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Dialogue Management

• Two main components:
• State tracking (last lecture)

• Action selection (today)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal
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Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)



DM/Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning

• Note that state tracking differs with different action selection
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FSM Dialogue Management

• Dialogues = graphs going through possible conversations
• nodes = system actions

• edges = possible user response semantics

• advantages:
• easy to design

• predictable

• disadvantages:
• very rigid – not real conversations

(ignores anything that’s not a reply to last question)

• don’t scale to complex domains

• Good for basic DTMF (tone-selection) phone systems
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(from Pierre Lison’s slides)

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…

system-initiative



Frame-based Approach

• Making the interaction more flexible

• State = frame with slots
• required slots need to be filled

• this can be done in any order

• more information in one utterance possible

• If all slots are filled, query the database

• Multiple frames (e.g. flights, hotels…)
• needs frame tracking

• Standard implementation: VoiceXML

• Still not completely natural, won’t scale to more complex problems
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mixed-initiative

(from Hao Fang’s slides)

(from Pierre Lison’s slides)



Rule-based (Information State Update)

• Richer state representation – information state
• complete context – common ground, beliefs, agenda… 

• Rules for state update
• based on dialogue moves (~DAs)

• rule = applicability conditions + effects

• effects:
• updates to information state (~tracking)

• system actions – updating the “next move” entry

• all matching rules applied in a sequence

• Much more expressive than FSM/Frames

• Cumbersome to handcraft
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BEL = belief
QUD = questions under discussion
LM = last dialogue move

(Larsson & Traum, 2000)
https://dl.acm.org/citation.cfm?id=973943

private to the system

common ground

(Traum & Larsson, 2003)
https://doi.org/10.1007/978-94-010-0019-2_15

https://dl.acm.org/citation.cfm?id=973943
https://doi.org/10.1007/978-94-010-0019-2_15


Rule-based

• We can use a probabilistic belief state
• DA types, slots, values

• With if-then-else rules in programming code
• using thresholds over belief state for reasoning

• Output: system DA

• Very flexible, easy to code
• allows relatively natural dialogues

• Gets messy

• Dialogue policy is still pre-set
• which might not be the best thing to do

7

the fact structure is derived 
from the belief state

directly choose reply DA
+ update state

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
(Jurčíček et al., 2014)
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
https://www.tsdconference.org/tsd2014/download/preprints/628.pdf


DM with supervised learning
• Action selection ~ classification → use supervised learning?

• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have
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• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮

• takes actions 𝑎𝑡 ∈ 𝒜

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• Markov property – state defines everything
• no other temporal dependency

• let’s assume we know the state for now
• let’s go with MDPs, 

see how they map to POMDPs later

DM as a Markov Decision Process 
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(from Milica Gašić’s slides)

(Sutton & Barto, 2017)



Deterministic vs. stochastic policy

• Deterministic = simple mapping 𝜋: 𝒮 → 𝒜
• always takes the same action 𝜋 𝑠 in state 𝑠

• enumerable in a table

• equivalent to a rule-based system

• but can be learned instead of hand-coded!

• Stochastic = specifies a probability distribution 𝜋 𝑠, 𝑎
• 𝜋(𝑠, 𝑎) ~ probability of choosing action 𝑎 in state 𝑠 – 𝑝(𝑎|𝑠)

• decision = sampling from 𝜋(𝑠, 𝑎)
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Reinforcement learning
• RL = finding a policy that maximizes long-term reward

• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return
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𝑅𝑡 =

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated 

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)



State-value Function
• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠)

• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1
• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:
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𝑉𝜋 𝑠 = 𝔼 

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 = 

𝑎∈𝒜

𝜋 𝑠, 𝑎 

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing 
𝑎 from 𝑠 under 𝜋

transition
probs.

expected 
immediate 

reward

𝜋 𝑠, 𝑎 ≔

1

# of 𝑎′s
for 𝑎 = argmax

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step



Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) –return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎 also defines a greedy policy:
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𝑄𝜋 𝑠, 𝑎 = 𝔼 

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 = 

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾 

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔

1

# of 𝑎′s
for 𝑎 = argmax

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 tables are bigger than 𝑉 tables



Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return  𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗ 𝑠 ≥ 𝑉𝜋′(𝑠) ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max𝜋 𝑉
𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max𝜋 𝑄
𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠 and 𝑄∗ 𝑠, 𝑎 are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages
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RL Agent Taxonomy

• Quantity to optimize:
• value function – critic

• policy – actor

• both – actor-critic

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠))

• model-free (don’t assume anything, sample)
• this is where using 𝑄 instead of 𝑉 comes handy
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(from David Silver’s slides)



RL Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates: 
• on-policy – improve the policy while you’re using it for decisions 

• off-policy – decide according to a different policy
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Value Iteration
1) Choose a threshold τ, Initialize 𝑉0(𝑠) arbitrarily

2) While 𝑉𝑖 𝑠 − 𝑉𝑖−1 𝑠 ≥ 𝜏 for any 𝑠:

for all 𝑠: 𝑉𝑖+1 𝑠 ← max
𝑎

σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑖 𝑠
′

𝑖 ← 𝑖 + 1

• At convergence, we’re less than 𝜏 away from optimal state values
• resulting policy is typically already optimal in practice

• Can be done with 𝑄𝑖(𝑠, 𝑎) instead of 𝑉𝑖(𝑠)

• Assumes known 𝑝(𝑠′|𝑠, 𝑎) and 𝑟 𝑠, 𝑎, 𝑠′

• can be estimated from data if not known – but it’s expensive
17NPFL123 L8 2019

DP  | model-based  | value

apply greedy policy according to current 𝑉𝑖 𝑠 ,
update estimate



Value iteration example
(Gridworld)

• Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
• reward +1 for staying at “G”

• reward -1 for hitting a wall

• discount factor 𝛾 = 0.9
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optimal policy 𝜋∗optimal state-value function 𝑉∗(𝑠)maze

(Heidrich-Meisner et al., 2007)

See a similar example animated here:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
(note that rewards come from states, not state-action pairs)

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


Policy iteration
• Similar to value iteration, but improves both policy & value function

• also works for 𝑄 in place of  𝑉

• Initialize 𝜋1 and 𝑉𝜋1(𝑠) arbitrarily, set 𝑘 = 1, iterate:

1) E: Policy evaluation – compute 𝑉𝜋𝑘(𝑠) for policy 𝜋𝑘
• iterative approximation based on Bellman equation

• choose threshold 𝜏, loop with 𝑖 while 𝑉𝑖+1
𝜋𝑘 𝑠 − 𝑉𝑖

𝜋𝑘 𝑠 ≥ 𝜏 for any 𝑠:

• for all 𝑠: 𝑎 ← 𝜋𝑘(𝑠), 𝑉𝑖+1 𝑠 ← σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑖 𝑠′

2) I: Policy improvement – find better 𝜋𝑘+1 based on 𝑉𝜋𝑘(𝑠)
• choose best action in each state based on 𝑉𝜋𝑘 𝑠

• for all 𝑠: 𝜋𝑘+1 ← argmax𝑎 σ𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑘 𝑠′

• end if no 𝜋𝑘+1 𝑠 = 𝜋𝑘(𝑠) for all 𝑠
19NPFL123 L8 2019

DP  | model-based  | policy + value

𝜋1 → 𝑉𝜋1 → 𝜋2 → 𝑉𝜋2 → ⋯ → 𝜋∗ → 𝑉𝜋∗E I E I I E

(after Sutton & Barto, 2018)



Monte Carlo Methods

• 𝑉(𝑠) or 𝑄(𝑠, 𝑎) estimated iteratively, on-policy 
• explores states with more value more often

• Loop over episodes (dialogues)
• record (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡) for 𝑡 = 0,…𝑇 in the episode

• for all 𝑠, 𝑎 in the episode: 
• 𝑅 𝑠, 𝑎 ← list of all returns for taking action 𝑎 in state 𝑠 (sum of rewards till end of episode)

• 𝑄 𝑠, 𝑎 ← average(𝑅(𝑠, 𝑎))

• To converge, we need to explore – using 𝝐-greedy policy:
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MC  | model-based/free  | value

off-policy extensions
exist (omitted)

𝑎 =
argmax

𝑎
𝑄(𝑠, 𝑎) with probability 1 − ϵ

random action with probability ϵ

𝜖 can be large initially,
then gradually lowered

here: model-free for 𝑄’s, 
but also works 

model-based for 𝑉’s

𝑅𝑡 = 

𝑖=𝑡

𝑇−1

𝛾𝑖−𝑡𝑟𝑖+1



SARSA (state-action-reward-state-action)
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TD  | model-free  | value

(Sutton & Barto, 2018)

• estimate 𝑄(𝑠, 𝑎) iteratively, on-policy, with immediate updates
• TD: don’t wait till the end of episode

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠, initial 𝑎 acc. to 𝜖-greedy policy 

based on 𝑄

• for each step:
• take action 𝑎, observe reward 𝑟 and state 𝑠′

• choose action 𝑎′ from 𝑠′ acc. to 𝜖-greedy policy based on 𝑄

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 ⋅ 𝑟 + 𝛾𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′, 𝑎 ← 𝑎′

• typically converges faster than MC (but not always)

update

https://towardsdatascience.com/td-in-
reinforcement-learning-the-easy-way-f92ecfa9f3ce

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce


Q-Learning (off-policy TD)

• off-policy – directly estimate 𝑄∗ 𝑠, 𝑎
• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝜖-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′
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TD  | model-free  | value

update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-
reinforcement-learning-the-easy-way-f92ecfa9f3ce

any policy that chooses all 
actions & states enough times 

will converge to 𝑄∗(𝑠, 𝑎)

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html  

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


REINFORCE – MC policy search

• assuming a differentiable parametric policy 𝜋(𝑎|𝑠, 𝜽)

• direct search for policy parameters by stochastic gradient ascent
• looking to maximize performance 𝐽 𝜽 = 𝑉𝜋𝜃 𝑠0

• choose learning rate 𝛼, initialize 𝜽 arbitrarily

• loop forever:
• generate an episode 𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇, following 𝜋(⋅ | ⋅, 𝜽)

• for each 𝑡 = 0,1…𝑇: 𝜽 ← 𝜽 + 𝛼𝛾𝑡𝑅𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡 , 𝜽)
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MC  | model-free  | policy

returns 𝑅𝑡 = σ𝑖=𝑡
𝑇−1 𝛾𝑖−𝑡𝑟𝑖+1variant: discounting a baseline 

𝑏 𝑠 (predicted by any model)
𝑅𝑡 − 𝑏(𝑠𝑡) instead of 𝑅𝑡

gives better performance

this is stochastic ∇𝐽 𝜽
• from policy gradient theorem
• with action sample 𝑎𝑡

a good 𝑏(𝑠) is actually 𝑉(𝑠)



Policy Gradients Actor-Critic
• REINFORCE + 𝑉 approximation + TD estimates – better convergence

• differentiable policy 𝜋 𝑎 𝑠, 𝜽

• differentiable state-value function parameterization 𝑉 𝑠,𝒘

• two learning rates 𝛼𝜽, 𝛼𝒘

• loop forever:
• set initial state 𝑠 for the episode

• for each step 𝑡 of the episode:
• sample action 𝑎 from 𝜋 ⋅ 𝑠, 𝜽 , take 𝑎 and observe reward 𝑟 and new state 𝑠′

• compute 𝛿 ← 𝑟 + 𝛾 𝑉 𝑠′, 𝒘 − 𝑉(𝑠,𝒘)

• update 𝜽 ← 𝜽 + 𝛼𝜽𝛾𝑡𝛿∇ ln𝜋(𝑎|𝑠, 𝜽), 𝒘 ← 𝒘+ 𝛼𝒘 ⋅ 𝛿∇ 𝑉(𝑠,𝒘)

• 𝑠 ← 𝑠′
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TD | model-free  | policy + value

actor (policy update)

same as REINFORCE, except:
• we use 𝑉 𝑠,𝒘 as baseline 
• 𝑟 is used instead of 𝑅𝑡 (TD instead of MC)

TD: update
after each step

critic (value function update)



POMDP Case

• POMDPs – belief states instead of dialogue states 
• probability distribution over states

• can be viewed as MDPs with continuous-space states

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• REINFORCE/policy gradients work out of the box
• function approximation approach, allows continuous states

NPFL123 L8 2019

(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram


• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates 

Summary Space
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(from Milica Gašić’s slides)



Simulated Users
• We can’t really learn just from static datasets

• on-policy algorithms don’t work
• data might not reflect our newly learned behaviour 

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM
• (typically) working on DA level
• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)
• n-grams
• MLE policy from data
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(from Milica Gašić’s slides)



Summary
• Action selection – deciding what to do next

• Approaches
• Finite-state machines (system-initiative)

• Frames (VoiceXML)

• Rule-based

• Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)

• optimizing value function or policy

• learning on-policy or off-policy

• learning with or without a model

• using summary space

• training with a user simulator
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Thanks
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Contact me:
odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123
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• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Barnabás Póczos’s slides (Carnegie-Mellon University): https://www.cs.cmu.edu/~mgormley/courses/10601-s17/
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