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INTROINTRO
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FIRST COMMERCIAL ASR: RADIO REXFIRST COMMERCIAL ASR: RADIO REX
(1920)(1920)

"A celluloid dog released by a spring when triggered
with a 500 Hz acoustic energy (roughly the first
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formant of the vowel [eh] in “Rex”).
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INSPIRATION BY HUMANSINSPIRATION BY HUMANS
"Humans evolved to optimally use the acoustic
channel to communicate - why not to inspire by

them?"
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RELEVANT FINDINGSRELEVANT FINDINGS
Fletcher (1950's)
information about a phone spans 250-400ms
100ms not enough to tell phone in syllables
4-7 frequency channels min. for intelligibility, >10
for fidelity
modulations about 2-10Hz (peak at 4Hz ~ 250ms)
auditory cortex response also in 2 - 20Hz range

6 . 1
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INFORMATION POINT OF VIEWINFORMATION POINT OF VIEW
standard speech: 64 kpbs (8kHz, 8bits)
low-bitrate coding: 500 bps
text: cca 50 bps

7 . 1
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INFORMATION IN AUDIOINFORMATION IN AUDIO
Lots of information irrelevant for ASR:

speaker identity (gender, age, spk. style, dialect)
speaker's state (emotions, health)
environment (ambient sounds, reverb/echo of the
room)
distortions (noise, channel effects, distance)

Features for ASR should preserve lingustic content and
suppress variability.
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ASR PIPELINEASR PIPELINE
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FRONT-END PROCESSINGFRONT-END PROCESSING
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INPUT AUDIOINPUT AUDIO

1 channel
8kHz (telephony) or 16kHz (wide-band), 16-bit
sampling

10 . 2
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FEATURESFEATURES

Spectral domain: Discrete Fourier Transform,
overlapped windows
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Features typically are 40-dim vectors sampled 100
times per second.
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DISCRETE FOURIER TRANSFORMDISCRETE FOURIER TRANSFORM

X[k] = x[n] exp∑
n=0

N−1 −i2πkn

N

10 . 4
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SPEECH DETECTORSPEECH DETECTOR

Classify speech vs. non-speech
Main goal: feed the recognition engine only with
speech
Principle:

signal-based (simple, less accurate)
Deep-learning-based (more CPU-expensive,
more accurate)

10 . 5
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NORMALIZATION, ADAPTATION, DE-NOISINGNORMALIZATION, ADAPTATION, DE-NOISING

Adaptive Normalization for audio gain and
spectral tilt (channel), also DNNs like N(0,1) at
input
Vocal-Tract-Length-Normalization and more
advanced techniques being obsoleted by DNNs
De-noising also being obsoleted by multi-style
training and larger models

10 . 6
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ACOUSTIC MODELSACOUSTIC MODELS
Consume acoustic features and estimate
likelihoods/probabilities of fixed acoustic classes
Formerly generative models based on mixtures of
Gaussians modeling states of context-dependent
phone units
Currently rather DNN models of context-
dependent phone units (discriminative training)
Moving towards simpler schemes and larger
models (context-independent phones, graphemes
or words)

11 . 1
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TRAINING ACOUSTIC MODELS (DNNS)TRAINING ACOUSTIC MODELS (DNNS)
FOR ASRFOR ASR
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Need large volumes of (transcribed) audio data
(103+ hours)
Training bootstrapped by ad-hoc alignment
between audio and transcript
Iterative process jointly refining the alignment
and the model
Advanced techniques allowing to use large
volumes of untranscribed data
Internally using highly parallelized Error-
Backpropagation training
Final DNNs allow adaptations

12 . 1
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SPEECH DECODINGSPEECH DECODING
input: acoustic features (40-dim every 10ms)
output: written text
why "decoder"? - the text has been encoded into
acoustic signal (or in our case features), now we
attempt to decode this information
stochastic approach: a model needed

(T=text, A=acoustics)

P(T|A)

13 . 1
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 too complex (really? heading towards
end-to-end models, but not yet), so:
Bayes:

 constant, ignoring
 = acoustic model 

 = language model 

P(T|A)

P(T|A) =
P(A|T)P(T)

P(A)

P(A)

P(A|T) PA

P(T) PLM 13 . 2
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ACOUSTIC MODEL ACOUSTIC MODEL 
here T is the "candidate" sequence of acoustic
classes
assuming independence per frame (if any
dependence, it is covered by front-end:
delta/double-delta, LSTM,…)
i.e.  (i over the frames)

 = the 40-dim feature vector
 … … … "fixed acoustic classes", "phone units",

…
for simplicity - imagine  as a phone

((AA||TT))PPAA

(A|T) = ( | )PA ∏i PA ai ti
ai

ti

ti
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LANGUAGE MODEL LANGUAGE MODEL 
here T = sentence, consists of words , … , 
word sequences modelled with n-gram (or other)
language models

what is missing?

((TT))PPLLMM

w1 wN

(T) = P( | , , . . . )PLM ∏i wi wi−1 wi−2
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DICTIONARYDICTIONARY
glue between acoustic classes ti and words - how
words map to "acoustic classes"
a word may have multiple pronunciations

several S EH V AX R AX L
several S EH V R AX L

pronunciation consists of phones (EH, V,…) - for
us, these are the acoustic classes 

no model here

(pron|w)PPron

ti

16 . 1
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PUTTING IT TOGETHERPUTTING IT TOGETHER
homework: add the theory behind
Hidden Markov Models - decoding hidden
message (sentence) from its "visible" ("audible")
encoded form
combining WFSTs (acoustic model, dictionary, LM)
dynamic programming (Viterbi) to find the best
path through the (virtual) WFST given the stream
of acoustic feature vectors: variety of approaches
(one big WFST, dynamic on-the-fly construction,
…)

17 . 1
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OUT OF SCOPEOUT OF SCOPE
puncutation, capitalization,…

18 . 1
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OUTROOUTRO
If you want to learn more and/or participate, come to

IBM or contact your teachers! :)

19 . 1
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EXTRA SLIDESEXTRA SLIDES
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EXAMPLE DNN PHONE POSTERIOGRAMEXAMPLE DNN PHONE POSTERIOGRAM
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