

Dialogue Systems NPFL123 Dialogové systémy

6. Language Understanding (non-neural)

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123

24. 3. 2020

Natural Language Understanding

- words → meaning
 - whatever "meaning" is can be different tasks
 - typically structured, explicit representation
- alternative names/close tasks:
 - spoken language understanding
 - semantic decoding/parsing
- integral part of dialogue systems, also explored elsewhere
 - stand-alone semantic parsers
 - other applications:
 - human-robot interaction
 - question answering
 - machine translation (not so much nowadays)

NPFL123 L6 2020

NLU Challenges

non-grammaticality

find something cheap for kids should be allowed

- disfluencies
 - hesitations pauses, fillers, repetitions
 - fragments
 - self-repairs (~6%!)
- ASR errors
- synonymy

out-of-domain utterances

uhm I want something in the west the west part of town uhm find something uhm something cheap no I mean moderate uhm I'm looking for a cheap

I'm looking for a for a chip Chinese rest or rant

Chinese city centre
uhm I've been wondering if you could find me
a restaurant that has Chinese food close to
the city centre please

oh yeah I've heard about that place my son was there last month

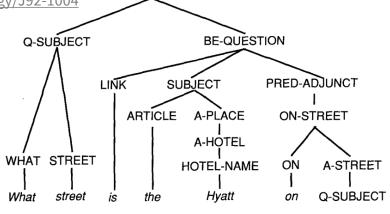
NPFL123 L6 2020

Semantic representations

- syntax/semantic **trees**
 - typical for standalone semantic parsing
 - different variations

frames

- technically also trees, but not directly connected to words
- (mostly older) DSs, some standalone parsers
- graphs (AMR)
 - more of a toy task, but popular
- dialogue acts = intent + slots & values
 - flat no hierarchy
 - most DSs nowadays



SENTENCE

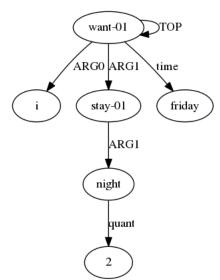
oui l'hôtel don't le prix ne dépasse pas cent dix euros

response: oui
refLink: co-ref.
singular

BDObject: hotel

room
payment: amount
comparative: less
integer: 110
unit: euro

https://www.isca-speech.org/ archive/interspeech 2005/i05 3457.htm



NLU basic approaches

For trees/frames/graphs:

- grammar-based parsing
 - handwritten/probabilistic grammars & chart parsing algorithms
- statistical
 - inducing structure using machine learning
 - grammar is implicit (training treebanks)

For DAs (shallow parsing):

- classification
- sequence labelling

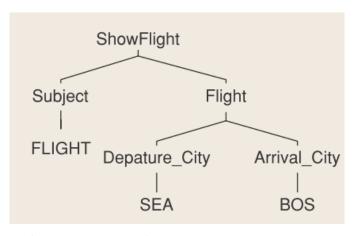
NPFL123 L6 2020

Grammars vs. shallow parsing

Grammars are:

- more expressive
 - hierarchical structure better captures relations
- harder to maintain
 - sparser
 - harder to build rules by hand
 - statistical parsers need more data
 - training data is harder to get
- more hardware-hungry
 - chart parsing: $O(n^3)$, shallow: O(n) for simplest approaches
- more brittle
 - shallow parsing is typically less sensitive to ASR errors, variation, etc.

Show me flights from Seattle to Boston



(Wang et al., 2005) http://ieeexplore.ieee.org/document/1511821/

inform(from=SEA, to=BOS)

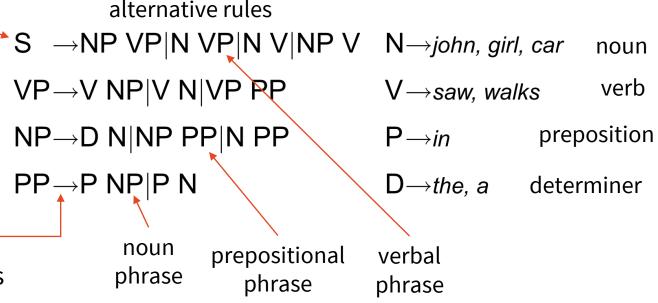
Grammars: CFG

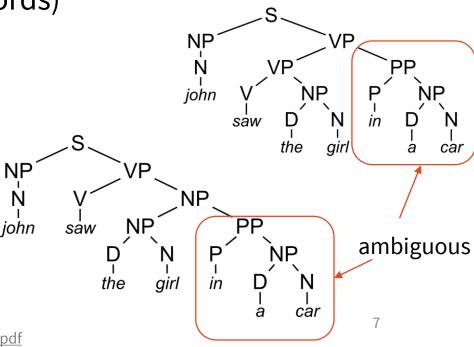
(Context-free Grammar)

- Simple recursive grammar
 - rules: $X \rightarrow ABC$
 - splitting a phrase into adjacent parts
 - **terminals** = words
 - non-terminals = phrases (spanning multiple words)

sentence

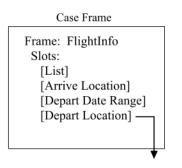
- parsable using dynamic programming
 - (chart parsing)
- too simple for full natural language
 - but may be OK for a limited domain
 - especially with **probabilistic extensions**





CFG: Phoenix Parser (ATIS, 90's)

- CFG hierarchy based on semantic frames
 - Frames → slots / other frames
 - multiple CFGs, one per slot
- Robustness attempts
 - ignore stuff not belonging to any frame
- Chart parsing
 - left to right
 - maximize coverage
 - minimize # of different slots

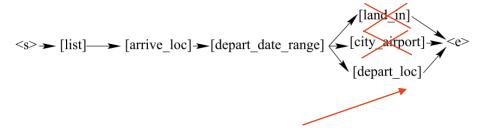



```
[Depart Location] \rightarrow LEAVE from ENT

LEAVE \rightarrow leaving | departing | \emptyset

ENT \rightarrow <city> | <airport>
```

I would like to go to Boston tomorrow from San Francisco



all networks matching a span added to parse chart, pruned afterwards

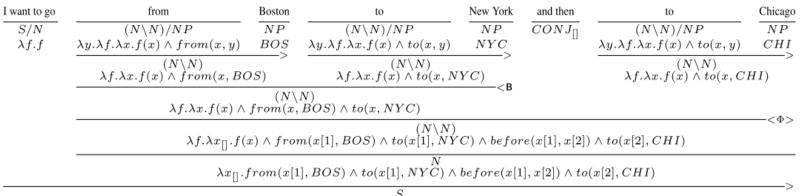
Grammars: CCG(Combinatory Categorial Grammar)

- Grammar based on lambda calculus
 - syntax-bound semantics: lambda meaning in parallel to syntax phrases
- CCG lambda expressions:
 - logical constant: NYC, BOSTON...
 - variable: *x, y, z...*
 - literal: city(AUSTIN), located_in(AUSTIN, TEXAS)
 - lambda terms binding variables: λx.city(x) ~ "x is a city"
 - quantifiers ∃ ∀, logical operators ∧ ∨ ¬
- CCG categories: syntax + lambda
 - simple: NOUN : λx.city(x)
 - complex: $S \setminus NP/NP : \lambda x. f(x)$ ("sentence missing an NP to the left and right")
- Lexicon: word + syntax + lambda:
 - $city \vdash NOUN: \lambda x. city(x)$, $is \vdash S \setminus NP/NP: \lambda x. f(x)$

NPFL123 L6 2020

Grammars: CCG

- parsing = combining categories (function application)
 - much fewer operations than CFG
 - >, < function application $B:g+A \setminus B:f \rightarrow A:f(g)$
 - >B, <B function composition $A/B: f + B/C: g \rightarrow A/C: \lambda x. f(g(x))$
 - <Φ> coordination (2 identical categories → 1)
 - category change
 - similar algorithms to CFG
 - statistical parsers available



CCG fun $S \backslash NP/ADJ$ ADJNP $\lambda x. fun(x)$ CCG $\lambda f.\lambda x.f(x)$ CCG fun is NP $S \backslash NP/ADJ$ ADJCCG $\lambda x. fun(x)$ $\lambda f.\lambda x.f(x)$ $\lambda x. fun(x)$ CCG isfun $S \backslash NP/ADJ$ NP $\lambda f.\lambda x.f(x)$ $\lambda x. fun(x)$ $S \backslash NP$ $\lambda x.fun(x)$ fun(CCG)

https://yoavartzi.com/tutorial/

NLU as classification

- using DAs treating them as a set of semantic concepts
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept
- consistency problems
 - no conflicting intents (e.g. affirm + negate)
 - no conflicting values (e.g. *kids-allowed=yes + kids-allowed=no*)
 - need to be solved externally, e.g. based on classifier confidence

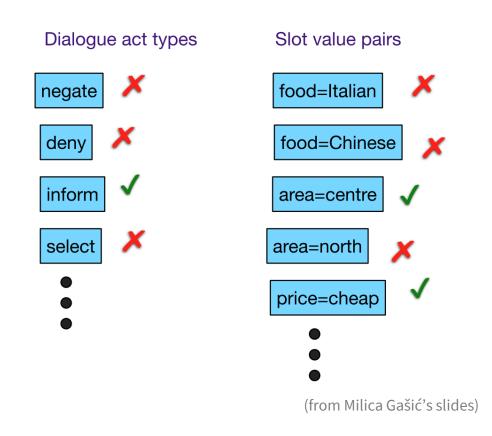
NPFL123 L6 2020 11

NLU as classification

- classification: features → labels (classes)
 - here: classes are **binary** (-1/1 or 0/1)
 - one classifier per concept
- features
 - binary is X present?or count how many X's are present?
 - words
 - n-grams
 - word pairs/triples (position-independent)
 - regex
 - presence of named entities

I'm looking for something cheap in the city centre.

Classes:



13

NER + delexicalization

Approach:

What is the phone number for <restaurant-name>?

1) identify slot values/named entities

2) delexicalize = replace them with placeholders (indicating entity type)

• or add the NE tags as more features for classification

- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers
- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - added gazetteers with in-domain names
 - in-domain gazetteers alone may be enough
 - NE supplemented by NE linking/disambiguation (usually not needed in DS)

I'm looking for a Japanese restaurant in Notting Hill. I'm looking for a <food> restaurant in <area>.

What is the phone number for Golden Dragon?

NPFL123 L6 2020

NLU Classifiers

- note that data is usually scarce!
- handcrafted / rules
 - simple mapping: word/n-gram/regex match → concept
 - can work really well for a limited domain
 - no training data, no retraining needed (tweaking on the go)
- logistic regression
- **SVM** (support vector machine)
- neural nets
 - different, "automatic" features (embeddings, see later)
 - only applicable if a lot of data is available

NPFL123 L6 2020 14

ÚFAL LOSSIE

(Maximum Entropy Classifier)

$$p(y|\mathbf{x}) = \text{sigmoid}(-y(\mathbf{\theta} \cdot \mathbf{x})) = \frac{1}{1 + \exp(-y(\mathbf{\theta} \cdot \mathbf{x}))}$$

equivalent form
– maximum entropy style
(works for **multiclass**, too!)

$$p(y|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\mathbf{\theta} \cdot \mathbf{f}(\mathbf{x}, y))$$

normalization

generalization: **feature functions** vector (some fire for each value of y)

- despite the name, it's a classifier
- very basic, but powerful with the right features
- trained by gradient descent (logistic/cross entropy loss)
- maximum entropy estimate ("most uniform model given data")

binary, for $y \in \{-1, +1\}$

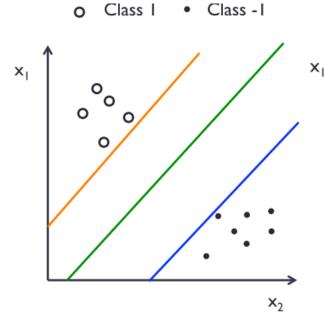
Support-Vector Machines (SVMs)

- separate classes with **maximum margin** (=best generalization)
- decision boundary defined by support vectors (closest instances)

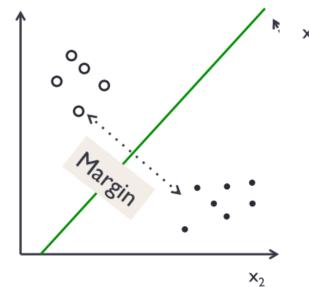
there are many possible separation boundaries between classes in feature space

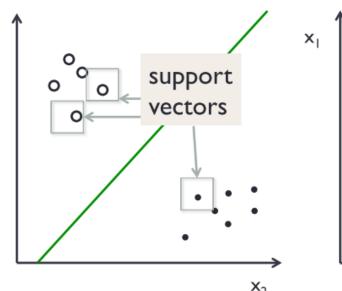
boundary farthest away from both classes = maximum margin

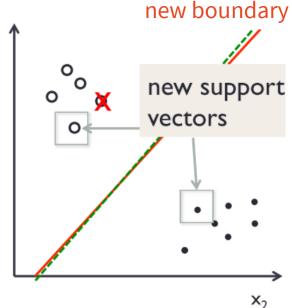
instances closest to the boundary = **support vectors** removing a support vector changes the boundary



Class







SVMs

- Decision boundary: $\mathbf{\theta} \cdot \mathbf{x}^{\mathrm{bound}} = 0$
- Support vectors: $\mathbf{\theta} \cdot \mathbf{x}^{sv} = y^{sv} \ (y^{sv} \in \{-1, +1\})$
- Maximum margin: $\max \frac{2}{||\boldsymbol{\theta}||} \sim \min \frac{1}{2} ||\boldsymbol{\theta}||^2$ with correct classification
 - constrained optimization quadratic programming (Lagrange multipliers)
- SVM Score:
- classification:

•
$$y = sign(g(\mathbf{x}))$$

- probability:
 Platt scaling
 - logistic regression with $g(\mathbf{x})$ as feature

$$g(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x} = \sum_{i=1}^{s} y_i \alpha_i \, \mathbf{x_i} \cdot \mathbf{x}$$

optimal decision boundary

sum over support vectors

sup. vec. label (-1/+1)

margin width

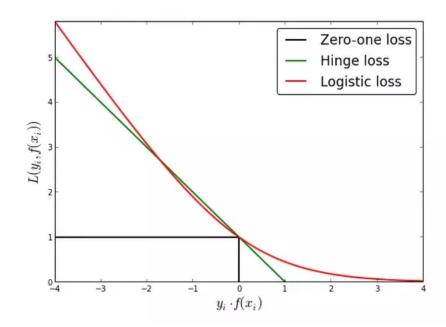
kernel – dot product of features (linear SVM)

sup. vec. weight in feature space (Lagrange multiplier)

SVM vs. Logistic Regression

- soft-margin SVM for non-separable cases
 - non-separable = no perfect decision boundary
 - "soft" = weighing correct classification (hinge loss) & margin size

• model:
$$\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \max\{0, 1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i\}$$



regularization weight

- regularized logistic regression for better generalization
 - preventing overfitting to training data trying to keep parameter values low
 - logistic loss
 - model: $\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \log(1 + \exp(1 y_i \boldsymbol{\theta} \cdot \mathbf{x}_i))$
- the main difference is the loss
 - hinge loss should be marginally better for classification, but it depends

Classification example

$features(\mathbf{x})$	
1	1
want	1
to	3
go	1
from	2
<airport-1></airport-1>	1
•••	
him	0
price	0
tell	0
•••	
l want	1
want to	1
to go	1
••••	
from <airport-1></airport-1>	1

ASR: I want to go from from Newark to London City next Friday

Delex: I want to go from from <airport-1> to <airport-2> next <day-1>

```
\begin{array}{lll} \text{weights:} & \text{weights define} \\ \text{intent=search\_flights} & \theta_{SF} & \text{different classifiers} \\ \text{intent=request\_price} & \theta_{RP} & \\ & \dots & \\ \text{from\_airport=<airport-1>} & \theta_{FA1} & \\ & \dots & \\ \end{array}
```

```
SVM: \theta_{FA1} \cdot \mathbf{x} = +3.4347 \rightarrow found from_airport=Newark 
LR: sigmoid(\theta_{FA1} \cdot \mathbf{x}) = 0.883 \rightarrow found from_airport=Newark (conf. = 0.883)
```

Slot filling as sequence tagging

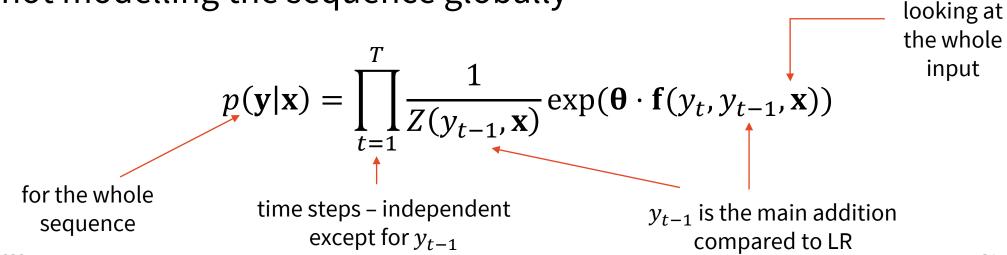
- get slot values directly "automatic" delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach

I need a flight from Boston to New York tomorrowO O O O B-dept O B-arr I-arr B-date

- rules + classifiers kinda still work
 - a) keywords/regexes found at specific position
 - b) apply classifier to each word in the sentence left-to-right
 - problem: overall consistency
 - slots found elsewhere in the sentence might influence what's classified now
- solution: structured/sequence prediction

Maximum Entropy Markov Model (MEMM) A

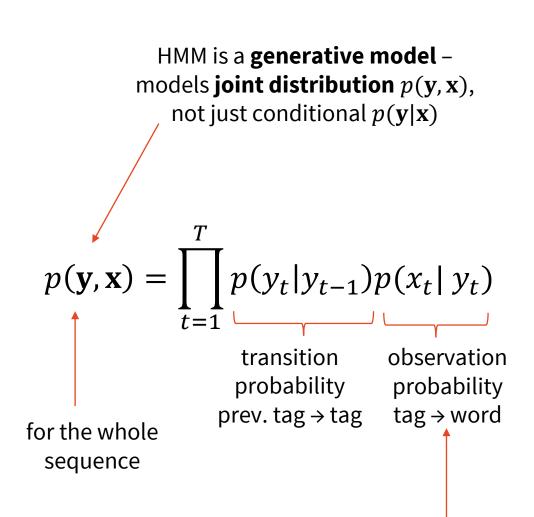
- Looking at past classifications when making next ones
 - LR + a simple addition to the feature set
- Whole history would be too sparse/complex
 - → Markov assumption: only the most recent matters
 - 1st order MM: just the last one (←this is what we show here)
 - nth order MM: n most recent ones
- still not modelling the sequence globally



NPFL123 L6 2020 21

Hidden Markov Model (HMM)

- Modelling the sequence as a whole
- Very basic model:
 - "tag depends on word + previous tag"
- Markov assumption, again
- "Hidden" reverse viewpoint:
 - "tags are hidden, but they influence the words on the surface"
- Inference Viterbi algorithm
 - we can get the globally best tagging

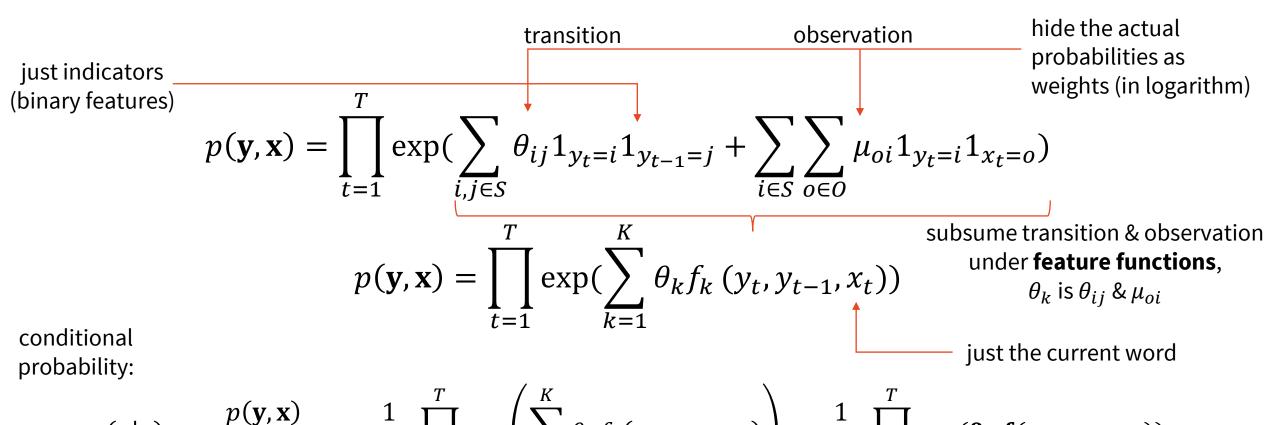


Hidden Markov Model

normalization is global

NPFL123 L6 2020

Rewrite so it looks more like MEMM + get conditional probability



 $p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{y'} p(\mathbf{y'}, \mathbf{x})} = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp\left(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t)\right) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp(\mathbf{\theta} \cdot \mathbf{f}(y_t, y_{t-1}, x_t))$ vector notation

23

HMM vs. MEMM

• MEMM:

- any feature functions, as in LR
- local normalization does not model whole sequences, just locally
- label bias problem
 - training: you know the correct labels
 - inference: one error can lead to a series of errors

• HMM:

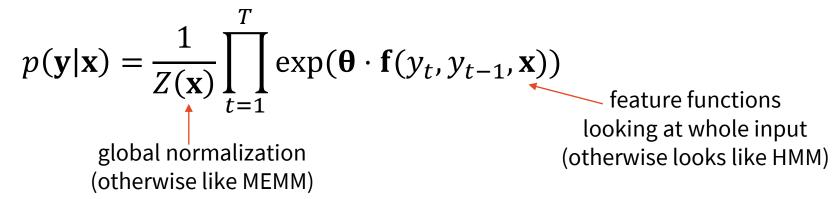
- global normalization for p(y|x) over all y's
 - modelling sequences as a whole
- very boring & limited feature functions
- how about best of both?

NPFL123 L6 2020 24

Linear-Chain

Conditional Random Field (CRF)

- HMM + more complex feature functions
- MEMM + global sequence modelling



- state-of-the art for many sequence tagging tasks (incl. NLU)
 - until NNs took over
 - used also in conjunction with NNs
- global normalization makes it slow to train

NPFL123 L6 2020

Sequence tagging example

ASR: I want to go from from Newark

to London City next Friday

B-from_airport O Previous tags: **OO**

current position:

what's the class for London?

features (x):

in_sent=I	1	<i>cur</i> =London	1	<i>prev_tag=</i> 0 1
<i>in_sent</i> =want	1	<i>cur</i> =him	0	<pre>prev_tag=B-price 0</pre>
<i>in_sent</i> =to	3	•••		†
in_sent=go	1	<i>prev</i> =to	1	
•••		<i>prev</i> =want	0	
<i>in_sent</i> =him	0	<i>prev</i> =price	0	
<i>in_sent</i> =price	0	•••		
•••		<i>cur</i> =to London	1	using y_{t-1}
<i>in_sent</i> =I want	1	<i>prev</i> =Newark to	1	
<i>in_sent</i> =want to	1	•••		
<i>in sent</i> =to go	1			

HMM considers only these

MEMM: looks at *London*, ignores that it also needs to tag City later → likely to tag as B-to_city

CRF: also considers future tags, more likely to tag *London City* as B-to_airport I-to_airport

Handling ASR noise

- ASR produces multiple hypotheses
- Combine & get resulting NLU hypotheses
 - NLU: p(DA|text)
 - ASR: p(text|audio)
 - we want p(DA|audio)
- Easiest: sum it up

```
p(DA|audio) = \sum_{\text{texts}} P(DA|\text{text})P(\text{text}|\text{audio})
```

```
0.33 - I am looking for a bar

0.26 - I am looking for the bar

0.11 - I am looking for a car

0.09 - I am looking for the car

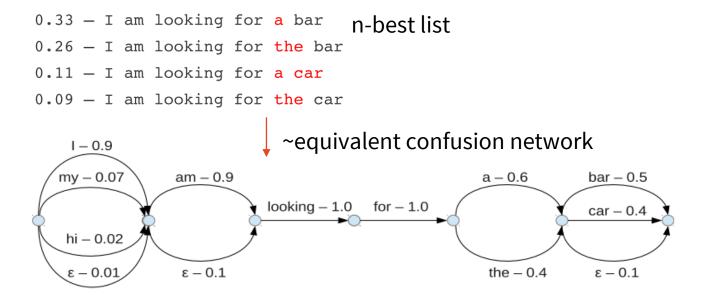
0.59 - inform(task=find, venue=bar)

0.20 - null()
```

(from Filip Jurčíček's slides)

Handling ASR noise

- Alternative: use confusion networks
 - per-word ASR confidence
- Word features weighed by word confidence



features:

	0.9
hi	0.0
am	0.9
looking	1
for	1

. . .

I am0.81my am0.063am looking0.9a bar0.3a car0.24

• • •

should be normalized by n-gram length

Context

- user response can depend on last system action
 - fragments/short replies are ambiguous without context
- → add last system DA/text into input features
 - helps disambiguate
- careful user may not play nice!
 - system needs to be trained with both alternatives in mind

U: I'm looking for flights from JFK. S: Where would you like to go? U: Atlanta.

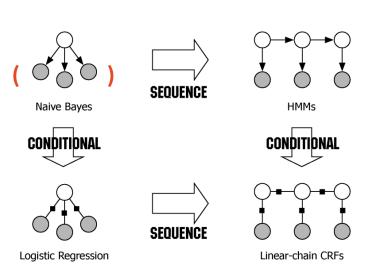
inform(??=Atlanta)
inform(from=Atlanta)

x U: Actually I'd rather fly from Newark.

NPFL123 L6 2020 29

Summary

- NLU can be tricky
 - bad grammar, fragments, synonymy, ASR errors ...
- Grammars, frames, graph representation
 - rule-based or statistical structure induction
 - more expressive, but harder not so much in limited-domain systems
- Shallow parsing
 - dialogue acts: intent + slots & labels
 - rules keyword spotting, regex
 - classification (LR, SVM)
 - sequence tagging (MEMM, HMM, CRF)
- Next time: neural NLU & dialogue state tracking



Thanks

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz Slack

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Raymond Mooney's slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
- Aikaterini Tzompanaki's slides (University of Cergy-Pontoise): https://perso-etis.ensea.fr/tzompanaki/teaching.html
- Pierre Lison's slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
- Sutton & McCallum Introduction to Conditional Random Fields: https://arxiv.org/abs/1011.4088
- Andrew McCallum's slides (U. of Massatchusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/

NPFL123 L6 2020 31