

Dialogue Systems NPFL123 Dialogové systémy

6. Natural Language Understanding (Non-neural)

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

26.3.2019

Natural Language Understanding

• words → meaning

- whatever "meaning" is can be different tasks
- typically structured, explicit representation
- alternative names/close tasks:
 - spoken language understanding
 - semantic decoding/parsing
- integral part of dialogue systems, also explored elsewhere
 - stand-alone semantic parsers
 - other applications:
 - human-robot interaction
 - question answering
 - machine translation (not so much nowadays)

NLU Challenges

non-grammaticality

find something cheap for kids should be allowed

- disfluencies
 - hesitations pauses, fillers, repetitions
 - fragments
 - self-repairs (~6%!)
- ASR errors

uhm I want something in the west the west part of town uhm find something uhm something cheap no I mean moderate uhm I'm looking for a cheap

• synonymy

I'm looking for a for a chip Chinese rest or rant

• out-of-domain utterances

Chinese city centre uhm I've been wondering if you could find me a restaurant that has Chinese food close to the city centre please

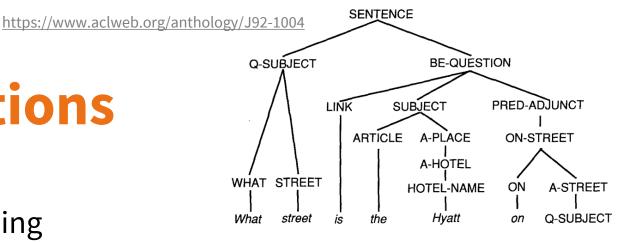
oh yeah I've heard about that place my son was there last month

Semantic representations

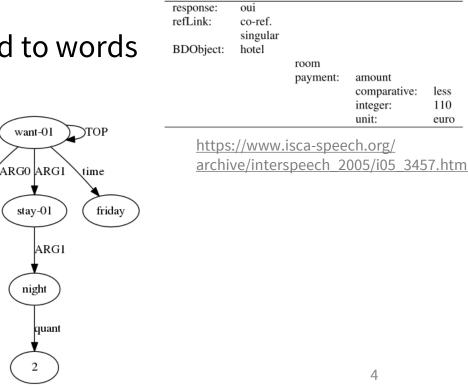
- syntax/semantic **trees**
 - typical for standalone semantic parsing
 - different variations

• frames

- technically also trees, but not directly connected to words
- (mostly older) DSs, some standalone parsers
- graphs (AMR)
 - more of a toy task, but popular
- dialogue acts = intent + slots & values
 - flat no hierarchy
 - most DSs nowadays



oui l'hôtel don't le prix ne dépasse pas cent dix euros



NLU basic approaches

For trees/frames/graphs:

grammar-based parsing

• handwritten/probabilistic grammars & chart parsing algorithms

statistical

- inducing structure using machine learning
- grammar is implicit (training treebanks)

For DAs (shallow parsing):

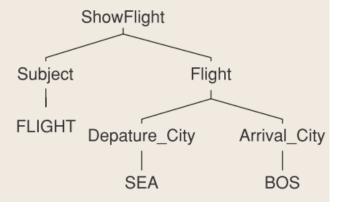
- classification
- sequence labelling

Grammars vs. shallow parsing

Grammars are:

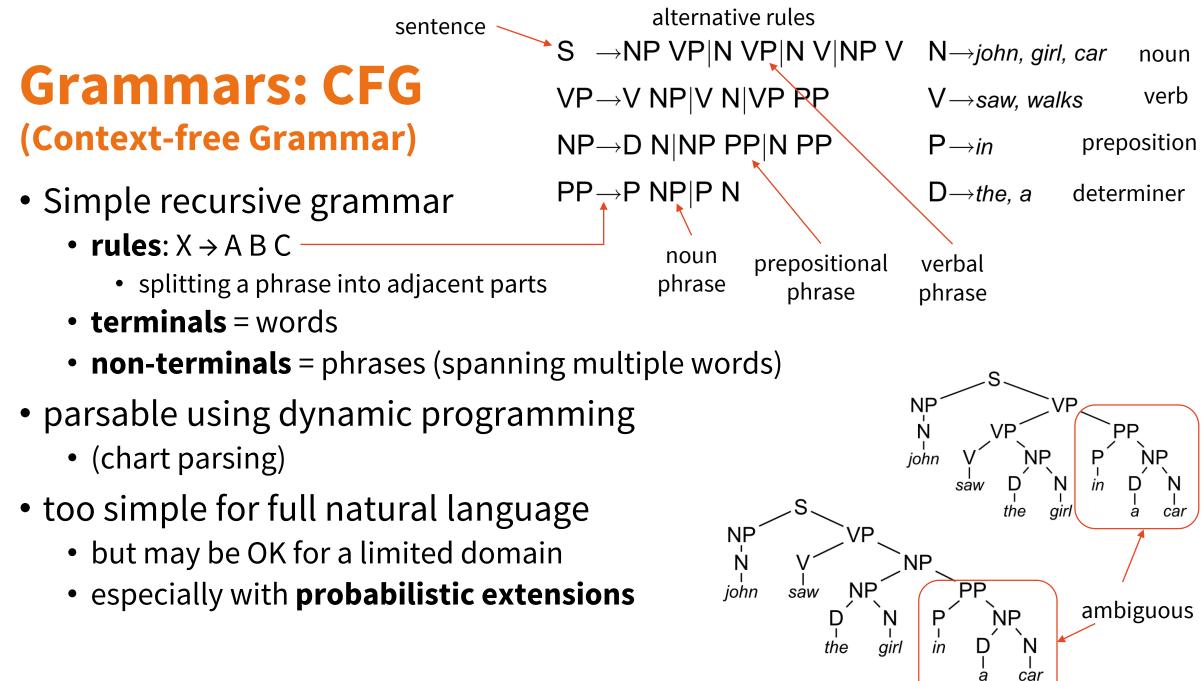
Show me flights from Seattle to Boston

- more expressive
 - hierarchical structure better captures relations
- harder to maintain
 - sparser
 - harder to build rules by hand
 - statistical parsers need more data
 - training data is harder to get
- more hardware-hungry
 - chart parsing: $O(n^3)$, shallow: O(n) for simplest approaches
- more brittle
 - shallow parsing is typically less sensitive to ASR errors, variation, etc.



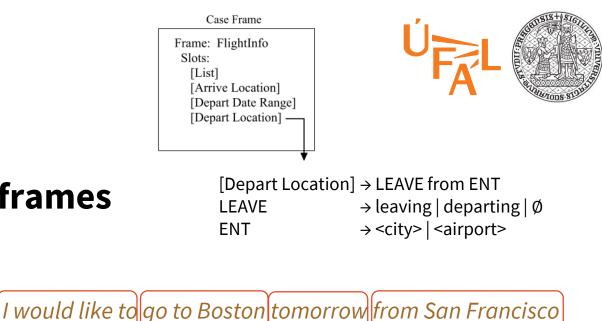
http://ieeexplore.ieee.org/document/1511821/

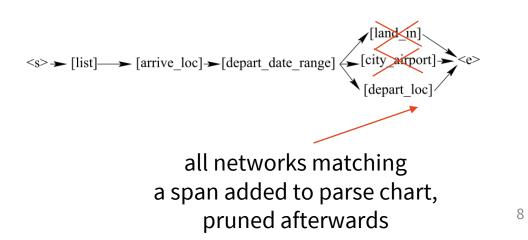
inform(from=SEA, to=BOS)



CFG: Phoenix Parser (ATIS, 90's)

- CFG hierarchy based on **semantic frames**
 - Frames \rightarrow slots / other frames
 - multiple CFGs, one per slot
- Robustness attempts
 - ignore stuff not belonging to any frame
- Chart parsing
 - left to right
 - maximize coverage
 - minimize # of different slots





Grammars: CCG (Combinatory Categorial Grammar)

- Grammar based on lambda calculus
 - syntax-bound semantics: lambda meaning in parallel to syntax phrases
- CCG lambda expressions:
 - logical constant: NYC, BOSTON...
 - variable: *x*, *y*, *z*...
 - literal: city(AUSTIN), located_in(AUSTIN, TEXAS)
 - lambda terms binding variables: λx.city(x) ~ "x is a city"
 - quantifiers ∃ ∀, logical operators ∧ ∨ ¬
- CCG categories: syntax + lambda
 - simple: *NOUN : λx.city(x)*
 - complex: S\NP/NP : λx.f(x) ("sentence missing an NP to the left and right")
- Lexicon: word + syntax + lambda:
 - *city* \vdash *NOUN*: $\lambda x.city(x)$, *is* \vdash *S**NP*/*NP* : $\lambda x.f(x)$

Grammars: CCG

- parsing = combining categories (function application)
 - much fewer operations than CFG
 - >, < function application $B: g + A \setminus B: f \rightarrow A: f(g)$
 - >B, <B function composition $A/B : f + B/C : g \rightarrow A/C : \lambda x.f(g(x))$
 - **<\Phi>** coordination (2 identical categories \rightarrow 1)
 - category change
 - similar algorithms to CFG
 - statistical parsers available

$\frac{\text{I want to go}}{S/N} \\ \lambda f.f$		$\frac{Boston}{NP} \\ BOS \\ \hline OS)$	$\frac{to}{(N \setminus N)/NP} \\ \frac{\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)}{(N \setminus N)} \\ \frac{(N \setminus N)}{\lambda f.\lambda x.f(x) \wedge to(x,N)}$	$\frac{\frac{\text{New York}}{NP}}{\frac{NYC}{}} > $	$\frac{\text{and then}}{CONJ_{[]}}$	$ to \\ \hline (N \setminus N) / NP \\ \lambda y. \lambda f. \lambda x. f(x) \wedge to(x, y) \\ \hline (N \setminus N) \\ \lambda f. \lambda x. f(x) \wedge to(x, C) \\ \hline $	$\frac{\frac{\text{Chicago}}{NP}}{\frac{CHI}{>}}$	
	$ = \frac{\frac{\lambda f.\lambda x.f(x) \wedge from(x, BOS)}{(N \setminus N)} < \mathbf{B}}{\frac{\lambda f.\lambda x.f(x) \wedge from(x, BOS) \wedge to(x, NYC)}{\lambda f.\lambda x_{[]}.f(x) \wedge from(x[1], BOS) \wedge to(x[1], NYC) \wedge before(x[1], x[2]) \wedge to(x[2], CHI)} < \Phi > $							
	$\lambda x_{[]}$.	>						
	Xa[].j/on($S) \wedge to(x[1], NY\bar{C}) \wedge before$	~~~[*], w[#]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	http://aclwe	<u>b.org/anth</u>	ology/D11-1039

CCG	is	fun					
$\overline{\begin{array}{c} NP \\ CCG \end{array}}$	$\frac{S\backslash NP/ADJ}{\lambda f.\lambda x.f(x)}$	$\overline{ADJ}\\\lambda x.fun(x)$					
$\frac{\text{CCG}}{NP}_{CCG}$	is $S \setminus NP/ADJ \ \lambda f. \lambda x. f(x)$	$ fun ADJ \lambda x.fun(x) $					
	$S \ NP \\ \lambda x. fun(x)$						
CCG	is	fun					
$NP \\ CCG$	$\overline{S\backslash NP/ADJ}_{\lambda f.\lambda x.f(x)}$	$\overline{ADJ}_{\lambda x.fun(x)}$					
	$S \ NP \\ \lambda x. fun(x) $						
	S fun(CCG)						

10

https://yoavartzi.com/tutorial/

NLU as classification

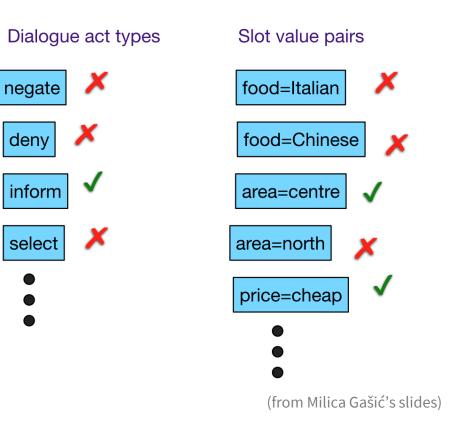
- using DAs treating them as a set of semantic concepts
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept
- consistency problems
 - no conflicting intents (e.g. *affirm* + *negate*)
 - no conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 - need to be solved externally, e.g. based on classifier confidence

NLU as classification

- classification: features → labels (classes)
 - here: classes are **binary** (-1/1 or 0/1)
 - one classifier per concept
- features
 - binary is X present?
 or count how many X's are present?
 - words
 - n-grams
 - word pairs/triples (position-independent)
 - regex
 - presence of named entities

I'm looking for something cheap in the city centre.

Classes:



NER + delexicalization

Approach:

- 1) identify slot values/named entities
- 2) delexicalize = replace them with placeholders (indicating entity type)
 - or add the NE tags as more features for classification
- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers
- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - added gazetteers with in-domain names
 - in-domain gazetteers alone may be enough
- NE supplemented by NE linking/disambiguation (usually not needed in DS) NPFL123 L6 2019

What is the phone number for Golden Dragon? What is the phone number for <restaurant-name>?

I'm looking for a Japanese restaurant in Notting Hill. I'm looking for a <food> restaurant in <area>.

NLU Classifiers

• note that data is usually scarce!

handcrafted / rules

- simple mapping: word/n-gram/regex match → concept
- can work really well for a limited domain
- no training data, no retraining needed (tweaking on the go)

logistic regression

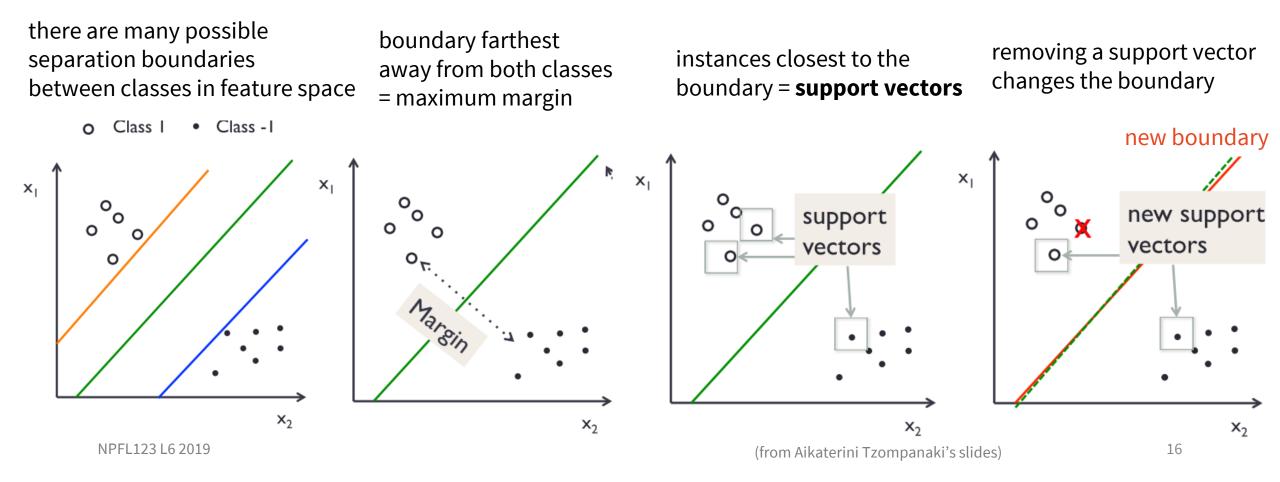
- **SVM** (support vector machine)
- neural nets
 - different, "automatic" features (embeddings, see later)
 - only applicable if a lot of data is available

Logistic Regression binary, for $y \in \{-1, +1\}$ (Maximum Entropy Classifier) $p(\mathbf{y}|\mathbf{x}) = \operatorname{sigmoid}(-y(\mathbf{\theta} \cdot \mathbf{x})) = \frac{1}{1 + \exp(-y(\mathbf{\theta} \cdot \mathbf{x}))}$ $p(y|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\mathbf{\theta} \cdot \mathbf{f}(\mathbf{x}, y))$ equivalent form - maximum entropy style (works for **multiclass**, too!) generalization: **feature functions** vector normalization (some fire for each value of y)

- despite the name, it's a classifier
- very basic, but powerful with the right features
- trained by gradient descent (logistic/cross entropy loss)
- maximum entropy estimate ("most uniform model given data")

Support-Vector Machines (SVMs)

- separate classes with **maximum margin** (=best generalization)
- decision boundary defined by support vectors (closest instances)



SVMs

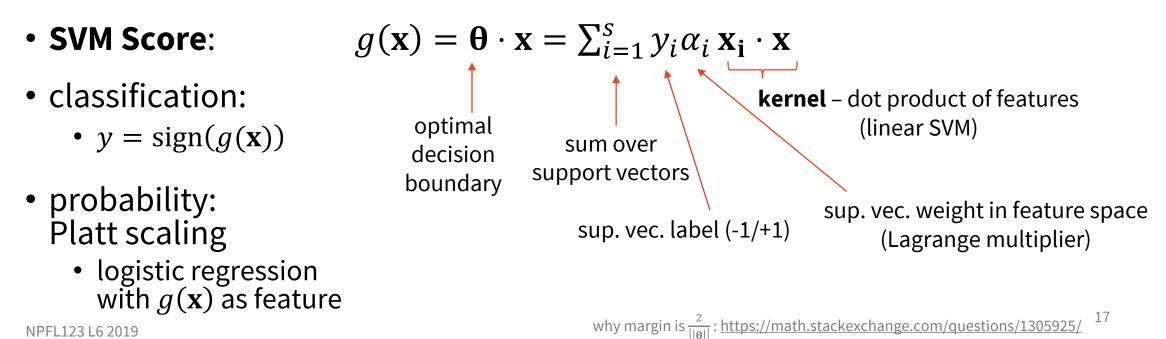
- Decision boundary: $\mathbf{\theta} \cdot \mathbf{x}^{bound} = 0$
- $\mathbf{\Theta} \cdot \mathbf{x}^{\mathrm{sv}} = y^{\mathrm{sv}} \ (y^{\mathrm{sv}} \in \{-1, +1\})$ • Support vectors:
- $\max \frac{2}{||\boldsymbol{\theta}||} \sim \min \frac{1}{2} ||\boldsymbol{\theta}||^2$ with correct classification • Maximum margin:

margin width

 X_1

 X_2

constrained optimization – quadratic programming (Lagrange multipliers)

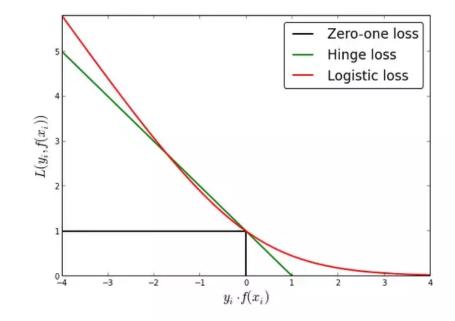


NPFL123 L6 2019

SVM vs. Logistic Regression

- **soft-margin SVM** for non-separable cases
 - non-separable = no perfect decision boundary
 - "soft" = weighing correct classification (hinge loss) & margin size

• model:
$$\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \max\{0, 1 - y_i \boldsymbol{\theta} \cdot \mathbf{x}_i\}$$



regularization

weight

- regularized logistic regression for better generalization
 - preventing overfitting to training data trying to keep parameter values low
 - logistic loss
 - model: $\min_{\boldsymbol{\theta}} \lambda ||\boldsymbol{\theta}||^2 + \sum_i \log(1 + \exp(1 y_i \boldsymbol{\theta} \cdot \mathbf{x}_i))$
- the main difference is the loss
 - hinge loss should be marginally better for classification, but it depends

NPFL123 L6 2019

18

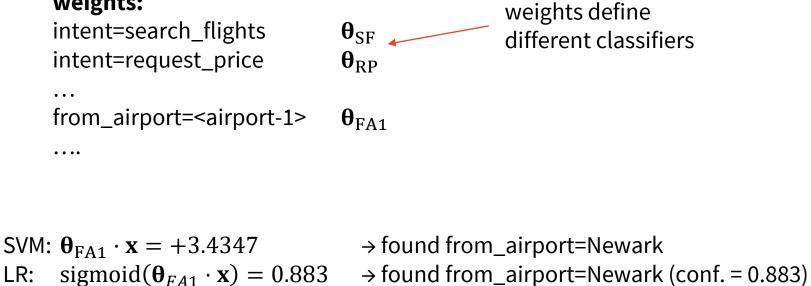
Classification example

features (x)

I	1
want	1
to	3
go	1
from	2
<airport-1></airport-1>	1
•••	
him	0
price	0
tell	0
•••	
l want	1
want to	1
to go	1
••••	
from <airport-1></airport-1>	1

ASR: I want to go from from Newark to London City next Friday I want to go from from <airport-1> to <airport-2> next <day-1> Delex:

weights:



NPFL123 L6 2019

Slot filling as sequence tagging

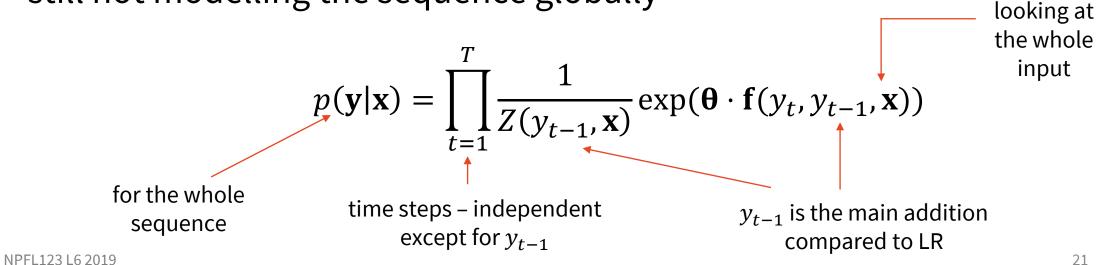
- get slot values directly "automatic" delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach
- rules + classifiers kinda still work
 - a) keywords/regexes found at specific position
 - b) apply classifier to each word in the sentence left-to-right
 - problem: overall consistency
 - slots found elsewhere in the sentence might influence what's classified now
- solution: structured/sequence prediction

I need a flight from Boston to New York tomorrow**OOOOB-dept O B-arr I-arr B-date**

20

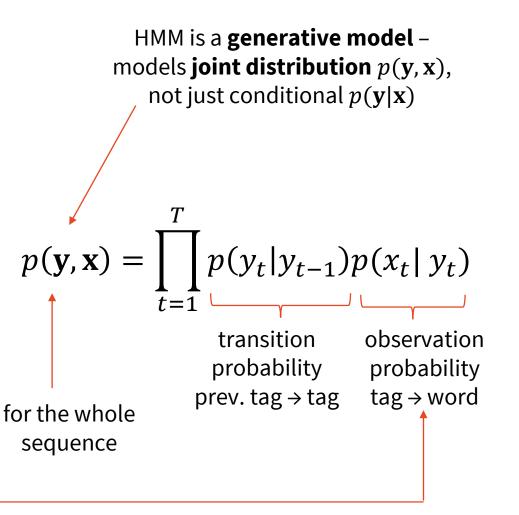
Maximum Entropy Markov Model (MEMM

- Looking at past classifications when making next ones
 - LR + a simple addition to the feature set
- Whole history would be too sparse/complex → Markov assumption: only the most recent matters
 - 1^{st} order MM: just the last one (\leftarrow this is what we show here)
 - *n*th order MM: *n* most recent ones
- still not modelling the sequence globally



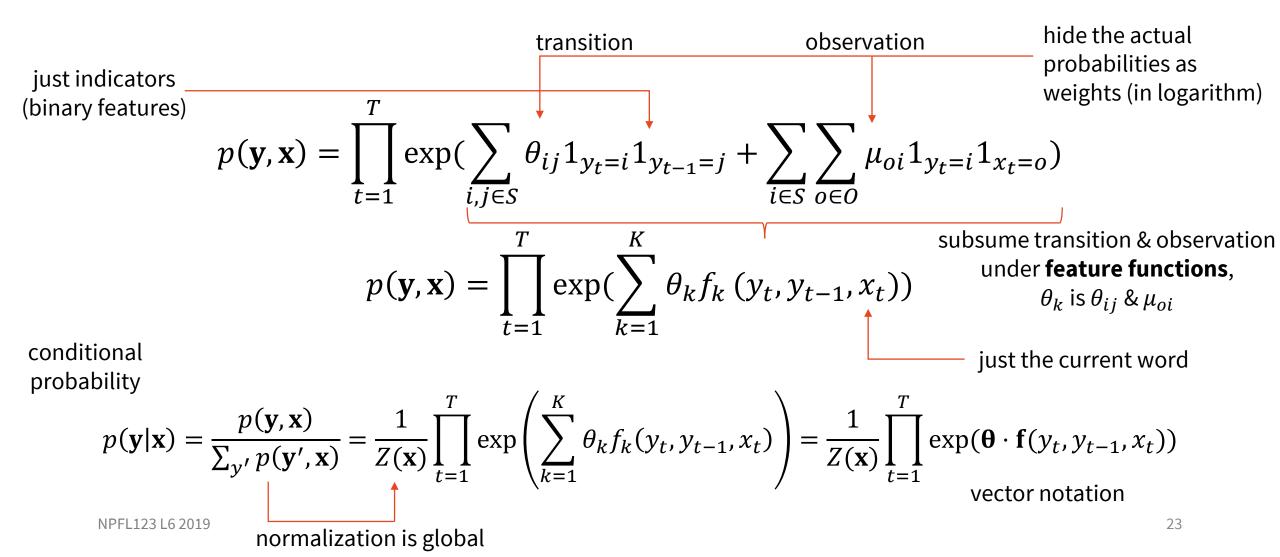
Hidden Markov Model (HMM)

- Modelling the **sequence as a whole**
- Very basic model:
 - "tag depends on word + previous tag"
- Markov assumption, again
- "Hidden" reverse viewpoint:
 - "tags are hidden, but they influence the words on the surface"
- Inference Viterbi algorithm
 - we can get the **globally best tagging**



Hidden Markov Model

• Rewrite so it looks more like MEMM + get conditional probability



HMM vs. MEMM

- MEMM:
 - any feature functions, as in LR
 - local normalization does not model whole sequences, just locally
 - label bias problem
 - training: you know the correct labels
 - inference: one error can lead to a series of errors
- HMM:
 - global normalization for $p(\mathbf{y}|\mathbf{x})$ over all $\mathbf{y}'s$
 - modelling sequences as a whole
 - **very** boring & limited feature functions
- how about best of both?

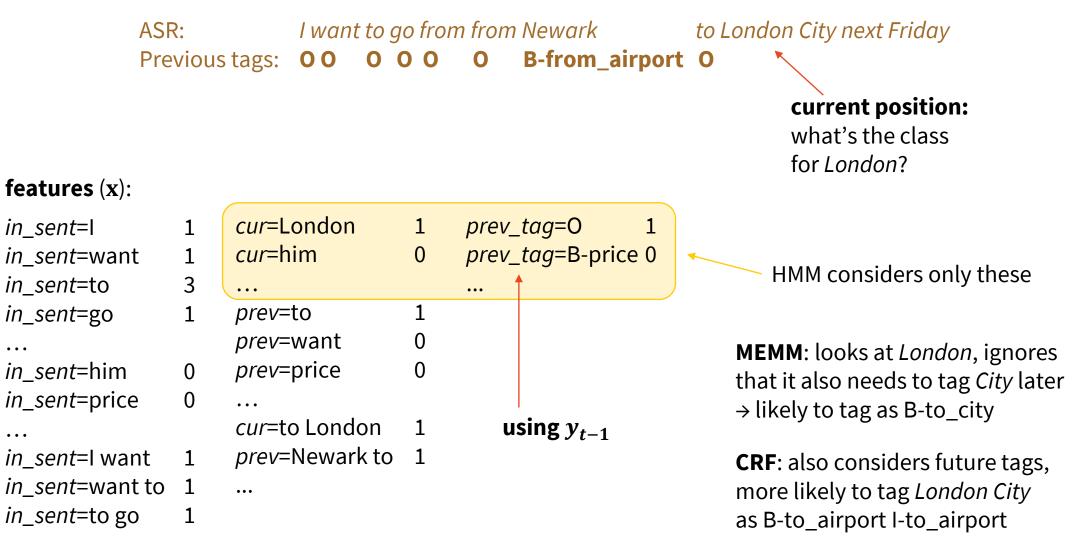
Linear-Chain Conditional Random Field (CRF)

- HMM + more complex feature functions
- MEMM + global sequence modelling

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp(\mathbf{\theta} \cdot \mathbf{f}(y_t, y_{t-1}, \mathbf{x}))$$
feature functions
looking at whole input
global normalization
(otherwise like MEMM)

- state-of-the art for many sequence tagging tasks (incl. NLU)
 - until NNs took over
 - used also in conjunction with NNs
- global normalization makes it slow to train

Sequence tagging example



. . .

. . .

Handling ASR noise

- ASR produces multiple hypotheses
- Combine & get resulting NLU hypotheses
 - NLU: p(DA|text)
 - ASR: *p*(text|audio)
 - we want p(DA|audio)
- Easiest: **sum it up**

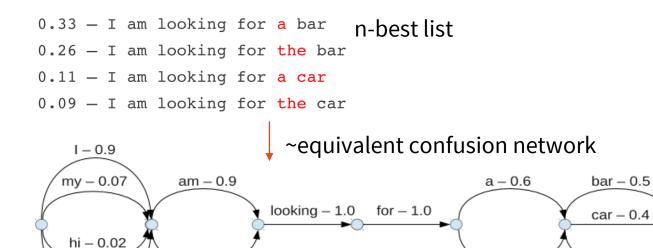
$$p(DA|audio) = \sum_{texts} P(DA|text)P(text|audio)$$

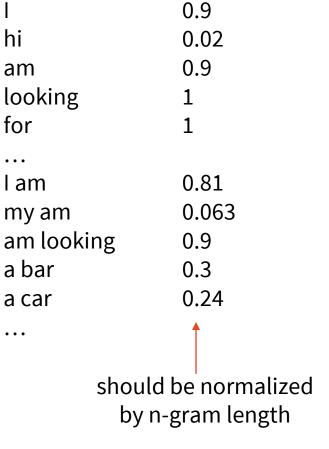
0.33 - I am looking for a bar 0.26 - I am looking for the bar 0.11 - I am looking for a car 0.09 - I am looking for the car 0.59 - inform(task=find, venue=bar) 0.20 - null()

(from Filip Jurčíček's slides)

Handling ASR noise

- Alternative: use confusion networks
 - per-word ASR confidence
- Word features weighed by word confidence





features:

 $\epsilon - 0.01$

 $\epsilon - 0.1$

 $\epsilon - 0.1$

the - 0.4

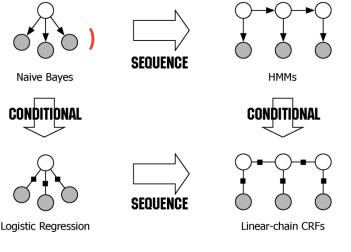
Context

- user response can depend on last system action
 - fragments/short replies are ambiguous without context
- → add last system DA/text into input features
 - helps disambiguate
- careful user may not play nice!
 - system needs to be trained with both alternatives in mind

x U: Actually I'd rather fly from Newark.

Summary

- NLU can be tricky
 - bad grammar, fragments, synonymy, ASR errors ...
- Grammars, frames, graph representation
 - rule-based or statistical structure induction
 - more expressive, but harder not so much in limited-domain systems
- Shallow parsing
 - dialogue acts: intent + slots & labels
 - rules keyword spotting, regex
 - classification (LR, SVM)
 - sequence tagging (MEMM, HMM, CRF)
- Next time: neural NLU & dialogue state tracking



Labs tomorrow

9:00 SU1

Contact me:

odusek@ufal.mff.cuni.cz room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Raymond Mooney's slides (University of Texas Austin): <u>https://www.cs.utexas.edu/~mooney/ir-course/</u>
- Filip Jurčíček's slides (Charles University): <u>https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/</u>
- Hao Fang's slides (University of Washington): <u>https://hao-fang.github.io/ee596_spr2018/syllabus.html</u>
- Aikaterini Tzompanaki's slides (University of Cergy-Pontoise): <u>https://perso-etis.ensea.fr/tzompanaki/teaching.html</u>
- Pierre Lison's slides (University of Oslo): <u>https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/</u>
- Sutton & McCallum Introduction to Conditional Random Fields: <u>https://arxiv.org/abs/1011.4088</u>
- Andrew McCallum's slides (U. of Massatchusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/