

Dialogue Systems NPFL123 Dialogové systémy

8. (non-neural)Dialogue Management / Action Selection

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

9. 4. 2019

Dialogue Management

- Two main components:
	- **State tracking** (last lecture)
	- **Action selection** (today)
- action selection deciding what to do next
	- based on the current belief state under uncertainty
	- following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
	- controlling the coherence & flow of the dialogue
	- actions: linguistic & non-linguistic
- DM/policy should:
	- manage uncertainty from belief state
	- recognize & follow dialogue structure
- plan actions ahead towards the goal NPFL123 L8 2019 2 e.g. ask for all information you require

Did you say Indian or Italian?

follow convention, don't be repetitive

DM/Action Selection Approaches

- Finite-state machines
	- simplest possible
	- dialogue state is machine state
- Frame-based (VoiceXML)
	- slot-filling + providing information basic agenda
- Rule-based
	- any kind of rules (e.g. Python code)
- Statistical
	- typically using reinforcement learning
- Note that state tracking differs with different action selection

FSM Dialogue Management

(from Pierre Lison's slides)

M: you're welcome!

M: here's an apple

U: apples

U: oranges

U: sth else

U: thank you

U: thank you

M: what? sorry i didn't understand

M: here's an orange

- Dialogues = graphs going through possible conversations
	- nodes = system actions
	- edges = possible user response semantics
- advantages:
	- easy to design
	- predictable
- disadvantages:
	- very rigid not real conversations (ignores anything that's not a reply to last question)
	- don't scale to complex domains
- Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…

M: apples or oranges?

system-initiative

Frame-based Approach

- Making the interaction more flexible
- State = frame with slots
	- required slots need to be filled
	- this can be done in **any order**
	- more information in one utterance possible
- If all slots are filled, query the database
- Multiple frames (e.g. flights, hotels…)
	- needs frame tracking
- Standard implementation: **VoiceXML**
- Still not completely natural, won't scale to more complex problems

(from Hao Fang's slides)

mixed-initiative

(from Pierre Lison's slides)

Rule-based (Information State Update)

- Richer state representation information state
	- complete context common ground, beliefs, agenda…
- Rules for state update
	- based on dialogue moves (~DAs)
	- rule = applicability conditions + effects
	- effects:
		- updates to information state (~tracking).
		- system actions updating the "next move" entry \leftarrow
	- all matching rules applied in a sequence
- Much more expressive than FSM/Frames
- Cumbersome to handcraft

 (3) $fst(PRIVATE.AGENDA, raise(Q))$ PRE: $set(NEXT_Move, ask(Q))$ EFF:

https://doi.org/10.1007/978-94-010-0019-2_15

Rule-based

the *fact* structure is derived from the belief state

- We can use a probabilistic belief state
	- DA types, slots, values
- With **if-then-else** rules in programming code
	- using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
	- allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
	- which might not be the best thing to do

(Jurčíček et al., 2014) <https://www.tsdconference.org/tsd2014/download/preprints/628.pdf>

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py

7

DM with supervised learning

• **Action selection ~ classification** → use supervised learning?

- set of possible actions is known
- belief state should provide all necessary features
- Yes, but…
	- You **need** sufficiently large **human-human data** hard to get
		- human-machine would just mimic the original system
	- Dialogue is ambiguous & complex
		- there's **no single correct next action** multiple options may be equally good
		- but datasets will only have one next action
		- **some paths will be unexplored** in data, but you may encounter them
	- DSs won't behave the same as people
		- ASR errors, limited NLU, limited environment model/actions
		- DSs **should** behave differently make the best of what they have

DM as a Markov Decision Process

- modelling situations that are partly random, partly controlled
- **agent** in an **environment**:
	- has internal **state** $s_t \in \mathcal{S}$
	- takes **actions** $a_t \in \mathcal{A}$
	- actions chosen according to **policy** $\pi: \mathcal{S} \to \mathcal{A}$
	- gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
- Markov property state defines everything
	- no other temporal dependency
- let's assume we know the state for now
	- let's go with MDPs, see how they map to POMDPs later

 $St+1$

at

 r_{t}

St

Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: \mathcal{S} \to \mathcal{A}$
	- always takes the same action $\pi(s)$ in state s
	- enumerable in a table
	- equivalent to a rule-based system
	- but can be learned instead of hand-coded!
- **Stochastic** = specifies a probability distribution $\pi(s, a)$
	- $\pi(s, a)$ ~ probability of choosing action a in state $s p(a|s)$
	- decision = sampling from $\pi(s, a)$

Reinforcement learning

- RL = finding a policy that maximizes long-term reward
	- unlike supervised learning, we don't know if an action is good
	- immediate reward might be low while long-term reward high

• state transition is stochastic → maximize **expected return**

 $\mathbb{E}[R_t|\pi,s_0] \longleftarrow$ expected R_t if we start from state s_0 and follow policy π

State-value Function

- Using return, we define the **value of a state** s under policy π : $V^{\pi}(s)$
	- Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) (r(s, a, s') + \gamma V^{\pi}(s'))
$$

\nprob. of choosing
\na from *s* under π prob.

•
$$
V^{\pi}(s)
$$
 defines a **greedy policy:**
\n
$$
\pi(s, a) := \begin{cases}\n\frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} \sum_{s' \in S} p(s'|s, a) (r(s, a, s') + \gamma V^{\pi}(s')) \\
0 \text{ otherwise} \n\end{cases}
$$

Action-value (Q-)Function

- $Q^{\pi}(s, a)$ –return of taking action a in state s , under policy π
	- Same principle as value $V^{\pi}(s)$, just considers the current action, too
	- Has its own version of the Bellman equation

$$
Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_0 = s, a_0 = a\right] = \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s', a') \pi(s', a')\right)
$$

• $Q^{\pi}(s, a)$ also defines a greedy policy: again, "actions that look best for the next step"

$$
\pi(s, a) := \begin{cases}\n\frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} Q^{\pi}(s, a) < \text{where: no need to enumerate } s', \\
0 \text{ otherwise} > \text{but } Q \text{ tables are bigger than } V \text{ tables}\n\end{cases}
$$

Optimal Policy in terms of *V* **and Q**

- **optimal policy** π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
	- $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \to$ use it to define π^*
- π^* is a policy such that V^{π^*} $s) \ge V^{\pi'}$ (s) $\forall \pi', \forall s \in \mathcal{S}$
	- π^* always exists in an MDP (need not be unique)
	- π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
	- π^* also has the **optimal action-value function** $Q^*(s, a) \coloneqq \max_{\pi} Q^{\pi}(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
	- we can search for either π^* , $V^*(s)$ or $Q^*(s,a)$ and get the same result
	- each has their advantages and disadvantages

RL Agent Taxonomy

- Quantity to optimize:
	- value function **critic**
	- policy **actor**
	- both **actor-critic**
- Environment model:
	- **model-based** (assume known $p(s'|s, a)$, $r(s, a, s)$)
	- **model-free** (don't assume anything, sample)
		- this is where using Q instead of V comes handy

(from David Silver's slides)

RL Approaches

- How to optimize:
	- **dynamic programming** find the exact solution from Bellman equation
		- iterative algorithms, refining estimates
		- expensive, assumes known environment
	- **Monte Carlo** learning learn from experience
		- sample, then update based on experience
	- **Temporal difference** learning like MC but look ahead (bootstrap)
		- sample, refine estimates as you go
- Sampling & updates:
	- **on-policy** improve the policy while you're using it for decisions
	- **off-policy** decide according to a different policy

Value Iteration

- 1) Choose a threshold τ , Initialize $V_0(s)$ arbitrarily
- 2) While $V_i(s) V_{i-1}(s) \geq \tau$ for any s: for all $s: V_{i+1}(s) \leftarrow \max_{a}$ \boldsymbol{a} $\sum_{s' \in \mathcal{S}} p(s'|s, a) (r(s, a, s') + \gamma V_i(s')$ $i \leftarrow i + 1$ apply greedy policy according to current $V_i(s)$, update estimate
- At convergence, we're less than τ away from optimal state values
	- resulting policy is typically already optimal in practice
- Can be done with $Q_i(s, a)$ instead of $V_i(s)$
- Assumes known $p(s'|s, a)$ and $r(s, a, s')$
- can be estimated from data if not known but it's expensive NPFL123 L8 2019 **17**

 $\bullet\bullet$

Value iteration example (Gridworld)

- Robot in a maze: can stay or move $\leftarrow, \uparrow, \rightarrow, \downarrow$ (all equally likely)
	- reward +1 for staying at "G"
	- reward -1 for hitting a wall

G

• discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)

maze $\qquad \qquad \text{optimal state-value function }V^*(s) \qquad \qquad \text{optimal policy } \pi^*$

 5.9 5.3 7.3 8.1

 $5.3|5.9|6.6|7.3$

NPFL123 L8 2019 18 https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html (note that rewards come from states, not state-action pairs)

DP | model-based | policy + value

Policy iteration

- Similar to value iteration, but improves both policy & value function
	- also works for Q in place of V
- Initialize π_1 and $V^{\pi_1}(s)$ arbitrarily, set $k=1$, iterate:
- **1) E: Policy evaluation** compute $V^{\pi_k}(s)$ for policy π_k
	- iterative approximation based on Bellman equation
	- choose threshold τ , loop with i while $V_{i+1}^{\pi_k}(s) V_i^{\pi_k}(s) \geq \tau$ for any s :
		- for all $s: a \leftarrow \pi_k(s), V_{i+1}(s) \leftarrow \sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V_i(s')$
- **2) I: Policy improvement** find better π_{k+1} based on $V^{\pi_k}(s)$
	- choose best action in each state based on $V^{\pi_k}(s)$
	- for all $s: \pi_{k+1} \leftarrow \arg \max_{a} \sum_{s'} p(s'|s, a) (r(s, a, s') + \gamma V^{\pi_k}(s')$
	- end if no $\pi_{k+1}(s) = \pi_k(s)$ for all s

Monte Carlo Methods

- $V(s)$ or $Q(s, a)$ estimated iteratively, on-policy \cdot
	- explores states with more value more often
- Loop over episodes (dialogues)
	- record (s_t, a_t, r_t) for $t = 0, ... T$ in the episode
	- for all s , a in the episode:
		- $R(s, a) \leftarrow$ list of all **returns** for taking action a in state s (sum of rewards till end of episode)
		- $Q(s, a) \leftarrow \text{average}(R(s, a))$ +
- \bullet To converge, we need to explore using ϵ -greedy policy:

$$
a = \begin{cases} \arg \max_{a} Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action with probability } \epsilon \end{cases}
$$

here: model-free for Q 's, but also works model-based for V 's

exist (omitted) $T-1$

off-policy extensions

- estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
	- **TD**: don't wait till the end of episode
- choose learning rate α , initialize Q arbitrarily
- for each episode:

TD | model-free | value

- choose initial s, initial a acc. to ϵ -greedy policy based on Q
- for each step:
	- take action a , observe reward r and state s'
	- choose action a' from s' acc. to ϵ -greedy policy based on Q
	- $Q(s, a) \leftarrow (1 a) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
	- $s \leftarrow s'$, $a \leftarrow a'$

• typically converges faster than MC (but not always)

update

State: S' Action taken: East (from previously) Action expected at S": East

https://towardsdatascience.com/td-in[reinforcement-learning-the-easy-way-f92ecfa9f3ce](https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce)

Action expected at S': East

State: S

Action taken: North

SARSA (state-action-reward-state-action)

(Sutton & Barto, 2018)

Q-Learning (off-policy TD)

- off-policy directly estimate $Q^*(s, a)$
	- regardless of policy used for sampling
- choose learning rate α , initialize Q arbitrarily
- for each episode:
	- choose initial s
	- for each step:
		- choose a from s according to ϵ -greedy policy based on Q
		- take action a , observe observe reward r and state s'
		- $Q(s, a) \leftarrow (1 \alpha) \cdot Q(s, a) + \alpha (r + \gamma \cdot \text{max})$ $\overline{a'}$ $Q(s', a')$
		- $s \leftarrow s'$

update uses best a' , regardless of current policy: ′ **is not necessarily taken in the actual episode**

State: S' Action taken: North (any action)

https://towardsdatascience.com/td-in[reinforcement-learning-the-easy-way-f92ecfa9f3ce](https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce)

> any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

REINFORCE – MC policy search

- assuming a differentiable parametric policy $\pi(a|s, \theta)$
- direct search for policy parameters by stochastic gradient ascent
	- looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\boldsymbol{\theta}}}(s_0)$
- choose learning rate α , initialize $\boldsymbol{\theta}$ arbitrarily
- loop forever:
	- generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
	- for each $t=0,1$... $T: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \boldsymbol{\theta})$

variant: discounting a baseline $b(s)$ (predicted by any model) $R_t - b(s_t)$ instead of R_t gives better performance

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t}$

this is stochastic $\nabla J(\boldsymbol{\theta})$

- from policy gradient theorem
- with action sample a_t

NPFL123 L8 2019 **23 a good** $b(s)$ **is actually** $V(s)$ 23

Policy Gradients Actor-Critic

- REINFORCE + V approximation + TD estimates better convergence
	- differentiable policy $\pi(a|s, \theta)$
	- differentiable state-value function parameterization $\hat{V}(s, w)$
	- two learning rates $\alpha^{\boldsymbol{\theta}}, \alpha^{\boldsymbol{w}}$
- loop forever:
	- \bullet set initial state s for the episode
	- for each step t of the episode:
		- sample action a from $\pi(\cdot | s, \theta)$, take a and observe reward r and new state s'
		- compute $\delta \leftarrow r + \gamma \hat{V}(s', w) \hat{V}(s, w)$

```
TD: update
```
after each step

• update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t \delta \nabla \ln \pi(a|s, \boldsymbol{\theta}), w \leftarrow w + \alpha^w \cdot \delta \nabla \hat{V}(s, w)$ • $S \leftarrow S'$ NPFL123 L8 2019 • r is used instead of R_t (TD instead of MC) 24 **actor** (policy update) same as REINFORCE, except: • we use $\hat{V}(s, w)$ as baseline **critic** (value function update)

POMDP Case

- POMDPs belief states instead of dialogue states
	- probability distribution over states
	- can be viewed as **MDPs with continuous-space states**
	- All MDP algorithms work…
		- if we **quantize/discretize** the states
		- use grid points & nearest neighbour approaches
		- this might introduce errors / make computation complex
	- REINFORCE/policy gradients work out of the box
		- function approximation approach, allows continuous states

Summary Space

- for a typical DS, the belief state is too large to make RL tractable
- solution: map state into a reduced space, optimize there, map back
- reduced space = **summary space**
	- handcrafted state features
	- e.g. top slots, # found, slots confirmed…
- reduced action set = **summary actions**
	- e.g. just DA types (*inform, confirm, reject*)
	- remove actions that are not applicable
	- with handcrafted mapping to real actions
- state is still tracked in original space
	- we still need the complete information for accurate updates

(from Milica Gašić's slides)

Simulated Users

- We can't really learn just from static datasets
	- on-policy algorithms don't work
	- data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
	- 1k-100k's dialogues used for training, depending on method
- solution: **user simulation**
	- basically another DS/DM
	- (typically) working on DA level
	- errors injected to simulate ASR/NLU
- approaches:
	- rule-based (frames/agenda)
	- n-grams
	- MLE policy from data

Summary

- Action selection deciding what to do next
- Approaches
	- Finite-state machines (system-initiative)
	- Frames (VoiceXML)
	- Rule-based
	- Machine learning (RL better than supervised)
- RL in a POMDP scenario (can be approximated by MDP)
	- optimizing **value function** or **policy**
	- learning **on-policy** or **off-policy**
	- learning with or without a **model**
	- using **summary space**
	- training with a **user simulator**

Thanks

Contact me:

odusek@ufal.mff.cuni.cz room 424 (but email me first)

Get these slides here:

<http://ufal.cz/npfl123>

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): <https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/>
- Milica Gašić's slides (Cambridge University): <http://mi.eng.cam.ac.uk/~mg436/teaching.html>
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): <http://incompleteideas.net/book/the-book.html>
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: <https://christian-igel.github.io/paper/RLiaN.pdf>
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: <http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf>
- Oliver Lemon's slides (Heriot-Watt University):<https://sites.google.com/site/olemon/conversational-agents>
- Pierre Lison's slides (University of Oslo): <https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/>
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
- David Silver's course on RL (UCL): <http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html>
- Barnabás Póczos's slides (Carnegie-Mellon University): <https://www.cs.cmu.edu/~mgormley/courses/10601-s17/>

Labs tomorrow 9:00 SU1