
Dialogue Systems
NPFL123 Dialogové systémy

8. (non-neural) Dialogue Management
/ Action Selection
Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

9. 4. 2019

Dialogue Management

• Two main components:
• State tracking (last lecture)

• Action selection (today)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal
2NPFL123 L8 2019

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

DM/Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning

• Note that state tracking differs with different action selection

3NPFL123 L8 2019

FSM Dialogue Management

• Dialogues = graphs going through possible conversations
• nodes = system actions

• edges = possible user response semantics

• advantages:
• easy to design

• predictable

• disadvantages:
• very rigid – not real conversations

(ignores anything that’s not a reply to last question)

• don’t scale to complex domains

• Good for basic DTMF (tone-selection) phone systems

4NPFL123 L8 2019

(from Pierre Lison’s slides)

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…

system-initiative

Frame-based Approach

• Making the interaction more flexible

• State = frame with slots
• required slots need to be filled

• this can be done in any order

• more information in one utterance possible

• If all slots are filled, query the database

• Multiple frames (e.g. flights, hotels…)
• needs frame tracking

• Standard implementation: VoiceXML

• Still not completely natural, won’t scale to more complex problems

5NPFL123 L8 2019

mixed-initiative

(from Hao Fang’s slides)

(from Pierre Lison’s slides)

Rule-based (Information State Update)

• Richer state representation – information state
• complete context – common ground, beliefs, agenda…

• Rules for state update
• based on dialogue moves (~DAs)

• rule = applicability conditions + effects

• effects:
• updates to information state (~tracking)

• system actions – updating the “next move” entry

• all matching rules applied in a sequence

• Much more expressive than FSM/Frames

• Cumbersome to handcraft

6NPFL123 L8 2019

BEL = belief
QUD = questions under discussion
LM = last dialogue move

(Larsson & Traum, 2000)
https://dl.acm.org/citation.cfm?id=973943

private to the system

common ground

(Traum & Larsson, 2003)
https://doi.org/10.1007/978-94-010-0019-2_15

https://dl.acm.org/citation.cfm?id=973943
https://doi.org/10.1007/978-94-010-0019-2_15

Rule-based

• We can use a probabilistic belief state
• DA types, slots, values

• With if-then-else rules in programming code
• using thresholds over belief state for reasoning

• Output: system DA

• Very flexible, easy to code
• allows relatively natural dialogues

• Gets messy

• Dialogue policy is still pre-set
• which might not be the best thing to do

7

the fact structure is derived
from the belief state

directly choose reply DA
+ update state

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
(Jurčíček et al., 2014)
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

DM with supervised learning
• Action selection ~ classification → use supervised learning?

• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have

8NPFL123 L8 2019

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮

• takes actions 𝑎𝑡 ∈ 𝒜

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• Markov property – state defines everything
• no other temporal dependency

• let’s assume we know the state for now
• let’s go with MDPs,

see how they map to POMDPs later

DM as a Markov Decision Process

9NPFL123 L8 2019

(from Milica Gašić’s slides)

(Sutton & Barto, 2017)

Deterministic vs. stochastic policy

• Deterministic = simple mapping 𝜋: 𝒮 → 𝒜
• always takes the same action 𝜋 𝑠 in state 𝑠

• enumerable in a table

• equivalent to a rule-based system

• but can be learned instead of hand-coded!

• Stochastic = specifies a probability distribution 𝜋 𝑠, 𝑎
• 𝜋(𝑠, 𝑎) ~ probability of choosing action 𝑎 in state 𝑠 – 𝑝(𝑎|𝑠)

• decision = sampling from 𝜋(𝑠, 𝑎)

10NPFL123 L8 2019

Reinforcement learning
• RL = finding a policy that maximizes long-term reward

• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return

11NPFL123 L8 2019

𝑅𝑡 =

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

State-value Function
• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠)

• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1
• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:

12NPFL123 L8 2019

𝑉𝜋 𝑠 = 𝔼

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 =

𝑎∈𝒜

𝜋 𝑠, 𝑎

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing
𝑎 from 𝑠 under 𝜋

transition
probs.

expected
immediate

reward

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step

Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) –return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎 also defines a greedy policy:

13NPFL123 L8 2019

𝑄𝜋 𝑠, 𝑎 = 𝔼

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 =

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 tables are bigger than 𝑉 tables

Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return 𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗ 𝑠 ≥ 𝑉𝜋′(𝑠) ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max𝜋 𝑉
𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max𝜋 𝑄
𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠 and 𝑄∗ 𝑠, 𝑎 are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages

14NPFL123 L8 2019

RL Agent Taxonomy

• Quantity to optimize:
• value function – critic

• policy – actor

• both – actor-critic

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠))

• model-free (don’t assume anything, sample)
• this is where using 𝑄 instead of 𝑉 comes handy

15NPFL123 L8 2019

(from David Silver’s slides)

RL Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates:
• on-policy – improve the policy while you’re using it for decisions

• off-policy – decide according to a different policy

16NPFL123 L8 2019

Value Iteration
1) Choose a threshold τ, Initialize 𝑉0(𝑠) arbitrarily

2) While 𝑉𝑖 𝑠 − 𝑉𝑖−1 𝑠 ≥ 𝜏 for any 𝑠:

for all 𝑠: 𝑉𝑖+1 𝑠 ← max
𝑎

σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖 𝑠
′

𝑖 ← 𝑖 + 1

• At convergence, we’re less than 𝜏 away from optimal state values
• resulting policy is typically already optimal in practice

• Can be done with 𝑄𝑖(𝑠, 𝑎) instead of 𝑉𝑖(𝑠)

• Assumes known 𝑝(𝑠′|𝑠, 𝑎) and 𝑟 𝑠, 𝑎, 𝑠′

• can be estimated from data if not known – but it’s expensive
17NPFL123 L8 2019

DP | model-based | value

apply greedy policy according to current 𝑉𝑖 𝑠 ,
update estimate

Value iteration example
(Gridworld)

• Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
• reward +1 for staying at “G”

• reward -1 for hitting a wall

• discount factor 𝛾 = 0.9

18NPFL123 L8 2019

optimal policy 𝜋∗optimal state-value function 𝑉∗(𝑠)maze

(Heidrich-Meisner et al., 2007)

See a similar example animated here:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
(note that rewards come from states, not state-action pairs)

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Policy iteration
• Similar to value iteration, but improves both policy & value function

• also works for 𝑄 in place of 𝑉

• Initialize 𝜋1 and 𝑉𝜋1(𝑠) arbitrarily, set 𝑘 = 1, iterate:

1) E: Policy evaluation – compute 𝑉𝜋𝑘(𝑠) for policy 𝜋𝑘
• iterative approximation based on Bellman equation

• choose threshold 𝜏, loop with 𝑖 while 𝑉𝑖+1
𝜋𝑘 𝑠 − 𝑉𝑖

𝜋𝑘 𝑠 ≥ 𝜏 for any 𝑠:

• for all 𝑠: 𝑎 ← 𝜋𝑘(𝑠), 𝑉𝑖+1 𝑠 ← σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑖 𝑠′

2) I: Policy improvement – find better 𝜋𝑘+1 based on 𝑉𝜋𝑘(𝑠)
• choose best action in each state based on 𝑉𝜋𝑘 𝑠

• for all 𝑠: 𝜋𝑘+1 ← argmax𝑎 σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑘 𝑠′

• end if no 𝜋𝑘+1 𝑠 = 𝜋𝑘(𝑠) for all 𝑠
19NPFL123 L8 2019

DP | model-based | policy + value

𝜋1 → 𝑉𝜋1 → 𝜋2 → 𝑉𝜋2 → ⋯ → 𝜋∗ → 𝑉𝜋∗E I E I I E

(after Sutton & Barto, 2018)

Monte Carlo Methods

• 𝑉(𝑠) or 𝑄(𝑠, 𝑎) estimated iteratively, on-policy
• explores states with more value more often

• Loop over episodes (dialogues)
• record (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) for 𝑡 = 0,…𝑇 in the episode

• for all 𝑠, 𝑎 in the episode:
• 𝑅 𝑠, 𝑎 ← list of all returns for taking action 𝑎 in state 𝑠 (sum of rewards till end of episode)

• 𝑄 𝑠, 𝑎 ← average(𝑅(𝑠, 𝑎))

• To converge, we need to explore – using 𝝐-greedy policy:

20NPFL123 L8 2019

MC | model-based/free | value

off-policy extensions
exist (omitted)

𝑎 =
argmax

𝑎
𝑄(𝑠, 𝑎) with probability 1 − ϵ

random action with probability ϵ

𝜖 can be large initially,
then gradually lowered

here: model-free for 𝑄’s,
but also works

model-based for 𝑉’s

𝑅𝑡 =

𝑖=𝑡

𝑇−1

𝛾𝑖−𝑡𝑟𝑖+1

SARSA (state-action-reward-state-action)

21NPFL123 L8 2019

TD | model-free | value

(Sutton & Barto, 2018)

• estimate 𝑄(𝑠, 𝑎) iteratively, on-policy, with immediate updates
• TD: don’t wait till the end of episode

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠, initial 𝑎 acc. to 𝜖-greedy policy

based on 𝑄

• for each step:
• take action 𝑎, observe reward 𝑟 and state 𝑠′

• choose action 𝑎′ from 𝑠′ acc. to 𝜖-greedy policy based on 𝑄

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 ⋅ 𝑟 + 𝛾𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′, 𝑎 ← 𝑎′

• typically converges faster than MC (but not always)

update

https://towardsdatascience.com/td-in-
reinforcement-learning-the-easy-way-f92ecfa9f3ce

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Q-Learning (off-policy TD)

• off-policy – directly estimate 𝑄∗ 𝑠, 𝑎
• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝜖-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′

22NPFL123 L8 2019

TD | model-free | value

update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-
reinforcement-learning-the-easy-way-f92ecfa9f3ce

any policy that chooses all
actions & states enough times

will converge to 𝑄∗(𝑠, 𝑎)

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

REINFORCE – MC policy search

• assuming a differentiable parametric policy 𝜋(𝑎|𝑠, 𝜽)

• direct search for policy parameters by stochastic gradient ascent
• looking to maximize performance 𝐽 𝜽 = 𝑉𝜋𝜃 𝑠0

• choose learning rate 𝛼, initialize 𝜽 arbitrarily

• loop forever:
• generate an episode 𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇, following 𝜋(⋅ | ⋅, 𝜽)

• for each 𝑡 = 0,1…𝑇: 𝜽 ← 𝜽 + 𝛼𝛾𝑡𝑅𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡 , 𝜽)

23NPFL123 L8 2019

MC | model-free | policy

returns 𝑅𝑡 = σ𝑖=𝑡
𝑇−1 𝛾𝑖−𝑡𝑟𝑖+1variant: discounting a baseline

𝑏 𝑠 (predicted by any model)
𝑅𝑡 − 𝑏(𝑠𝑡) instead of 𝑅𝑡

gives better performance

this is stochastic ∇𝐽 𝜽
• from policy gradient theorem
• with action sample 𝑎𝑡

a good 𝑏(𝑠) is actually 𝑉(𝑠)

Policy Gradients Actor-Critic
• REINFORCE + 𝑉 approximation + TD estimates – better convergence

• differentiable policy 𝜋 𝑎 𝑠, 𝜽

• differentiable state-value function parameterization 𝑉 𝑠,𝒘

• two learning rates 𝛼𝜽, 𝛼𝒘

• loop forever:
• set initial state 𝑠 for the episode

• for each step 𝑡 of the episode:
• sample action 𝑎 from 𝜋 ⋅ 𝑠, 𝜽 , take 𝑎 and observe reward 𝑟 and new state 𝑠′

• compute 𝛿 ← 𝑟 + 𝛾 𝑉 𝑠′, 𝒘 − 𝑉(𝑠,𝒘)

• update 𝜽 ← 𝜽 + 𝛼𝜽𝛾𝑡𝛿∇ ln𝜋(𝑎|𝑠, 𝜽), 𝒘 ← 𝒘+ 𝛼𝒘 ⋅ 𝛿∇ 𝑉(𝑠,𝒘)

• 𝑠 ← 𝑠′

24NPFL123 L8 2019

TD | model-free | policy + value

actor (policy update)

same as REINFORCE, except:
• we use 𝑉 𝑠,𝒘 as baseline
• 𝑟 is used instead of 𝑅𝑡 (TD instead of MC)

TD: update
after each step

critic (value function update)

POMDP Case

• POMDPs – belief states instead of dialogue states
• probability distribution over states

• can be viewed as MDPs with continuous-space states

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• REINFORCE/policy gradients work out of the box
• function approximation approach, allows continuous states

NPFL123 L8 2019

(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates

Summary Space

26NPFL123 L8 2019

(from Milica Gašić’s slides)

Simulated Users
• We can’t really learn just from static datasets

• on-policy algorithms don’t work
• data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM
• (typically) working on DA level
• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)
• n-grams
• MLE policy from data

27NPFL123 L8 2019

(from Milica Gašić’s slides)

Summary
• Action selection – deciding what to do next

• Approaches
• Finite-state machines (system-initiative)

• Frames (VoiceXML)

• Rule-based

• Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)

• optimizing value function or policy

• learning on-policy or off-policy

• learning with or without a model

• using summary space

• training with a user simulator

28NPFL123 L8 2019

Thanks

29NPFL123 L7 2019

Contact me:
odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Barnabás Póczos’s slides (Carnegie-Mellon University): https://www.cs.cmu.edu/~mgormley/courses/10601-s17/

Labs tomorrow
9:00 SU1

mailto:odusek@ufal.mff.cuni.cz
http://ufal.cz/npfl123
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
http://incompleteideas.net/book/the-book.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf
https://sites.google.com/site/olemon/conversational-agents
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
https://hao-fang.github.io/ee596_spr2018/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/

