

Dialogue Systems NPFL123 Dialogové systémy

4. Smart Assistants & Question Answering + a little machine learning recap

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

12.3.2019

Virtual Assistants

(voice/smart/conversational assistants)

"Definition": voice-operated **software** (dialogue system) capable of **answering questions**, **performing tasks** & basic dialogue in **multiple domains**

- Apple Siri (2011) –question answering & iOS functions
- Now every major IT company has them
 - Microsoft Cortana (2014)
 - Amazon Alexa (2014)
 - Google Assistant (2016)
 - Samsung Bixby (2017)
 - Mycroft (open-source, 2018)
 - Clova (Naver, 2017) Korean & Japanese
 - Alice (Yandex, 2017) Russian
 - DuerOS (Baidu, 2017), AliGenie (Alibaba, 2017) Chinese

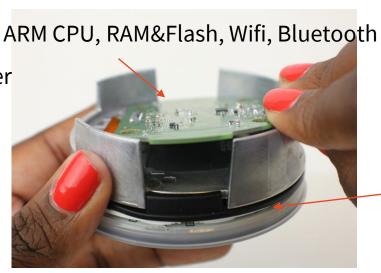


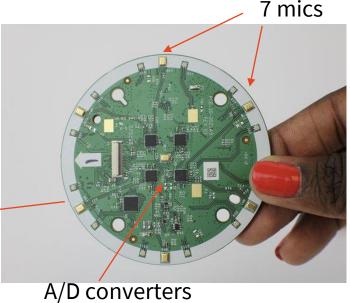
Smart Speakers

- Internet-connected mic & speaker with a virtual assistant running
 - optionally video (display/camera)
 - ~ same functionality as virtual assistants in phones/computers
 - Amazon Echo (Alexa), Google Home (Assistant), Apple HomePod (Siri) [...]
- Main point: multiple microphones far-field ASR

Speaker

Amazon Echo Dot 2nd Generation





Capabilities

- Out of the box:
 - Question answering
 - Web search
 - News & Weather
 - Scheduling
 - Navigation
 - Local information
 - Shopping
 - Media playback
 - Home automation
- a lot of it through 3rd party APIs
- the domains are well connected

https://www.lifehacker.com.au/2018/02/specs-showdown-google-home-vs-amazon-echo-vs-apple-homepod/

Demos

Raven H (powered by DuerOS, Baidu)

https://www.youtube.com/watch?v=iqMjTNjFIMk

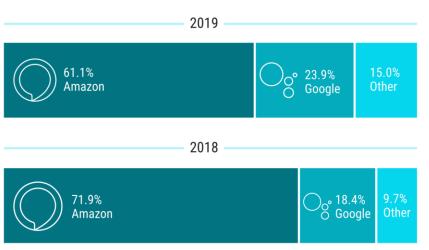
Google Assistant

https://www.youtube.com/watch?v=JONGt32mfRY

NPFL123 L1 2019

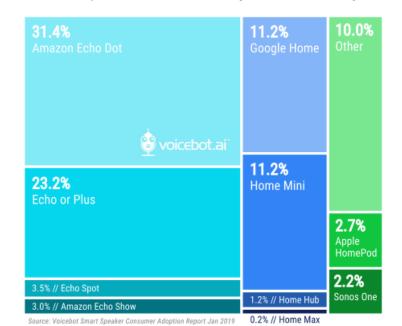
Smart Speaker Adoption

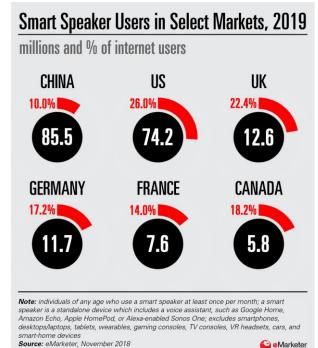
- >26% US adults have a smart speaker
 - 40% yearly growth in 2018
 - this is very different across the globe
- Amazon leads in the US, Google on the rise



Source: Voicebot Smart Speaker Consumer Adoption Report Jan 2019

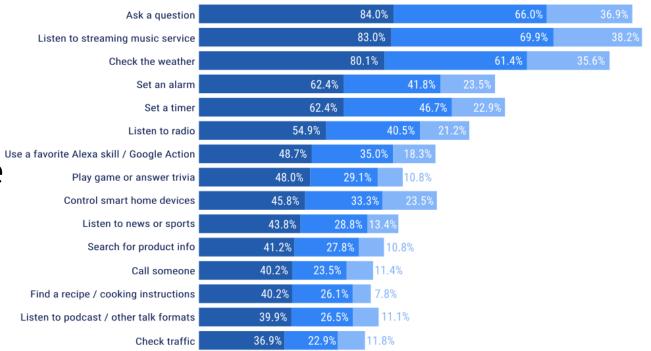
U.S. Smart Speaker Market Share by Device - January 2019





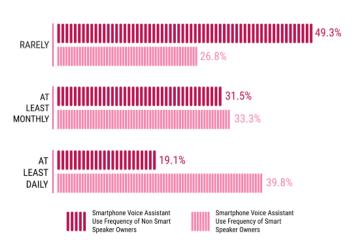
Smart Speaker Adoption

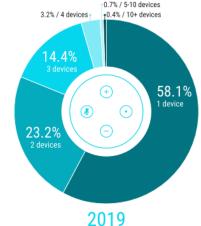
- People really use them
 - early adopters more intensively
 - correlated with phone assistant usage
- Many people have more than one



11.4%

Smart Speaker Use Case Frequency January 2019





Per Household - U.S.

31.7%

Access my calendar

EVER TRIED

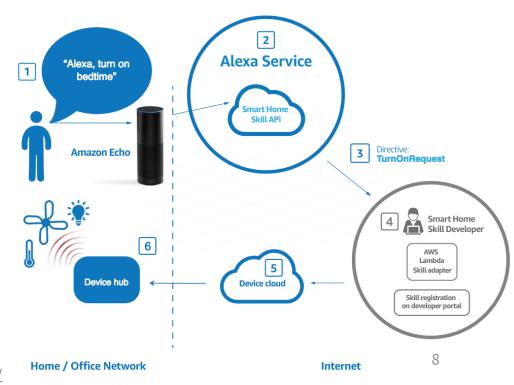
MONTHLY

How they work

- Device listens for wake word
 - after the wake word, everything is processed in vendor's cloud service
 - raw audio is sent to vendor
 - follow-up mode no wake word needed for follow-up questions (device listens for 5-10sec after replying)

https://developer.amazon.com/blogs/post/Tx38PSX7O9YKIK1

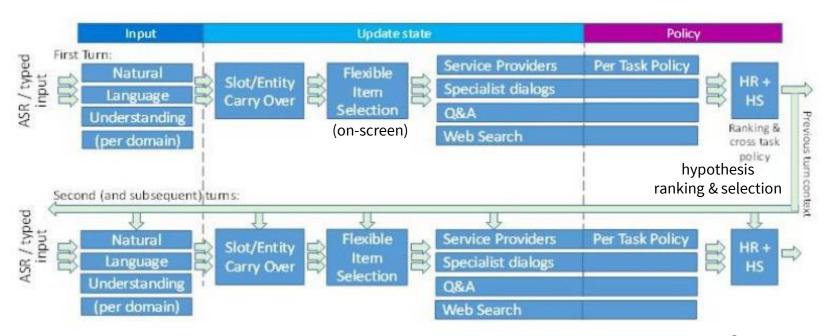
- privacy concerns
- Intents designed for each domain
 - NLU trained on examples
 - DM + NLG handcrafted
 - extensible by 3rd parties (Skills/Apps)
- No incremental processing



How they work

- NLU includes domain detection
 - "web" domain as fallback
- Multiple NLU analyses (ambiguous domain), resolved in context
- State tracker & coreference
 - Rules on top of machine learning
 - All per-domain

Cortana structure



Why they are cool

- ASR actually impressive
 - NLU often compensates for problems
- Range of tasks is wide & useful
- 1st really large-scale dialogue system deployment ever
 - not just a novelty
 - actually boosts voice usage in other areas (phone, car etc.)

Assistants & Accents https://youtu.be/gNx0huL9qsQ?t=41

- Still handcrafted to a large part
 - conversational architects are a thing now
- Not very dialogue-y
 - mostly just one turn, rarely more than a few
- Language limitations
 - only available in a few major languages (En, Zh, Jp, De, Es, Fr, Kr [...])
- ASR still struggling sometimes
 - noise + accents + kids
 - not that far-field
 - helped *a lot* by NLU / domain knowledge

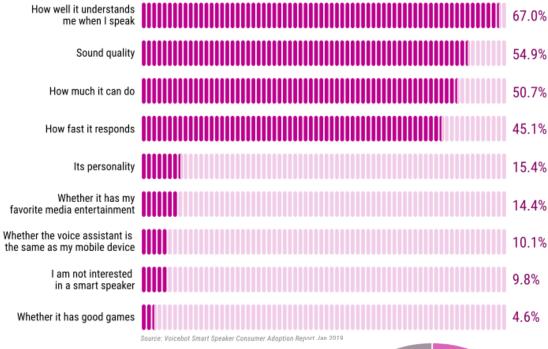
https://youtu.be/CYvFxs32zvQ?t=65

Adding Skills/Apps

- Additional functionality by 3rd party developers
 - API/IDEs provided by vendors see next time!
 - enabled on demand (similar to installing phone apps)
- Not 1st-class citizens
 - need to be invoked specially
 - Alexa, tell Pizza Hut to place an order
 - Alexa, ask Uber to get me a car
- There's thousands of them
 - many companies have a skill
 - many specific inventions
 - finance, fitness, food, games & trivia ...
 - much less used than the default ones

What people care about in smart speakers

- Understanding, features, speed
 - personality / dialogue not so much
 - 3rd party apps not so popular (should work out-of-the-box)
 - commerce not so popular, but growing
- QA: music, news, movies
- Privacy concerns don't stop people from buying/using smart speakers
 - privacy-conscious 16% less likely to own one



U.S. Consumer Perception of Smart Speaker Privacy Risk

Question answering

- integral & important part of assistants
 - broadest domain available, apart from web search
- QA vs. web search
 - QA needs a specific, unambiguous answer, typically a (named) entity
 - person, object, location [...]
 - ~ factoid questions
 - Needs to be within inference capabilities of the system

Who is the president of Germany? How high is the Empire State Building?

X

Who is the best rapper?
Who will become the next U.S. president?
How much faster is a cheetah than an elephant?

Web search

- Given query, find best-matching documents
 - Over unstructured/semi-structured data (e.g. HTML)
- Basic search
 - Candidates: find matching word occurrences in index
 - Reranking: many features
 - Location of words (body, title, links)
 - Frequency of words (TF-IDF)
 - Word proximity
 - PageRank weighing links to documents/webpages (how many, from where)
 - 2nd level: personalized reranking
- Query reformulation & suggestion

QA approaches

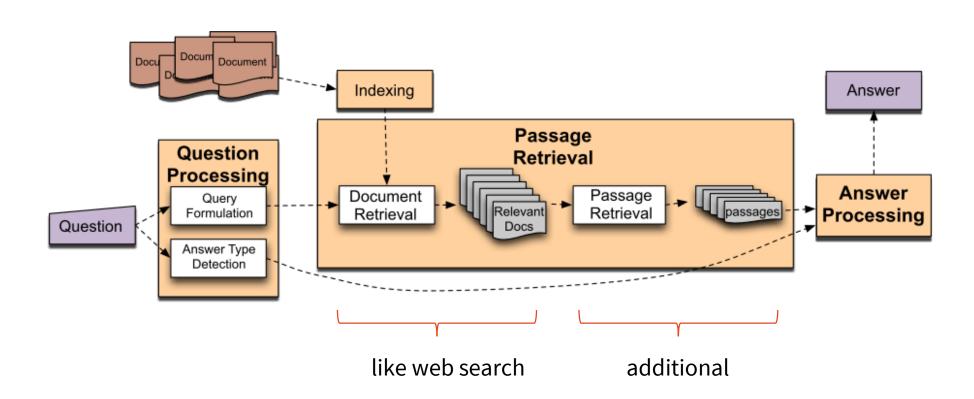
Information Retrieval

- Basically improved web search
- IR + phrase extraction
 - getting not just relevant documents, but specific phrases within them

Knowledge Graphs

- KGs storage of structured information
- 1) Semantic parsing of the query
- 2) Mapping to KG(s)
- Hybrid (IBM Watson)
 - candidates from IR
 - reranking using KGs/semantic information

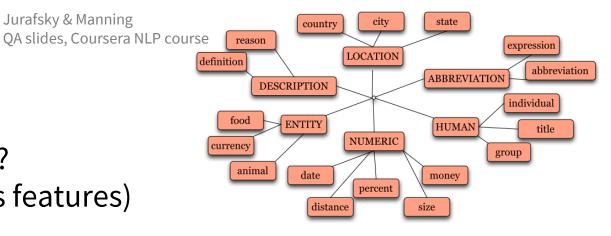
IR-based QA Pipeline



from Jurafsky & Manning QA slides, Coursera NLP course

Question Processing

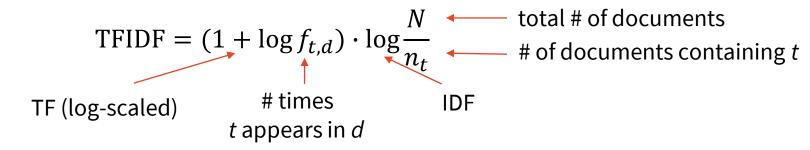
- Answer type detection
 - what kind of entity are we looking for?
 - rules / machine learning (with rules as features)
 - rules: regexes
 - headword = word right after wh-word
- Named entity recognition
- IR Query formulation keyword selection
 - ignore stop words (the, a, in)
 - prioritize important words (named entities)
 - stemming (remove inflection)
- Question type classification definition, math...
- Focus detection question words to replace with answer
- **Relation extraction** relations between entities in question
 - more for KGs, but can be used for ranking here



Who is the [...] <u>composer/football player</u> [...] Which <u>city</u> is the largest [...]

IR Document Retrieval

- Candidates find matching words in index (same as web search)
- Weighting
 - Frequency: TF-IDF (term frequency-inverse document frequency)
 - TF document more relevant if term is frequent in it
 - IDF document more relevant if term only appears in few other documents



- this is just one of many variants
- Other metrics BM25 more advanced smoothing, heeds document length
- Proximity: also using n-grams in place of words

IR Passage Retrieval

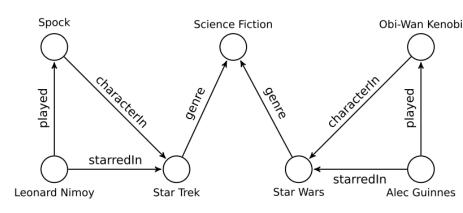
- Passage **segmentation** split document into ~paragraphs
 - anything short enough will do
- Passage ranking typically machine learning based on:
 - named entities & their type (matching answer type?)
 - # query words contained
 - query words proximity
 - rank of the document containing passage

IR Answer Extraction

- NER on passages looking for the right answer type
- 1 entity found → done
- More entities present → needs **another ranking**, based on:
 - answer type match
 - distance from query keywords in passage
 - novelty factor not contained in query
 - position in sentence
 - semantic parse / relation
 - passage source rank/reliability

Knowledge Graphs

- Large repositories of structured, linked information
 - entities (nodes) + relations (edges)
 - typed (for both)
 - entity/relation types form an ontology (itself a similar graph)
- Open KGs (millions of entities, billions of relations)
 - Freebase (freely editable, many sources, bought by Google & shut down)
 - DBPedia (based on Wikipedia)
 - Wikidata (part of Wikipedia project, freely editable)
 - Yago (Wikipedia + WordNet + GeoNames)
 - NELL (learning from raw texts)
- Commercial KGs: Google KG, Microsoft Satori, Facebook Entity Graph
 - domain specific: Amazon products, Domino's pizza [...]



from Jens Lehman's QA keynote

RDF Representation

- RDF = Resource Description Framework
 - Most popular KG representation
 - Wikidata different format but accessible as RDF
- Triples: <subject, predicate, object>
 - predicate = relation
 - subject, object = entities
 - can also include relation confidence (if extracted automatically)
- Entities & relations typically represented by URI (not always)
 - objects can also be constants (string, number)

subject: Leonard Nimoy

predicate: played object: Spock [confidence: 0.993]

SPARQL

- Query language over RDF databases
 - relatively efficient
 - can query multiple connected triples (via ?variables)
- can be used directly
 - if you know the domain/application
- QA need to map user question to this
 - or use IR-based methods instead

Wikidata: largest cities with female mayors

https://query.wikidata.org/

```
SELECT DISTINCT ?city ?cityLabel ?mayor ?mayorLabel
WHERE
  BIND (wd: Q6581072 AS ?sex)
  BIND (wd: 0515 AS ?c)
    ?city wdt:P31/wdt:P279* ?c . # find instances of subclasses of city
    ?city p:P6 ?statement .
                                       # with a P6 (head of government) statement
    ?statement ps:P6 ?mayor .
                                       # ... that has the value ?mayor
                                # ... where the ?mayor has P21 (sex or gender) female
    ?mayor wdt:P21 ?sex .
    FILTER NOT EXISTS { ?statement pq:P582 ?x } # ... but the statement has no P582 (end date) qualifier
    # Now select the population value of the ?city
    # (wdt: properties use only statements of "preferred" rank if any, usually meaning "current population")
    ?city wdt:P1082 ?population .
    # Optionally, find English labels for city and mayor:
    SERVICE wikibase: label {
        bd:serviceParam wikibase:language "[AUTO LANGUAGE], en" .
ORDER BY DESC(?population)
LIMIT 10
```


25

KG Retrieval

How fast do jaguars run? What is a top speed of a jaguar?

- Problem: synonymy many ways to ask the same question
 - RDF relations have a specific surface form (not just wd:1234)
 - needs normalization/lexical mapping/usage of synonyms
 - WordNet expansion
 - stemming/lemmatization
 - multiple labels for entities/relations
 - string similarity/word embeddings
- Problem: ambiguity

How fast is a Jaguar [I-Pace]?

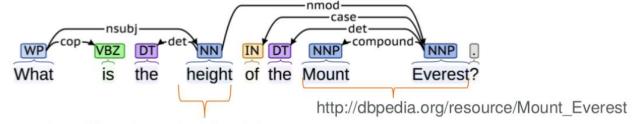
- needs entity/relation disambiguation/grounding/linking (to KG-compatible URIs)
- context used to disambiguate (neighbour words, syntax, parts-of-speech)
- KG itself used closest/semantically related entities

NPFL123 L1 2019

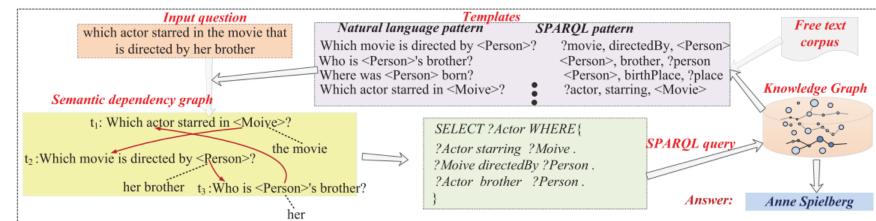
from Jens Lehman's QA keynote

KG Retrieval

- Semantic parsing can be used for query normalization
- Dependencies help decompose complex questions
 - Doesn't have to be syntactic dependencies
 - Template mapping: map simple question patterns that have SPARQL equivalents



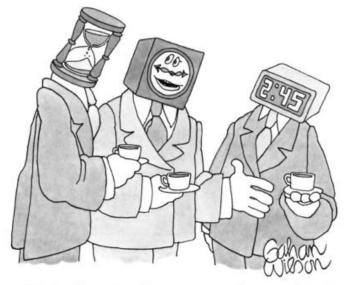
http://dbpedia.org/ontology/elevation



Zheng et al., VLDB 2018 http://www.vldb.org/pvldb/ vol11/p1373-zheng.pdf

KG Maintenance

- Information needs to be up-to-date
- Deduplication
- Ontology changes
 - need to version ontologies (and data)
 (for new/split/merged entity & relation types)
- Integrating multiple KGs
 - larger world knowledge coverage
 - company suppliers, mergers
 - → ontology bridging/mapping needed



"Basically, we're all trying to say the same thing." http://dit.unitn.it/~accord/RelatedWork/Matching/Noy-MappingAlignment-SSSW-05.pdf

from Alex Marin's KG QA slides

Ontology mapping

- Mismatch types
 - different labels (easiest)
 - same term, different thing & vice-versa
 - different modelling approaches (e.g. subclass or property?)
 - different granularity (more/less subclasses)
- Mappings
 - handcrafted (best results, but expensive)
 - rule-based map into a common ontology
 - string distances, WordNet
 - graph-based compare ontology structure
 - machine learning

Machine Learning (Grossly Oversimplified)

ML is basically function approximation

- function: data (**features**) → **labels**
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)
- **training/learning** = adjusting function parameters to minimize error

statistics

Artificial intelligence

Machine Learning

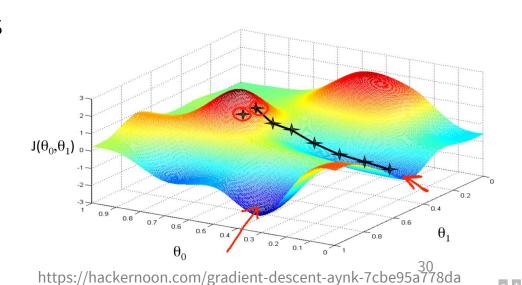
https://towardsdatascience.com/ no-machine-learning-is-not-just-glorifiedstatistics-26d3952234e3

- **supervised** learning = based on data + labels given in advance
- reinforcement learning = based on exploration & rewards given online

NPFL123 L1 2019

Machine Learning (Grossly Oversimplified)

- training- gradient descent methods
 - minimizing a cost function
 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast do we go (needs to be tuned)
- gradient typically computed over **mini-batches**
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not so slow as computing over whole data
 - stochastic gradient descent
 - improvements: AdaGrad, Adam [...]
 - cleverly adjusting the learning rate



Summary

- Virtual assistants/smart speakers are booming
 - large variety of tasks, interconnected
 - impressive ASR
 - typically handcrafted dialogue policy, NLG
- Question answering factoids
 - a large part of assistants' appeal, useful if integrated with tasks
 - IR approaches: word-based document retrieval, passage extraction, ranking
 - KG approach: semantic parsing & mapping to SPARQL queries
- Machine learning
 - finding the right function parameters by following cost function gradients
 - have a look at http://jalammar.github.io/visual-interactive-guide-basics-neural-networks/

Thanks

Contact me:

odusek@ufal.mff.cuni.cz room 424 (but email me first)

Get the slides here:

http://ufal.cz/npfl123

References/Further:

- Dan Jurafsky & Chris Manning's slides at Stanford/Coursera: https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
- Alex Marin's slides at Uni Washington: https://hao-fang.github.io/ee596 spr2018/
- Anton Leuski's slides at UCSC: http://projects.ict.usc.edu/nld/cs599s13/
- VoiceBot smart speaker report: https://voicebot.ai/smart-speaker-consumer-adoption-report-2019/
- Wikipedia pages of the individual KGs, assistants + <u>Smart_speaker</u>, <u>Okapi_BM25</u>, <u>TF-IDF</u>

Labs tomorrow 9:00 SU1