ChEMBL	X has an id Y in the ChEMBL database.

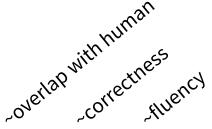
Rel2Text dataset

- Current data-to-text datasets unsuitable to test this
 - low number of distinct relations
 - few unseen in training set
- New Rel2Text dataset: 1.5k unique relations
 - source: Wikidata, YAGO, DBPedia
 - no train-test overlap
- Crowdsourced collection
 - 1-5 instances per relation
 - workers asked to rewrite relation as sentence
 - given relation labels & descriptions
 - manual checks for noise
 - 7.3k instances collected → 4k "clean"
 - ~ hard even for (untrained) people



Evaluating PLMs on Rel2Text

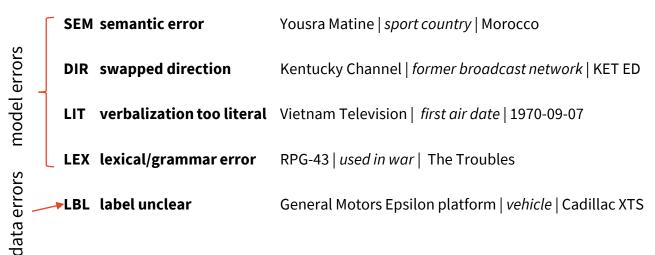
- Evaluation on unseen relations only
- Same PLM (BART), finetuned on different data
 - WebNLG = less diversity, more data
 - Rel2Text = many relations
 - Rel2Text with relation descriptions
 - Rel2Text with masked relation labels
 - guessing from entities only
 - Few-shot setups (e.g. 100 instances only)
- Finetuning works
 - Full Rel2Text best
 - Relation descriptions don't help much
 - WebNLG also good (esp. on correctness)
 - Few-shot doesn't work so well



Rel2Text	BLEU	% Log. Entail	PPL↓ (GPT2)
Human	-	-	5.88
Copy baseline	29.04	91.21	7.55
BART-WebNLG	41.99	89.39	5.65
BART-Rel2Text	52.54	91.85	5.89
+rel. descriptions	53.07	91.88	5.92
- rel. labels (guess)	42.53	57.26	5.66
Few-shot 100	45.88	83.06	5.85

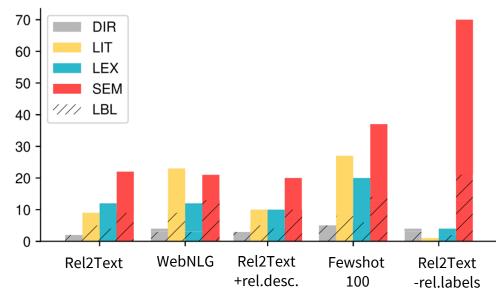
Error Analysis

• 100 examples, multiple error classes



- X Yousra Matine was born in Morocco.
- ✓ Yousra Matine plays for Morocco.
- X KET ED was broadcast on Kentucky Channel ED.
- √ The Kentucky Channel was broadcast on KET ED.
- X The first air date of Vietnam Television was 1970-09-07.
- ✓ Vietnam Television first aired on 1970-09-07.
- X RPG-43 was used in the The Troubles.
- ✓ The RPG-43 was used in the Troubles.
- X General Motors Epsilon is a vehicle similar to the Cadillac XTS.
- ✓ General Motors Epsilon platform is used in the Cadillac XTS.

- Near constant % of unclear labels
 - leading to SEM errors
- Still some "unprovoked" SEM errors
 - more with few-shot & masked
- Rel2Text less LIT than WebNLG



Final Remarks

- Rel2Text viable with a full pipeline
 - comparable to templates
- Prompting LLMs ~ similar
 - GPT3 "templates" by Xiang et al.
- Clear relation labels are essential
 - even humans confused without them
 - additional descriptions help
- Ambiguities in data should be fixed prior to generation
- Still >0% hallucinations more semantics needed (work in progress)

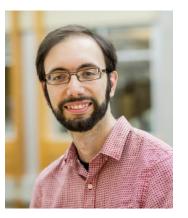
WebNLG	BLEU	Omission/ #facts	Hallucination/ #examples
Templates	37.18	0.000	0.000
Templates + 3-stage	42.92	0.051	0.148
BART/Rel2Text + 3-stage	44.63	0.058	0.166
GPT3 + 1-stage (Xiang et al.)	43.33	-	-

Thanks

Contact us:

Ondřej Dušek
odusek@ufal.mff.cuni.cz
https://tuetschek.github.io
@tuetschek

Zdeněk Kasner <u>kasner@ufal.mff.cuni.cz</u> <u>http://ufal.cz/zdenek-kasner</u> @ZdenekKasner



Ioannis Konstas
i.konstas@hw.ac.uk
http://www.ikonstas.net/
@sinantie

References:

• Base pretrained LMs: (Kasner & Dušek, INLG/WebNLG 2020) https://aclanthology.org/2020.webnlg-1.20/

• Zero-shot pipeline: (Kasner & Dušek, ACL 2022) https://aclanthology.org/2022.acl-long.271/

• Rel2Text: (Kasner, Konstas & Dušek, EACL 2023) https://arxiv.org/abs/2210.07373