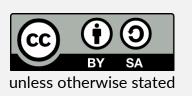
These slides:

https://bit.ly/mtu23-od

Ondřej Dušek

Machines That Understand? 7.12.2023

Thanks: Vojtěch Hudeček, Zdeněk Kasner, Ondřej Plátek, Patrícia Schmidtová, Mateusz Lango, Jonáš Kulhánek, Tomáš Nekvinda, Ioannis Konstas



Neural Language Generation

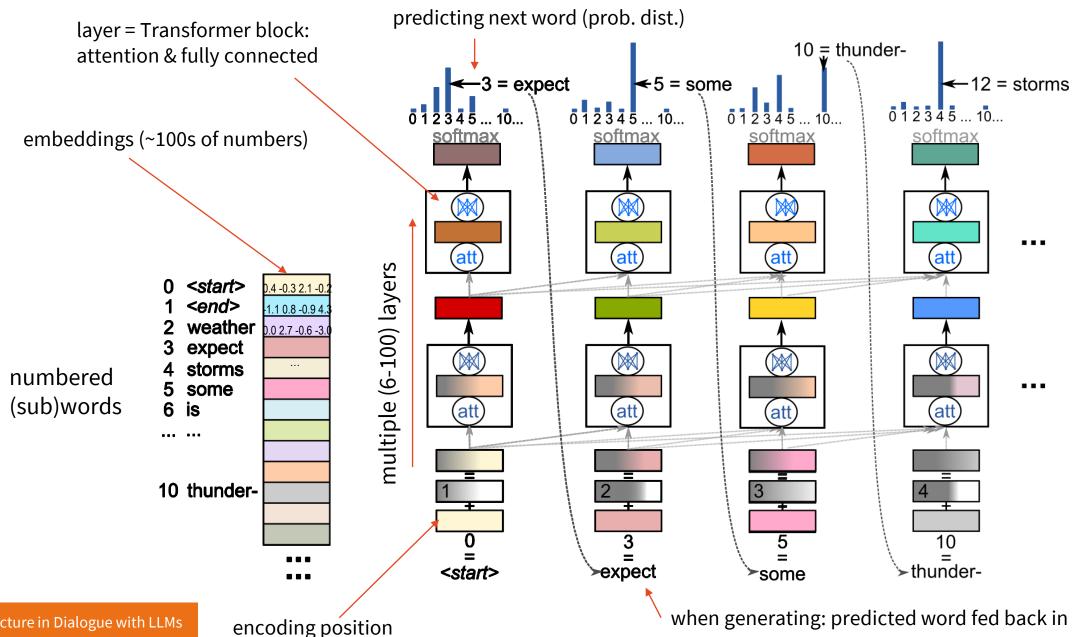
End-to-end

- feed some input data (linearized), context or prompt
- neural network handles everything
- directly generates output text word-by-word, left-to-right
- **Transformer** neural architecture (see→)
- Very fluent & convincing outputs

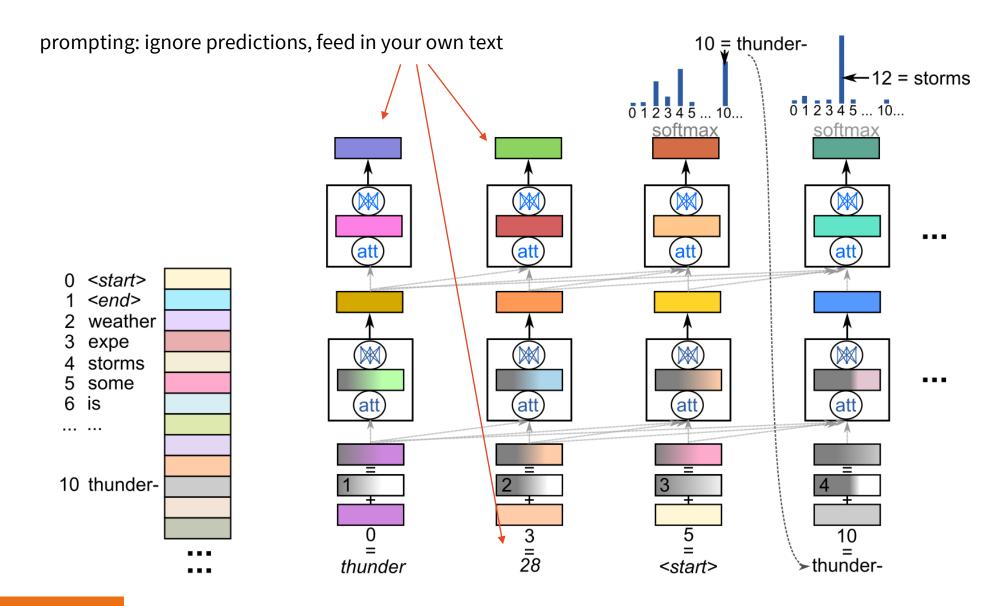
X

- Opaque & has no guarantees on accuracy
 - used essentially as a black box, internals unknown

Transformer neural language model



Transformer neural language model



Transformer neural language model

training: train to predict just 1 next word, feed training data (in parallel) 10 = thunder-45 = some 3 = expect<--12 = storms 0 1 2 3 4 5 ... 10... 0 1 2 3 4 5 ... 10... 0 1 2 3 4 5 ... 10... softmax softmax softmax softmax att (att) (att (att) <start> <end> weather expe storms some is (att) (att) att att 10 thunder-

Structure in Dialogue with LLMs

expect

<start>

5

some

10

thunder-

Training a Neural NLG System

- Reproduce sentences from data
 - replicate exact word at each position
- Fully trained from data
 - initialize model with random parameters
 - input example: didn't hit the right word → update parameters

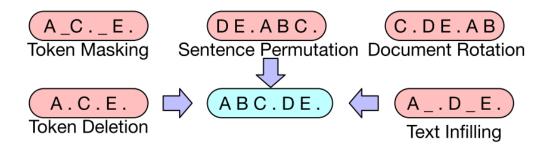
```
Blue Spice | price | expensive — NLG — Blue Spice is expensive cheap reference:

Blue Spice is expensive in the expensive price range
```

Very low level, no concept of sentence / text / aim

Pretraining & Finetuning

- 1. Pretrain a model on huge data (simple language-based tasks)
 - predicting next word
 - reconstructing garbled texts
- 2. Fine-tune on your smaller data
 - same as training, but starting from a better model



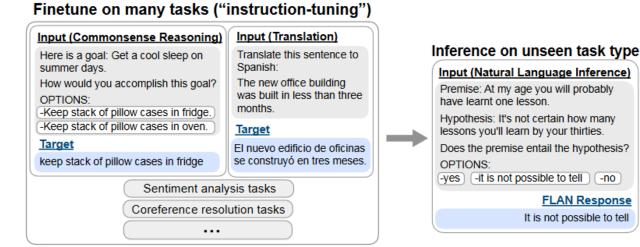
(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703

- Models free for download (https://huggingface.co/)
 - BERT/RoBERTa, GPT-2, BART, T5...
 - 100k-1B parameters runs easily on regular GPUs

- Today's large models:
 10-100B parameters
 - hard(er) to run (OPT, LlaMa, Falcon...)
 - or API only (GPT-3/4, ChatGPT, Bard...)
- architecture mostly the same
- pretrained on more data
- often no need to finetune

- G GShard Publicly Available Ernie 3.0 PanGu-α Jurassic-1 BAAI CPM-2 **G** LaMDA inspur Yuan 1.0 **Pythia** Anthropic A HyperCLOVA NAVER AlphaCode WebGPT Chinchilla InstructGPT 🖃 Ernie 3.0 Titan 💥 🌽 PanGu-Σ CodeGen C Gopher **G** Bard G Flan-T5 **PaLM** GLaM 🧲 MT-NLG OPT 🚫 **COLUMN LLaMA** G PaLM2 🧲 Flan-PaLM CodeGeeX *** GPT-NeoX-20B) Luminous BLOOM E **NLLB** AlexaTM a Cohere ___ BLOOMZ 🚰 WeLM 🧐 Galatica (XX) ChatGPT 🗐 OPT-IML (X)
- prompting: feed in context / few examples / ask question, get reply
 - finetuning can help, but it's expensive & has less effect than in smaller LMs
 - prompt engineering may be required
 - still the same problems hard to control

- LLMs finetuned for prompting
 - instructions (task description)
 - + solution in prompts
 - "in-domain" for what it's used later
 - Datasets available with many tasks

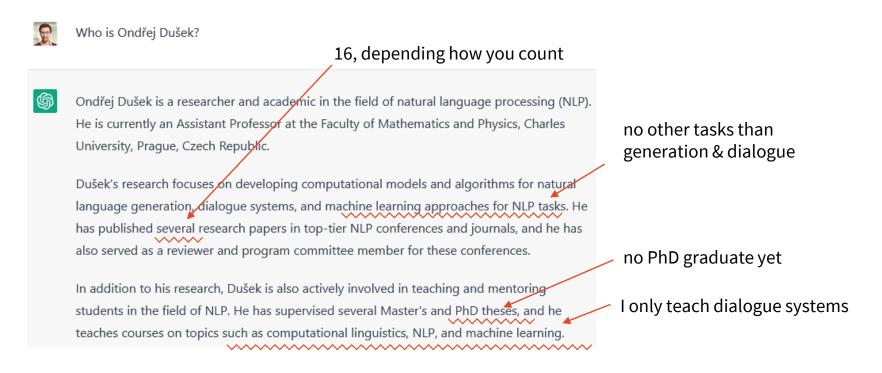


- RL improvements on top (~InstructGPT/ChatGPT/...):
 - 1) generate lots of outputs for instructions
 - 2) have humans rate them
 - 3) learn a rating model (another LM: instruction + solution → score)
 - 4) use rating model score as reward in RL
 - main point: **reward is global** (not token-by-token) RL-free alternatives exist
 - somewhat safer (low reward for bad behavior)

(Ouyang et al., 2022) https://openai.com/blog/chatgpt

LLMs Caveats

- Training scheme ~ Be convincing but not necessarily true
- !Not reliable for QA: only uses information it memorized, "hallucinates"



Can use information provided in the prompt though (→ →)

Describing relations with LMs

- Can we use LMs/LLMs to verbalize simple facts?
 - single subject relation object triple (RDF)

expressing the relations may be hard

Rel2Text:

- we collected a new dataset to test this
 - current sets were not diverse enough
- 1.5k relations / 4k examples from Wikidata/YAGO/DBPedia
- crowdsourced + manual checks
- It's actually hard for people (our checks removed ~45% data)

relation	possible verbalization	
is part of	X is part of Y.	
duration	X lasted for Y.	
platform	X is available on Y.	
	X runs on Y.	
country	X was born in Y.	
	X is located in Y.	
parent	X is the parent of Y.	
	$\frac{\mathbf{Y}}{\mathbf{Y}}$ is the parent of \mathbf{X} .	
ChEMBL	X has an id Y in the ChEMBL database.	

Evaluating LMs on Rel2Text

- Testing on unseen relations only
- Finetuning BART ("old-school" PLM)
 - training on Rel2Text works well
 - WebNLG (old, less relations) OK (esp. on correctness)
 - ~hundreds of examples needed to work well
- Prompting ChatGPT
 - requires carefully crafted prompts
 - chattier outputs (~less control)
- Error analysis
 - Unclear relation labels lead to semantic errors
 - Still some "unprovoked" semantic errors
 - BART + Rel2Text & ChatGPT produce nicer, less literal verbalizations

	ith His	S
	ilap with his	these a
16	ila, ale	the fluency
٠٥٧	- کی	-610

Rel2Text data	BLEU	% Log. Entail	PPL↓ (GPT2)
Human	-	-	5.88
Copy baseline	29.04	91.21	7.55
BART/WebNLG	41.99	89.39	5.65
BART/Rel2Text	52.54	91.85	5.89
ChatGPT	38.23	88.58	5.68

Task-oriented Dialogue

- Assistant: fulfill user requests (book a hotel/restaurant/taxi etc.)
- MultiWOZ: benchmark for multiple connected domains

(Budzianowski et al., 2018) https://aclanthology.org/D18-1547/

10k dialogues, extensive annotation (but noisy!)

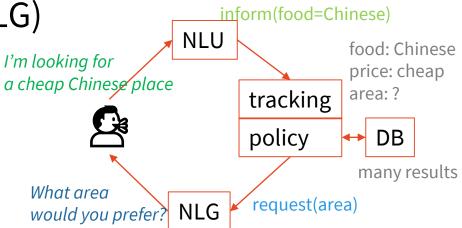
```
I am looking for a train from Cambridge to London Kinks Cross.
user:
             {train {departure = cambridge, destination = london kings cross}}
state:
DB:
             {train (70) {...}}
                                                    [departure]
                                                                       [destination]
                      [count]
             There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel?
system:
             I would like to leave on Saturday after 18:45.
user:
             {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
state:
             \{train (3) \{arrive by = 19:51,21:51,23:51; id = TR0427, TR0925, TR4898; leave at = 19:00,21:00,23:00; \dots \}\}
DB:
               [id]
                              [leave_at]
                                                     [arrive_by]
             TR0427 leaves at 19:00 and arrives by 19:51. Would you like to book this train?
system:
             Yes, I would like to book it for eight people.
user:
                                                                 [reference]
             I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?
system:
             I am also looking for an expensive restaurant in the centre.
user:
belief:
             {restaurant {area = centre, price range = expensive} train {...}}
DB:
             {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
                       [count] [price_range]
             There are 33 expensive restaurants in the centre. Is there a particular type of food you would like?
system:
```

End-to-end Neural Dialogue

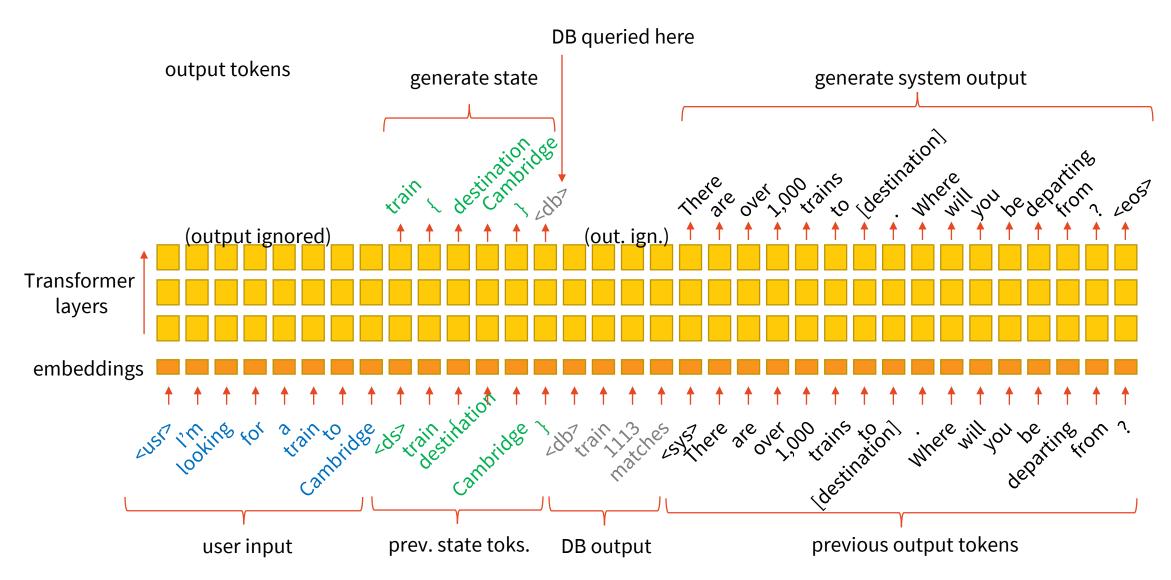
- Traditional: separate components (NLU→DM→NLG)
 - trained separately, possibly optimization by RL
- End-to-end models
 - single neural LM for NLU&DM&NLG
 - word-by-word response generation

AuGPT: finetuned GPT-2 LM (~100M params)

- Multi-step, all word-by-word:
 - 1. feed in dialogue context
 - 2. generate dialogue state (as text)
 - 3. query DB, feed in DB results as text
 - 4. generate response



End-to-end Neural Dialogue with GPT-2



Performance

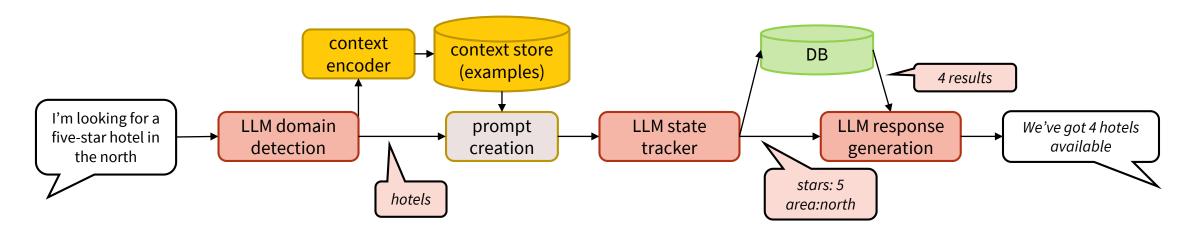
- Dialogue success (=user gets what they wanted)
 - 1-step (corpus-based): 67%
 - crowdsourced human eval: 82% perceived, 62% w/DB
 - expert eval if you try hard: 87%
- Hallucinates sometimes
 - may generate factually incorrect outputs, hard to control
 - data cleaning, consistency checks
- Needs a lot of data & annotation (MultiWOZ = 10k)
 - costly, may be noisy
 - + transfer learning, data augmentation
 - ... or **LLM prompting**?

- How good are LLMs if we require structure?
 - slots / DB are given
 - no finetuning? → prompting only
 - ChatGPT, Tk-Instruct, Alpaca... (7-20B params)
- Zero/few-shot (FAISS context store, 10 ex./domain)
 - little to no data needed: wide potential
- Still the same idea: context → state → DB → response
 - additional step needed: domain detection

Definition: Capture values from a

conversation about hotels. Capture

pairs "entity:value" separated by colon



Results

- Domain detection ~ 70%+
 - Alpaca & TkInstruct OK, ChatGPT almost perfect
- Belief state not great
 - much worse than SotA
 - examples help (ChatGPT, TkInstruct: ~50-60% F1, Alpaca 8%), 10 ex./domain enough
- Responses:OKish

Dialogue Success		ChatGPT	TkInstruct
1-step (corpus)	predicted state	44%	19%
	gold state	68%	46%
expert eval (end-to-end, with recoveries)		76%	64%

More potential with better prompt engineering

Chat Evaluation with LLMs

- Evaluating NLG is hard, metrics are inaccurate, humans are expensive
- Can we use LMs to evaluate instead?
- Free chat (non-task-oriented)
- Checking appropriateness, relevance, diversity of responses on 1-5 scale

Chat Turns	Appr	Rel	Div
A do you have any pets?	5	-	4
B I am retired so I love to travel so pets would slow me down	4	4	4
A I understand that my idea of traveling is a hot hot bubble bath	3	2	4
B Yes I have dogs and cats I like to take them with me on trips	2	2	4

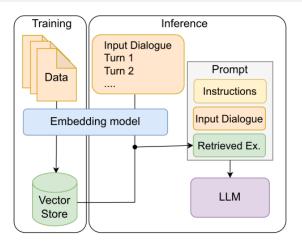
Evaluating Chat

Approach

- Same as previous: LLM prompting
 - few-shot examples in DB
 - LLM asked to provide a score given response in context
- Alternative: LLMs as embeddings & regression on top
 - finetuned on few-shot data
- Checking correlation with humans

Results

- LLM prompting better than prev. SotA (with ChatGPT, Llama2 close, others fail)
- Prompt formulation matters, examples useful
 - but maybe static examples are enough



Appr	Rel	Div	Ø
49%	36%	45%	42%

Conclusions

- LLMs are powerful & can work well...
 - if you provide data on the input
 - if you optimize your prompts
- So far, ChatGPT/GPT4 are better than open LLMs
 - new LLMs coming up every week (Llama2, Falcon, Mistral, ...)
 - OpenAI closed models may have seen some of the data (~is it zero-shot?)

Future work

- look into data leakage effect
- more transparency ~ prompting, interpretable latents
- constraining alignments, decoding-time "critic"

(Lango & Dušek, 2023) https://arxiv.org/abs/2310.16964

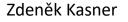
Thanks

Contacts:

Ondřej Dušek

odusek@ufal.mff.cuni.cz
https://tuetschek.github.io
@tuetschek

Thanks:



Vojtěch Hudeček

Ondřej Plátek

Links

These slides: https://bit.ly/mtu23-od

Relations: https://aclanthology.org/2023.eacl-main.176

Dialogue: http://arxiv.org/abs/2102.05126

https://aclanthology.org/2023.sigdial-1.21

Evaluation: https://aclanthology.org/2023.dstc-1.14

Patrícia Schmidtová

Mateusz Lango

Jonáš Kulhánek

Tomáš Nekvinda

Ioannis Konstas

Supported by: European Research Council (ERC StG No. 101039303 NG-NLG), Charles University projects GAUK 40222, SVV 260698, TA ČR TL05000236 AI asistent pro žáky a učitele.

