NPFL099 Statistical Dialogue Systems

2. Machine Learning Toolkit
http://ufal.cz/npfl099

Ondrej Dusek & Vojtéch Hudecek
6.10. 2020

—— Charles University

/
A Institute of Formal and Applied Linguistics

F/ Faculty of Mathematics and Physics
unless otherwise stated

http://ufal.cz/npfl099

Machine Learning

* ML is basically function approximation /?/

 function: data (features)- labels Shtistics
* discrete labels = classification
 continuous labels = regression

* function shape w

* this is where different algorithms differ

* neural nets: complex functions, composed of simple
building blocks (linear, sigmoid, tanh...)

https://towardsdatascience.com/no-machine-
learning-is-not-just-glorified-statistics-

* training/learning = adjusting Jedamsranes
function parameters to minimize error
* supervised learning = based on data + labels given in advance
* reinforcement learning = based on exploration & rewards given online

NPFL099 L2 2020 2

https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

» Can be used for both classification & sequence models

* Non-linear functions, composed of basic building blocks
 stacked into layers

* Layers are made of activation functions:
* linear functions
* nonlinearities - sigmoid, tanh, ReLU
 softmax - probability estimates:
exp(x;)
2. exp(x))
* Fully differentiable - training by gradient descent

* network output incurs loss/cost

* gradients backpropagated from loss to all parameters
(composite function differentiation)

softmax(x); =

Sigmoid

J(T) — l14+e—=

tanh |
tanh(z) = g
ReLU |

max (0, x)

https://medium.com/@shrutija
donl10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Gradient Descent

* supervised training- gradient descent methods

* minimizing a cost/loss function
(notion of error — given system output, how far off are we?)

* calculus: derivative = steepness/slope
* follow the slope to find the minimum - derivative gives the direction
* learning rate = how fast we go (needs to be tuned)

* gradient typically computed over mini-batches
* random bunches of a few training instances

* not as erratic as using just 1 instance,
not as slow as computing over whole data

 stochastic gradient descent

1(80,0,) ol

NPFL099 L2 2020 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Cost/Loss Functions

» differ based on what we’re trying to predict

* logistic [log loss (“cross entropy”)

* for classification / softmax - including word prediction
* classes from the whole dictionary

* pretty stupid for sequences, but works
* sequence shifted by 1 = everything wrong

* squared error loss - for regression
» forcing the predicted float value to be close to actual one

* hinge loss - for binary classification (SVMs), ranking
* forcing the correct sign

* many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9

https://en.wikipedia.org/wiki/Hinge loss

loss

loss

loss

C
Z Ve - log(v:)

>

ax(0,1-y-y)

> o

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

Gradient Descent: Learning Rate

 Learning rate (a) is tricky
* too higha =may not find optimum ow learning rae
e too low a = may take forever siflonmmingosih

* Learning rate decay: start high, lower a gradually

good learning rate

° Momentum: mOVing average httD://csZBln.github.io/neural—iiitorks%/
em=p-m+ (1—-p)-A,update by minstead of A —
* Better options - per-parameter ol
* look at how often each single weight gets updated

* AdaGrad - all history
« remember sum of total gradients squared: ., A?
« divide learning rate by V(3 A%)

 Adam - per-parameter momentum
« moving averagesforA&A*:m =B, -m+ (1 —B)Av =P, v+ (1—,)A?
« use m instead of A, divide learning rate by V(v)

http://kaeken.hatenablog.com/entrv/2016/ll/10/20§151

http://cs231n.github.io/neural-networks-3/
http://kaeken.hatenablog.com/entry/2016/11/10/203151

Word Embeddings

* let the network learn features by itself

* inputis just words
(vocabulary is numbered)

* distributed word representation
* each word = a vector of floats

* part of network parameters - trained
a) random initialization
b) pretraining

10

Qs
] @ oven () microwav
O refrig
Qs
[bulb
led
@fn [] @ charger
kitchen
@ @ lioht @ battery
@ vanit y @ tabl
@) sink @ 53V @ dewalt
(@) bathroomt ilet ®
@ bathtub il Okt @ @ bosch
@ PRucet shower @il
) val
@ finish) deck
@ color Ogarden()h"Se (© sprinkler
@ paint
[] @

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

* the network learns which words are used similarly

* they end up having
close embedding values

* different embeddings
for different tasks

NPFL099 L2 2020

http://ruder.io/word-embeddings-2017/

a .+ 9ay (1900s b (o] olemn
daft 93 {) spread awful (1850s)
naunting majesltiC
tasteful SOV
P broadcast (1850s)..... B
frolicsome) sieouilaied (k'll'&,,n WS gloomy
vitty ay (1950s|
‘ 9 t)(‘{(1;77) broadcast (1900s)
Iewspapers appalliwg terrible
(televisio awful (1900s) wciriderti
gay (1990s) 11VPTHHE awful (1990s)
tochiar b broadcast (1990s) awfully’©"

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Pretrained Word Embeddings

* Word2Vec
 Continuous Bag-of-Words

 predictaword, given +k words window
* disregarding word order within the window

* Skip-gram: reverse

* given a word, predict its £k word window
 closerwords = higher weightin training

* GloVe

 optimized directly from corpus co-occurrences (= w, close to w,)
* target: e; - e, = log(#co-occurrences)

INPUT PROJECTION QUTPUT

wit-2)
shared
eights
wit-1) softmax
T SUM

one-hot i—. wit)
wit+1) \

embedding

wit+2)

cBOw

* number weighted by distance, weighted down for low totals
* trained by minimizing reconstruction loss on a co-occurrence matrix

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html

NPFL099 L2 2020

https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/

/V _
one-hot w(t+1)

(Mikolov et al., 2013)
http://arxiv.org/abs/1301.3781

Input projection output

wit-2)

skip-gram

wit-1)

\

wit)

softmax

embedding o

wit+2)

A
different weights

(Pennington et al., 2014)
http://aclweb.org/anthology/D14-1162

http://arxiv.org/abs/1301.3781
https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/
http://aclweb.org/anthology/D14-1162

 Vocabulary is unlimited, embedding matrix isn’t
* +the bigger the embedding matrix, the slower your models

* Special out-of-vocabulary token <unk>
» “default” / older option
« all words not found in vocabulary are assigned this entry
 can be trained using some rare words in the data
* problem for generation - you don’t want these on the output

* Using limited sets

 characters - very small set
« works, but makes for very long sequences

° SUbwordS - deCided e'g' by byte_pair enCOding (hst(teg::;i/f/\t]vi\fv?EEZl\z/v()eltf.Lrg/anthologv/P16—1162/
 start from individual characters
* iteratively merge most frequent bigram, until you get desired # of subwords
* sub@@ word - the @@ marks “no space after”

https://www.aclweb.org/anthology/P16-1162/

* Designed for computer vision - inspired by human vision

input
» works for language in 1D, too! i I
* Use less parameters than fully connected OERE
— filter/kernel 0jojtjt]o
* Apply filter repeatedly over the input
 element-wise multiply window of input x filter ;; 1? 1; (1’ Z
* sum + apply non-linearity (ReLU) to result PO S Py I
e =>produce 1 element of output o jof1|1]o
* Stride - how many steps to skip ——
* less overlap, reducing output dimension . W , J.

* Pooling - no filter, pre-set operation
* maximum/average on each window y
* typical CNN architecture alternates convolution & pooling

- niw i J

input x filter

4

output

Pool FC FC Softmax

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Recurrent Neural Networks

* Many identical layers with shared parameters (cells)

* ~the same layer is applied multiple times, taking its own outputs as input
« ~same number of layers as there are tokens
» output = hidden state - fed to the next step

» additional input - next token features ® PasigRNN cell
A
]
Cell ty!aes | L,
* basic RNN: linear + tanh e J
* problem: vanishing gradients
» can’t hold long recurrences ®
 GRU, LSTM: more complex, CRU cell | LSTM cell hey
to make backpropagation L o [D s
work better b1l D—— \ A @
« “gates” to keep old values i_é_]‘ Mo Y
TG) O U s s O B I
https://medium.com/@saurabh.rathor092/ F[. - J /
simple-rnn-vs-gru-vs-lstm-difference-lies- Y il >/ X
in-more-flexible-control-5f33e07b1e57 Ty

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57

Encoder-Decoder Networks (Sequence-to-sequence)

» Default RNN paradigm for sequences/structure prediction
« encoder RNN: encodes the input token-by-token into hidden states h;

* next step: last hidden state + next token as input —_— h =0
0=

» decoder RNN: constructs the output token-by-token h, = cell(x,, hy_,)
* initialized by last encoder hidden state
 output: hidden state & softmax over output vocabulary + argmax \

Sso=h
* next step: last hidden state + last generated token as input ° !

\ T
p(VelY1, - Ye—1,X) = softmax(s;)
* LSTM/GRU cells over vectors of ~embedding size \St/=ceﬂgyt-1,st-1)

* used in MT, dialogue, parsing...

* more complex structures linearized to sequences
ENCODER DECODER Encoder She — |S 1 eating ™ a " gl’een > apple

1 Y2 Y3
T md Context vector (length: 5)
hl hz h3 h’4- So Isl
[RN@—[RNI\D—[RNNHRNN RNN 4([0.1,-0.2,0.8, 1.5, -0.3])
I .

Decoder M > FE P I e = O ER

(Embedding

I I ! T

how are you ? https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

“mem'] I 2 . 3 L 2 b 5 . 6 1) : https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13¢c578ba9129

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

* Encoder-decoder is too crude for complex sequences
* the whole input is crammed into a fixed-size vector (last hidden state)

* Attention = “memory” of all encoder hidden states

» weighted combination, re-weighted for every decoder step
> can focus on currently important part of input

 fed into decoder inputs + decoder softmax layer

 Self-attention - over previous decoder steps
* increases consistency when generating long sequences

Attention Mechanism

https://skymind.ai/wiki/attention-mechanism-memory-network

Bahdanau & Luong Attention

(Bahdanau et al., 2015)
http://arxiv.org/abs/1409.0473

* different combination with decoder state (woncerat 015 context vector
. http://arxiv.org/abs/1508.04025 - """"""""" P N
* Bahdanau: use on input to decoder cell alignment Yy i Vi1
. . a :
* Luong: modify final decoder state ' .
encoder :
» different weights computation hll* *I*I* s %
: g !
* both work well - exact formula not important i Ty,
Bahdanau attention
)/
attention weights = alighment model decoder state [
Bahdanau: [] I trained parameters Luong attention sl
ay; = softmax(v, - tanh(W,, - s,_; + U, - hZ))— encoder hidden state e
context vector
Luong: a; = softmax(h; - s;¥)— decoder state . alignment
encoder hidden state / .
. encodader St St+1
attention value = context vector . — z o h I_' _'I Iﬁ _:I_r' I_'
same for both - sum encoder hidden states o o A eco--qu
-1 i

Weighted by A http://cnyah.com/2017/08/01/attention-variants/

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://cnyah.com/2017/08/01/attention-variants/

Qutput
Probabilities

| Softmax |

Tra nSfO rmer (Waswani et al., 2017)

https://arxiv.org/abs/1706.03762 one of these
for each word

decoder

* getting rid of (encoder) recurrences \ .
* making it faster to train, allowing bigger nets e |CEEED '_t_—'; attention over encoder output
* replace everything with attention [by = |
+ feed-forward networks M | =1 N | = R | ———
* = needs more layers D = B U =20
* = needs to encode positions eroang O Q) Ercoang

[] 1t I one oﬁ Embefding Embetdding
positional encoding .

each input word Inputs Outputs
. o, o (shifted right)
* adding position-dependent \ e Reos (——)
patterns to the input \ Sooooriim: 10000#dims

- attention - dot-product (Luong style) R e B
1 ® ® ® ®

V#dims p T '

* more heads (attentions in parallel) %)

~ focus on multiple inputs decoder] 7
> ® ® o

NPFLO99 L2 2020 http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html 13

* scaled by (so values don’t get too big)

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Contextual Word Embeddings

* Beyond pretrained word embeddings
» words have different meanings based on context

* static word embeddings (word2vec/GloVe) don’t reflect that

* ELMo

* LSTMs trained for language modelling

* ELMo embeddings = weighted sum of
input static embeddings & LSTM outputs

 the weights are trained for a specific downstream task

* BERT

* huge Transformer encoder trained for:
* masked word prediction
 adjacent sentences detection (does B come right after A?)

* BERT embeddings
= any combination of the Transformer layers

NPFL099 L2 2020

0.1% Aardvark

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax

BERT

[CLS] [MASK]

[CLS]

http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/

Pretrained Language Models (~ Contextual Word Embeddings)

* Basically a newer name/perspective for the same idea
1. Pretrain a model on a huge dataset and some meaningful language-related task
2. Fine-tune for your own task on your (smaller) data

(Devlin etal., 2019)

¢ There are many Va ria ntS Of the pretrained mOdelS https://www.aclweb.org/anthology/N19-1423

https://github.com/google-research/bert

* mostly based on the Transformer architecture (Rogers et al., 2020) http://arxiv.org/abs/2002.12327
° pretralning taSkS Va ry and make a dlfference (Liu et al., 2019) http://arxiv.org/abs/1907.11692
* BERT + variants: multilingual, ROBERTa (optimized) (Radford etal, 2019)

https://openai.com/blog/better-language-models/

* GPT(-2/-3): Transformer decoder only, next-word prediction otz

* BART: BERT as denoising autoencoder (more below) 501 nioamiv.oreabsionose:

o T5 generalization, many Va ria ntS (Raffel etal.,2019) http://arxiv.org/abs/1910.10683

¢ a lOt Of thiS iS released plug'and'play https://github.com/huggingface/transformers ".
 you only need to finetune (and sometimes, not even that)

NPFL099 L2 2020 17

http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
https://github.com/huggingface/transformers
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165

(Srivastava et al., 2014)
http://imlr.org/papers/v15/srivastaval4a.html

* overfitting to training data is a problem for NNs
* too many parameters

* Dropout - simple regularization technique

* more effective than e.g. weight decay (L2)

e zero out some neurons/connections
in the network at random

 technically: multiply by dropout layer

* 0/1 with some probability (typically 0.5-0.8)
» at training time only - full network for prediction
» weights scaled down after training

 they end up larger than normal because there’s fewer nodes
» done by libraries automatically

* may need larger networks to compensate B
5

layer

dropped-out
inputs
(b) Dropout network

http://jmlr.org/papers/v15/srivastava14a.html

(Ruder, 2017)
= S http://arxiv.org/abs/1706.05098
Multi-task Learning (Fanetal, 2001
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114

* achieve better generalization by learning more things at once
* aform of regularization e
* implicit data augmentation O e
* biasing/focusing the model , |
 e.g. by explicitly training for an important subtask | : e
* parts of network shared, parts task-specific / .
==l e

* hard sharing = parameters truly shared (most common) |

1
- =)
* soft sharing = regularization by parameter distance —_ I —
. - - |
« different approaches w. r. t. what to share N 2ondistoe
* training - alternating between tasks T | e B i
* so the network doesn’t “forget” —— P
nglish (unsupervised) _— |_>< o |—’W

Tags (parsing)
| Encoder H Attention |—.| Decoder

English (unsupervised) Task2
NPFL099 L2 2020

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.04326
http://arxiv.org/abs/1511.06114

* Learning from weaker supervision

* only get feedback once in a while, not for every output . lOdel
» good for globally optimizing sequence generation
* you know if the whole sequenceis good ;| Agent |
* you don’t know if step X is good o P et
* sequence = e.g. sentence, dialogue *f zEnuironment |<7
* Framing the problem as states & actions & rewards Vsutton&sarto,zom
* “robot moving in space”, but works for dialogue too some definition

of rewards

* state = generation so far (sentence, dialogue state)
* action = one generation output (word, system dialogue act)
* defining rewards might be an issue

* Training: maximizing long-term reward

e via state/action values (Q function)
* directly - optimizing policy

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf -

MNIST digits autoencoder

latent space
* Using NNs as generative models
* more than just classification - modelling the whole distribution noideawhat/i:\
* (of e.g. possible texts, images) the outputwill - |

be from here ones

* generate new instances that look similar to training data
» considered unsupervised learning

* Autoencoder: input > encoding - input 0 *JZ’L" 0

* encoding ~ “embedding” in latent space
(i.e. some vector)

e trained by reconstruction loss
» problem: can’t easily get valid embeddings for generating new outputs

 parts of embedding space might be unused - will generate weird stuff
* no easy interpretation of embeddings - no idea what the model will generate

o still has uses:

» denoising autoencoder: add noise to inputs, train to generate clean outputs
* multi-task learning, representations for use in downstream tasks

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

l Input

Variational Autoencoders _
* Making the encoding latent space more useful —
* using Gaussians - continuous space by design S
* encoding input into vectors of means u & std. deviations o peve 120 |
« sampling encodings from N (u, o) for generation l

* samples vary a bit even for the same input
 decoder learns to be more robust)

* model can degenerate into normal AE (o — 0) :
« we need to encourage some o, smoothness, overlap (u ~ 0) S

* add 2nd loss: KL divergence from N(0,1)

* VAE learns a trade-off between
using unit Gaussians & reconstructing inputs v

* Problem: still not too much control of the embeddings
» we can only guess what kind of output the model will generate

v

what can happen without regularisation

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 — :
Classical music sample vector

NPFL099 L2 2020 http://kvfrans.com/variational-autoencoders-explained/

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/

* VAE objective:

* reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
* latent loss (KL-divergence from ideal p(z)~N'(0,1) in the encoder)

L=—E,[logp(x|z)] + KL[q(z|x)||p(2)]

* This is equivalent to maximizing true log p(x) with some error
* i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

errorincurred
Eqllogp(x|2)] — KL[q(z|x)||p(2)] = IOgP(X) KL[q(z|x)| IP(ZIX)]<—m;ve§;'gfgtgue
| ! distribution p

“evidence” ELBO
(i.e. data)

* Sidestepping sampling — reparameterization trick
e z~u+ o -N(0,1), then differentiatew.r.t. uand o

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

Conditional Variational Autoencoders

* Direct control over types of things to generate

 Additional conditioning on a given label/type/class c

* ¢ can be anything (discrete, continuous...)
* image class: MNIST digit
* sentiment
* “isthis a good reply?”
* coherence level
* just concatenate to input

* given to both encoder & decoder at training time

* Generation - need to providec
* CVAE will generate a sample of type ¢

» Latent space is partitioned by ¢
* same latent input with different c will give different results

NPFL099 L2 2020 https://ijdykeman.github.io/ml/2016/12/21/cvae.html

24

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Generative Adversarial Nets

* Training generative models to generate believable outputs
* to do so, they necessarily get a better grasp on the distribution

* Getting loss from a 2nd model:

* discriminator D - “adversary” classifying real vs. generated samples

« generator G - trained to fool the discriminator
* the best chance to fool the discriminator is to generate likely outputs

* Training iteratively (EM style)
* generate some outputs
* classify + update discriminator

* update generator
based on classification

* this will reach a stable point

NPFL099 L2 2020

(Goodfellow et al, 2014)
http://papers.nips.cc/paper/
5423-generative-adversarial-

discriminator nets.pdf
classification . '
discriminator
true distro updated
training progress
l generator sETR >
outout stable

N r N A point
AEEE distro . generator
Se N e e N\ e AP updated

<
.

L] " L]
. e, .
. . ‘w,]

TP, -

.
N
. b e
Soond
. R

/I

JIN I\

Yl

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

https://en.wikipedia.org/wiki/K-means_clustering

[J
C '.u Ste rl n g https://www.displayr.com/what-is-hierarchical-clustering/

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

* Unsupervised, finding similarities in data

* basic algorithms

* k-means: assign into k clusters randomly, iterate:
e compute means (centroids)
* reassign to nearest centroid N ® °
« Gaussian mixture: similar, but soft & variance N(GETee g @y) B oo
* clusters = multivariate Gaussian distributions
 estimating probabilities of belonging to each cluster
 cluster mean/variance based on data weighted by probabilities
* hierarchical (bottom up):
start with one cluster per instance, iterate:
* merge 2 closest clusters
* end when you have k clusters / distance is too big

* hierarchical top-down (reversed)
* distance metrics & features decide what ends up together

https://www.youtube.com/watch?v=9YA2t78Ha68

Dendrogram

[—

26

https://www.youtube.com/watch?v=9YA2t78Ha68
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

* ML as a function mapping in > out

* Neural networks (function shapes)
* CNNs, RNNs, encoder-decoder (seg2seq), attention, Transformer
* input representation: embeddings (+ pretrained, + contextual/LMs: BERT et al.)

 Supervised training
* cost function
* gradient descent + learning rate tricks
e dropout

* Reinforcement learning (more to come later)

* Unsupervised learning
e autoencoders, variational autoencoders
* generative adversarial nets
* clustering

Thanks

Contact us:
https://ufaldsg.slack.com/ Labsin 10 mins

{odusek,hudecek}@ufal.mff.cuni.cz Next Tuesday 9:50am
Troja N231/N233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)

Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:
 https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
 https://minitorch.github.io/index.html

* https://objax.readthedocs.io/en/latest/

NPFL099 L2 2020 28

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://www.deeplearningbook.org/
http://arxiv.org/abs/1812.06834
http://ufal.mff.cuni.cz/courses/npfl114/1819-summer
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
https://minitorch.github.io/index.html
https://objax.readthedocs.io/en/latest/

