Sequence-to-Sequence Natural Language Generation

Ondřej Dušek

work done with Filip Jurčíček at Charles University in Prague

November 15, 2016 Interaction Lab meeting

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

1. Introduction to the problem

• our task + problems we are solving

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ④ ● ●

- 1. Introduction to the problem
 - our task + problems we are solving
- 2. Sequence-to-sequence generation
 - a) model architecture
 - b) experiments on the BAGEL set

- 1. Introduction to the problem
 - our task + problems we are solving
- 2. Sequence-to-sequence generation
 - a) model architecture
 - b) experiments on the BAGEL set
- 3. Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset

同ト イヨト イヨト ヨヨ わらつ

- 1. Introduction to the problem
 - our task + problems we are solving
- 2. Sequence-to-sequence generation
 - a) model architecture
 - b) experiments on the BAGEL set
- 3. Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset
- 4. Future work ideas

同ト イヨト イヨト ヨヨ わらつ

NLG in Spoken Dialogue Systems

 converting a meaning representation (dialogue acts, DAs) to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside) ↓ X is an Italian restaurant near the river.

NLG in Spoken Dialogue Systems

 converting a meaning representation (dialogue acts, DAs) to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside) ↓ X is an Italian restaurant near the river.

· no content selection here

NLG in Spoken Dialogue Systems

 converting a meaning representation (dialogue acts, DAs) to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside) ↓ X is an Italian restaurant near the river.

- no content selection here
- input: from dialogue manager
- output: to TTS

> < E > < E > E E < QQ

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area .

text

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ や へ ()

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly
 - no error acummulation / manual annotation
 - alignment is latent (needs not be hard/1:1)

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area .

text

同ト イヨト イヨト ヨヨ わらつ

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly
 - no error acummulation / manual annotation
 - alignment is latent (needs not be hard/1:1)

inform(name=X-name, type=placetoeat, **area=centre**, eattype=restaurant, near=X-near) The X restaurant is **conveniently** located near X, **right in the city center**.

inform(name=X-name, type=placetoeat, foodtype=Chinese_takeaway) X serves Chinese food and has a takeaway possibility.

inform(name=X-name, type=placetoeat, pricerange=cheap) Prices at X are quite cheap.

· · _ · · _ ▶ 필⊨ - ⁄ 오 야

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax

how bout the next ride

Sorry, I did not find a later option. I'm sorry, <u>the next ride</u> was not found.

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation
- typical NLG only takes the input DA into account

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
 - no output variance (must be fabricated, e.g., by sampling)

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
 - no output variance (must be fabricated, e.g., by sampling)
- entrainment in NLG limited to rule-based systems so far

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success
- natural source of variation
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
 - no output variance (must be fabricated, e.g., by sampling)
- entrainment in NLG limited to rule-based systems so far
- our system is trainable and entrains/adapts

> < E > < E > E E < QQ

· based on sequence-to-sequence neural network models

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● 今 ○ ○

- based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences

- · based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences
- ✓ context-aware: adapts to previous user utterance

- · based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences
- ✓ context-aware: adapts to previous user utterance
- ✓ two operating modes:
 - a) generating sentences token-by-token (joint 1-step NLG)

- · based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences
- ✓ context-aware: adapts to previous user utterance
- ✓ two operating modes:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)

> < E > < E > E E < QQ

- · based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences
- ✓ context-aware: adapts to previous user utterance
- ✓ two operating modes:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
 - we can compare both approaches in a single architecture

- · based on sequence-to-sequence neural network models
- ✓ trainable from unaligned pairs of input DAs + sentences
- ✓ context-aware: adapts to previous user utterance
- ✓ two operating modes:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
 - we can compare both approaches in a single architecture
- ✓ learns to produce meaningful outputs from very little training data

同ト イヨト イヨト ヨヨ わらつ

Sequence-to-sequence models with attention

inform name X-name inform eattype restaurant

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens

ELE NOR

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation
 - + beam search, *n*-best list outputs

ヨト イヨト ヨヨ のへつ

- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation
 - + beam search, *n*-best list outputs
 - + reranker (\rightarrow)
- generator may not cover the input DA perfectly
 - missing / superfluous information

4 日 × モ × モ × 王 = 9 4 0 4 0 4

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases
- check whether output conforms to the input DA + rerank

E DQA

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases
- check whether output conforms to the input DA + rerank
 - NN with LSTM encoder + sigmoid classification layer

A = A = A = A = A = A = A

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases
- check whether output conforms to the input DA + rerank
 - NN with LSTM encoder + sigmoid classification layer

1-hot DA representation

ELE NOR

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases
- check whether output conforms to the input DA + rerank
 - NN with LSTM encoder + sigmoid classification layer

- 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)

∃ ► ∃ = √Q ∩

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we would like to penalize such cases
- check whether output conforms to the input DA + rerank
 - NN with LSTM encoder + sigmoid classification layer

- 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)

∃ ► ∃ = √Q ∩

• BAGEL dataset:

202 DAs / 404 sentences, restaurant information

◎ ▶ ▲ 臣 ▶ ★ 臣 ▶ 三 臣 ■ の Q ()

BAGEL dataset:

202 DAs / 404 sentences, restaurant information

much less data than previous seq2seq methods

BAGEL dataset:

202 DAs / 404 sentences, restaurant information

- much less data than previous seq2seq methods
- partially delexicalized (names, phone numbers \rightarrow "X")

BAGEL dataset:

202 DAs / 404 sentences, restaurant information

- much less data than previous seq2seq methods
- partially delexicalized (names, phone numbers \rightarrow "X")
- manual alignment provided, but we do not use it

BAGEL dataset:

202 DAs / 404 sentences, restaurant information

- much less data than previous seq2seq methods
- partially delexicalized (names, phone numbers \rightarrow "X")
- manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST

A = A = A = A = A = A = A

• BAGEL dataset:

202 DAs / 404 sentences, restaurant information

- much less data than previous seq2seq methods
- partially delexicalized (names, phone numbers \rightarrow "X")
- manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST
 - manual evaluation: semantic errors on 20% data (missing/irrelevant/repeated)

Results

	Setup	BLEU	NIST	ERR
θV	Mairesse et al. (2010) - alignments	${\sim}67$	-	0
Ъ	Dušek & Jurčíček (2015)	59.89	5.231	30

Results

	_	Setup	BLEU	NIST	ERR
θV	_	Mairesse et al. (2010) - alignments	${\sim}67$	-	0
đ		Dušek & Jurčíček (2015)	59.89	5.231	30
our	two-step	Greedy with trees	55.29	5.144	20
		+ Beam search (beam size 100)	58.59	5.293	28
		+ Reranker (beam size 5)	60.77	5.487	24
		(beam size 10)	60.93	5.510	25
		(beam size 100)	60.44	5.514	19
		Greedy into strings	52.54	5.052	37
	joint	+ Beam search (beam size 100)	55.84	5.228	32
		+ Reranker (beam size 5)	61.18	5.507	27
		(beam size 10)	62.40	5.614	21
		(beam size 100)	62.76	5.669	19

・ロト・国・トルボト・国王 ろくの

Sample Outputs

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference	X is a French restaurant on the riverside.
Greedy with trees	X is a restaurant providing french and continental and by the river.
+ Beam search	X is a restaurant that serves french takeaway. [riverside]
+ Reranker	X is a french restaurant in the riverside area.
Greedy into strings	X is a restaurant in the riverside that serves italian food. [French]
+ Beam search	X is a restaurant in the riverside that serves italian food. [French]
+ Reranker	X is a restaurant in the riverside area that serves french food.

▲母 ▶ ▲ 臣 ▶ ★ 臣 ▶ 三日日 の Q @

• Aim: condition generation on preceding context

- Aim: condition generation on preceding context
- · Problem: data sparsity

- Aim: condition generation on preceding context
- Problem: data sparsity
- Solution: Limit context to just preceding user utterance
 - likely to have strongest entrainment impact

- Aim: condition generation on preceding context
- · Problem: data sparsity
- Solution: Limit context to just preceding user utterance
 - likely to have strongest entrainment impact
- Need for context-aware training data: we collected a new set
 - input DA
 - natural language sentence(s)

- Aim: condition generation on preceding context
- · Problem: data sparsity
- Solution: Limit context to just preceding user utterance
 - likely to have strongest entrainment impact
- Need for context-aware training data: we collected a new set
 - input DA
 - natural language sentence(s)
 - preceding user utterance

NEW \rightarrow *I'm headed to Rector Street*

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

(4月) (日) (日) (日) (000

- Aim: condition generation on preceding context
- · Problem: data sparsity
- Solution: Limit context to just preceding user utterance
 - likely to have strongest entrainment impact
- Need for context-aware training data: we collected a new set
 - input DA
 - natural language sentence(s)
 - preceding user utterance

I'm headed to Rector Street

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

1. Get natural user utterances in calls to a live dialogue system

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

You want a connection – your departure stop is *Marble Hill*, and you want to go to *Roosevelt Island*. Ask how long the journey will take. Ask about a schedule afterwards. Then modify your query: Ask for a ride at six o'clock in the evening. Ask for a connection by bus. Do as if you changed your mind: Say that your destination stop is *City Hall*.

You are searching for transit options leaving from *Houston Street* with the destination of *Marble Hill*. When you are offered a schedule, ask about the time of arrival at your destination. Then ask for a connection after that. Modify your query: Request information about an alternative at six p.m. and state that you prefer to go by bus.

Tell the system that you want to travel from *Park Place* to *Inwood*. When you are offered a trip, ask about the time needed. Then ask for another alternative. Change your search: Ask about a ride at 6 o'clock p.m. and tell the system that you would rather use the bus.

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs

Collecting the set

Collecting the set (via CrowdFlower)

Using the following information:

from=Penn Station, to=Central Park

Please confirm that you understand this user request:

yes i need a ride from Penn Station to Central Park

Operator (your) reaction:

Your reply is missing the following information: Central Park

Alright, a ride from Penn Station, let me see.

Respond in a natural and fitting English sentence.

3. Collect natural language paraphrases for the response DAs

- interface designed to support entrainment
 - context at hand
 - minimal slot description
 - short instructions

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs
 - interface designed to support entrainment
 - context at hand
 - minimal slot description
 - short instructions
 - · checks: contents + spelling, automatic + manual
 - · ca. 20% overhead (repeated job submission)

Two direct context-aware extensions:

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

Two direct context-aware extensions:

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to the DA and fed into the decoder

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to the DA and fed into the decoder
 - b) separate context encoder, hidden states concatenated

• One (more) reranker: *n*-gram match

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● 今 ○ ○

- One (more) reranker: *n*-gram match
- promoting outputs that have a word or phrase overlap with the context utterance

同ト イヨト イヨト ヨヨ わらつ

- One (more) reranker: *n*-gram match
- promoting outputs that have a word or phrase overlap with the context utterance

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

▲■▶▲≣▶▲≣▶ ≣|= のQ@

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Automatic evaluation results	BLEU	NIST
Baseline (context not used)	66.41	7.037
<i>n</i> -gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ <i>n</i> -gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Automatic evaluation results	BLEU	NIST
Baseline (context not used)	66.41	7.037
<i>n</i> -gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ <i>n</i> -gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Automatic evaluation results	BLEU	NIST
Baseline (context not used)	66.41	7.037
<i>n</i> -gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ <i>n</i> -gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker
 - context-aware preferred in 52.5% cases (significant)

Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
<i>n</i> -gram match reranker	You want <u>a later</u> connection.
Prepending context + <i>n</i> -gram match reranker	You want <u>a later</u> connection.
Context encoder + <i>n</i> -gram match reranker	You want a later option.

Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
<i>n</i> -gram match reranker	You want <u>a later</u> connection.
Prepending context + <i>n</i> -gram match reranker	You want <u>a later</u> connection.
Context encoder + <i>n</i> -gram match reranker	You want a later option.

Context	i need to find a bus connection
Input DA	inform_no_match(vehicle=bus)
Baseline	No bus found, sorry.
<i>n</i> -gram match reranker	I did not <u>find a bus</u> route.
Prepending context + <i>n</i> -gram match reranker	I'm sorry, I cannot find a bus connection.
Context encoder + <i>n</i> -gram match reranker	I'm sorry, I cannot find a bus connection.

Output Examples

Context	i rather take the bus
Input DA	inform(vehicle=bus, departure_time=8:01am, direction=Cathedral Parkway, from_stop=Bowling Green, line=M15)
Baseline	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
<i>n</i> -gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
Prepending context + <i>n</i> -gram match reranker	You can <u>take the M15 bus</u> from Bowling Green to Cathedral Parkway at 8:01am.
Context encoder + <i>n</i> -gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- ✓ produces valid outputs even with limited training data

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● 今 ○ ○

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- $\checkmark~$ produces valid outputs even with limited training data
- ✓ allows comparing 2-step & joint NLG
 - generates sentences / trees

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- $\checkmark~$ produces valid outputs even with limited training data
- ✓ allows comparing 2-step & joint NLG
 - generates sentences / trees
- ✓ is 1st trainable & capable of entrainment
 - entrainment better than baseline

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- $\checkmark~$ produces valid outputs even with limited training data
- ✓ allows comparing 2-step & joint NLG
 - generates sentences / trees
- ✓ is 1st trainable & capable of entrainment
 - entrainment better than baseline

Future Ideas

Lexicalized generation

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- $\checkmark~$ produces valid outputs even with limited training data
- ✓ allows comparing 2-step & joint NLG
 - generates sentences / trees
- ✓ is 1st trainable & capable of entrainment
 - entrainment better than baseline

Future Ideas

- Lexicalized generation
- Longer context + better *n*-gram matching

Our System...

- ✓ works with unaligned data
 - better than our previous work on the BAGEL set
- $\checkmark~$ produces valid outputs even with limited training data
- ✓ allows comparing 2-step & joint NLG
 - generates sentences / trees
- ✓ is 1st trainable & capable of entrainment
 - entrainment better than baseline

Future Ideas

- Lexicalized generation
- Longer context + better *n*-gram matching
- Integrate into an end-to-end SDS

Thank you for your attention

Download it!

- Code: bit.ly/tgen_nlg
- Dataset: bit.ly/nlgdata

Contact me Ondřej Dušek o.dusek@hw.ac.uk EM 1.56

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step

(4月) (日) (日) (日) (000)

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
 - two-step setup simplifies structure generation by abstracting away from surface grammar

A = A = A = A = A = A = A

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
 - two-step setup simplifies structure generation by abstracting away from surface grammar
 - · joint setup avoids error accumulation over a pipeline

A = A = A = A = A = A = A

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
 - two-step setup simplifies structure generation by abstracting away from surface grammar
 - · joint setup avoids error accumulation over a pipeline
- we can do both in one system

A = A = A = A = A = A = A

main generator based on sequence-to-sequence NNs

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- output:

2-step mode - deep syntax trees, in bracketed format

(<root><root> ((X-name n:subj) be v:fin ((Italian adj:attr) restaurant n:obj (river n:near+X))))

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- output:

2-step mode – deep syntax trees, in bracketed format joint mode – sentences

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- output:

2-step mode – deep syntax trees, in bracketed format joint mode – sentences

• 2-step mode: deep syntax trees post-processed by a surface realizer

Sample Outputs

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near, food="Chinese takeaway", food=Japanese)
Reference	X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Greedy with trees	X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]
+ Beam search	X is a restaurant and japanese food and chinese takeaway.
+ Reranker	X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.
Greedy into strings	X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]
+ Beam search	X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]
+ Reranker	X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]

→ □ → モ → モ → モ = → つへぐ

Sample Outputs

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference	X is a French and Continental restaurant near X.
Greedy with trees	X is a french restaurant that serves french food and near X. [Continental]
+ Beam search	X is a french restaurant that serves french food and near X. [Continental]
+ Reranker	X is a restaurant serving french and continental food near X.
Greedy into strings	X is a french and continental style restaurant near X.
+ Beam search	X is a french and continental style restaurant near X.
+ Reranker	X is a restaurant providing french and continental food, near X.

Ondřej Dušek Sequence-to-Sequence NLG

→ □ → モ → モ → モ = → つへぐ

Handcrafted simple rule-based bigram policy

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance

what about a connection by bus

```
iconfirm(vehicle=bus)
```

```
inform(from_stop="Dyckman Street", direction="Park Place",
            vehicle=bus, line=M103, departure_time=7:05pm)
inform_no_match(vehicle=bus)
```

```
request(to_stop)
```

▶ Ξ Ξ • • • • •

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information

what about a connection by bus

```
iconfirm(vehicle=bus)
```

```
inform(from_stop="Dyckman Street", direction="Park Place",
vehicle=bus, line=M103, departure_time=7:05pm)
```

inform_no_match(vehicle=bus)

```
request(to_stop)
```

. ► Ξ = • • • •

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information
- In a real dialogue, the correct reply would depend on longer history, but here we try them all

Entrainment Dataset Summary

Size

total response paraphrases	5,577
unique (delex.) context + response DA	1,859
unique (delex.) context	552
unique (delex.) context with min. 2 occurrences	119
unique response DA	83
unique response DA types	6
unique slots	13

Entrainment

Syntactic	${\sim}59\%$
Lexical	\sim 31%
Both	${\sim}19\%$

• subjective, based on word & phrase reuse, word order, pronouns

▲母 × モ × モ × 王 = 9 Q Q