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Outline of this Talk

1. Introduction to the problem
« our task + problems we are solving

2. Sequence-to-sequence generation

a) model architecture
b) experiments on the BAGEL set

3. Context-aware extensions

a) making the basic seq2seq setup context-aware
b) experiments on our public transport dataset

4, Future work ideas
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Introduction = The Task

NLG in Spoken Dialogue Systems

+ converting a meaning representation (dialogue acts, DAs)
to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside)

!

Xis an Italian restaurant near the river.
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Introduction = The Task

NLG in Spoken Dialogue Systems

+ converting a meaning representation (dialogue acts, DAs)
to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside)

N
Xis an Italian restaurant near the river.
« no content selection in SDS

« input: from dialogue manager
» output: to TTS
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Introduction = Problems We Solve

Generating from Unaligned Data

« earlier, NLG systems required:

a) manual alignments
b) alignment preprocessing step
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Generating from Unaligned Data

« earlier, NLG systems required:

a) manual alignments
b) alignment preprocessing step

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

alignnment

X is an italian restaurant in the riverside area .

text

Sequence-to-Sequence NLG



Introduction = Problems We Solve

Generating from Unaligned Data

« earlier, NLG systems required:

a) manual alignments
b) alignment preprocessing step

+ we learn alignments jointly

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=ltalian)

X is an italian restaurant in the riverside area .
text
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Generating from Unaligned Data

« earlier, NLG systems required:
a) manual alignments
b) alignment preprocessing step
+ we learn alignments jointly
« no error acummulation / manual annotation
+ alignment is latent (needs not be hard/1:1)
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Introduction = Problems We Solve

Generating from Unaligned Data

« earlier, NLG systems required:
a) manual alignments
b) alignment preprocessing step
+ we learn alignments jointly

« no error acummulation / manual annotation
+ alignment is latent (needs not be hard/1:1)

inform(name=X-name, type=placetoeat, area=centre, eattype=restaurant,
near=X-near)
The X restaurant is conveniently located near X, right in the city center.

inform(name=X-name, type=placetoeat, foodtype=Chinese_takeaway)
X serves Chinese food and has a takeaway possibility.

inform(name=X-name, type=placetoeat, pricerange=cheap)
Prices at X are quite cheap.
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Introduction = Problems We Solve

Two-Step and Joint NLG Setups

+ NLG pipeline traditionally divided into:

1. sentence planning - decide on the overall sentence structure
2. surface realization - decide on specific word forms, linearize

sentence plan

t-tree
zone=en
MR sentence surface
inform(name=X-name,type=placetoeat, planning ﬁg realization surface text
eattype=restaurant, — Xis an Italian restaurant

area=riverside,food=ltalian) near the river.

X-name /restaurant
n:subj n:obj

Italian river
adj:attr n:near+X
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Two-Step and Joint NLG Setups

+ NLG pipeline traditionally divided into:

1. sentence planning - decide on the overall sentence structure
2. surface realization - decide on specific word forms, linearize

+ some NLG systems join this into a single step

ttree sentence plan

zone=en

MR sentence A surface
inform(name=X-name,type=placetoeat, planning v:f? realization surface text
eattype=restaurant, — Xis an Italian restaurant
area=riverside,food=ltalian) X-name /réstaurant near the river.
n:subj n:obj

Italian river
adj:attr n:near+X

Sequence-to-Sequence N



Introduction = Problems We Solve

Two-Step and Joint NLG Setups

+ NLG pipeline traditionally divided into:

1. sentence planning - decide on the overall sentence structure
2. surface realization - decide on specific word forms, linearize

+ some NLG systems join this into a single step

MR
inform(name=X-name,type=placetoeat, joint NLG surface text
eattype=restaurant, —- X is an Italian restaurant
area=riverside,food=ltalian) near the river.
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Introduction = Problems We Solve

Two-Step and Joint NLG Setups

+ NLG pipeline traditionally divided into:
1. sentence planning - decide on the overall sentence structure
2. surface realization - decide on specific word forms, linearize

+ some NLG systems join this into a single step

+ two-step setup simplifies structure generation by abstracting
away from surface grammar
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1. sentence planning - decide on the overall sentence structure
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+ some NLG systems join this into a single step
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Introduction = Problems We Solve

Two-Step and Joint NLG Setups

+ NLG pipeline traditionally divided into:
1. sentence planning - decide on the overall sentence structure
2. surface realization - decide on specific word forms, linearize

+ some NLG systems join this into a single step

+ two-step setup simplifies structure generation by abstracting
away from surface grammar
« joint setup avoids error accumulation over a pipeline

+ we can do both in one system
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Introduction = Problems We Solve

Entrainmentin Dialogues and NLG

+ speakers are influenced by previous utterances

+ adapting (entraining) to each other
+ reusing lexicon and syntax
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Introduction = Problems We Solve

Entrainmentin Dialogues and NLG

+ speakers are influenced by previous utterances

+ adapting (entraining) to each other
+ reusing lexicon and syntax

how bout the next ride
Sorry, I did not find a later option.
I’m sorry, the next ride was not found.
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Introduction = Problems We Solve

Entrainmentin Dialogues and NLG

+ speakers are influenced by previous utterances
+ adapting (entraining) to each other
+ reusing lexicon and syntax

+ entrainment is natural, subconscious, helps conversation
success

+ natural source of variation
+ typical NLG only takes the input DA into account

+ no way of adapting to user’s way of speaking
+ no output variance (must be fabricated, e.g., by sampling)

+ entrainment in NLG limited to rule-based systems so far
+ our system is trainable and entrains/adapts
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Introduction = Our Solution

Our NLG system

+ based on sequence-to-sequence neural network models
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Introduction = Our Solution

Our NLG system

+ based on sequence-to-sequence neural network models
v’ trainable from unaligned pairs of input DAs + sentences
v two operating modes
« we can compare 2-step and joint setups in a single architecture
v learns to produce meaningful outputs from very little training
data
v’ context-aware: adapts to previous user utterance
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Basic Sequence-to-Sequence NLG | System Architecture

System Workflow

e
tree S€Ntence plan
zone=en
be
our seq2seq /\:ﬁ
generator X-name /restaurant surf-ace-
MR Attention n:subj ":\-.*JJ realization
inform(name=X-name, type=placetoeat, / alé‘?'"aatrt]r n'r:gaerax\ surface text
eattype=restaurant, = +Beam search ' ' X is an Italian restaurant
area=riverside,food=ltalian) + Reranker == near the river.
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System Workflow

e
tree S€Ntence plan
ZOI’]E en
our seq2seq
generator X- name restaurant surface
MR ——ggenien nisub) reallzatlon

inform(name=X-name, type=placetoeat, — a'ga“aat’t‘r o ;Q’aerax surface text

eattype=restaurant, = +Beam search X is an Italian restaurant

area=riverside,food=ltalian) + Reranker == near the river.

+ main generator based on sequence-to-sequence NNs
+ input: tokenized DAs
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Basic Sequence-to-Sequence NLG | System Architecture

System Workflow

e
tree S€Ntence plan

zone en

our seq2seq
generator X- name restaurant surface
MR ——ggenien nisub) reallzatlon
inform(name=X-name,type=placetoeat, — alaa“aatrt]r e r:gaerax surface text
eattype=restaurant, = +Beam search X is an Italian restaurant
area=riverside,food=ltalian) + Reranker r near the river.

+ main generator based on sequence-to-sequence NNs
+ input: tokenized DAs
« output:

2-step mode - deep syntax trees, in bracketed format

(<root><root> ( (X-name n:subj ) be v:fin ( ( Italian adj:attr) restaurant n:obj ( river n:near+x))))
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System Workflow

e
tree S€Ntence plan

zone en

our seq2seq
generator X- name restaurant surface
MR ——ggenien nisub) reallzatlon
inform(name=X-name,type=placetoeat, — alaa“aatrt]r e r:gaerax surface text
eattype=restaurant, = +Beam search X is an Italian restaurant
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+ main generator based on sequence-to-sequence NNs
+ input: tokenized DAs
« output:

2-step mode - deep syntax trees, in bracketed format
joint mode - sentences
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Basic Sequence-to-Sequence NLG | System Architecture

System Workflow

e
tree S€Ntence plan

zone en

our seq2seq
generator X- name restaurant surface
MR ——ggenien nisub) reallzatlon
i =X- = Encoder | — | Decod! Italian r\ver
inform(name )fname,type placetoeat, J nea”x surche text
eattype=restaurant, = +Beam search X is an Italian restaurant
area=riverside,food=ltalian) + Reranker == near the river.

+ main generator based on sequence-to-sequence NNs
+ input: tokenized DAs
« output:
2-step mode - deep syntax trees, in bracketed format
joint mode - sentences

+ 2-step mode: deep syntax trees post-processed by a surface
realizer
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Basic Sequence-to-Sequence NLG | System Architecture

Our Seq2seq Generator architecture

Jany

el ~ B~ Bl ~ bl ~ b~ B

inform name inform eattype <GO> X is a restaurant

+ Sequence-to-sequence models with attention
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Basic Sequence-to-Sequence NLG | System Architecture

Our Seq2seq Generator architecture

L R
]~ o] — [ — ] — o] — [
e
inform name inform eattype

+ Sequence-to-sequence models with attention
+ Encoder LSTM RNN: encode DA into hidden states
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Basic Sequence-to-Sequence NLG | System Architecture

Our Seq2seq Generator architecture

X is a restaurant . <STOP>
[ A FS AR B

] — o] o] — o}

<GO> X is a restaurant

+ Sequence-to-sequence models with attention

« Encoder LSTM RNN: encode DA into hidden states
« Decoder LSTM RNN: generate output tokens
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Our Seq2seq Generator architecture

Jany

<STOP>

el ~ B~ Bl ~ bl ~ b~ B

inform name inform eattype <GO> X is a restaurant

+ Sequence-to-sequence models with attention

+ Encoder LSTM RNN: encode DA into hidden states
« Decoder LSTM RNN: generate output tokens
+ attention model: weighing encoder hidden states

+ basic greedy generation
+ beam search, n-best list outputs
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Basic Sequence-to-Sequence NLG | System Architecture

Our Seq2seq Generator architecture

Jany

<STOP>

el ~ B~ Bl ~ bl ~ b~ B

inform name inform eattype <GO> X is a restaurant

+ Sequence-to-sequence models with attention

+ Encoder LSTM RNN: encode DA into hidden states
« Decoder LSTM RNN: generate output tokens
+ attention model: weighing encoder hidden states

+ basic greedy generation
+ beam search, n-best list outputs
+ reranker (—)
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Basic Sequence-to-Sequence NLG | System Architecture

Reranker

+ generator may not cover the input DA perfectly
+ missing / superfluous information
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Basic Sequence-to-Sequence NLG | System Architecture

Reranker

+ generator may not cover the input DA perfectly

+ missing / superfluous information
+ we would like to penalize such cases

+ check whether output conforms to the input DA + rerank

5
s

. 5 08,
inform(name=X-name,eattype=bar, S EES
: @
area=citycentre) 830§
Ph %82
ESS ol I
eEEES S
e EOO0CER ®
T >101110
] — ] — f] — frx] ] =1 101 00
T T T T T VXXV XY

penalty=3

X is a restaurant

Ondrej Dusek Sequence-to-Sequence NLG



Basic Sequence-to-Sequence NLG | System Architecture

Reranker

+ generator may not cover the input DA perfectly
+ missing / superfluous information
« we would like to penalize such cases

+ check whether output conforms to the input DA + rerank
+ NN with LSTM encoder + sigmoid classification layer

g
]~ B~ ]~ [~ ]

X is a restaurant
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Basic Sequence-to-Sequence NLG | System Architecture

Reranker

+ generator may not cover the input DA perfectly
+ missing / superfluous information
« we would like to penalize such cases

+ check whether output conforms to the input DA + rerank
+ NN with LSTM encoder + sigmoid classification layer

restaurant
bar
name=X-name
citycentre

area=riverside

nform
eattype:
eattype:
area=

[sm] — [sm] — [om] — [sim] — [sm] =1 10100
(e R
X is a restaurant .

+ 1-hot DA representation
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Basic Sequence-to-Sequence NLG | System Architecture

Reranker

+ generator may not cover the input DA perfectly
+ missing / superfluous information
« we would like to penalize such cases

+ check whether output conforms to the input DA + rerank
+ NN with LSTM encoder + sigmoid classification layer

restaurant

o

inform(name=X-name,eattype=bar, _ %% ]

area=citycentre) g3 cg §

@29 XNG 2

ESSELE

235Ese

""""" 101110

B~ ]~ - [~ St sotos
[ N R A
penalty=3

X is a restaurant
+ 1-hot DA representation
+ penalty = Hamming distance from input DA (on 1-hot vectors)
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Reranker

+ generator may not cover the input DA perfectly
+ missing / superfluous information
« we would like to penalize such cases

+ check whether output conforms to the input DA + rerank
+ NN with LSTM encoder + sigmoid classification layer

restaurant

. e

inform(name=X-name,eattype=bar, _ %E 3

’ o

area=citycentre) 830§

pix22

ESS ol I

- g§§E8¢

e EOO0CER ®

T =101110

)~ [ ~ )~ )~ 1 10100

T T T T T VXXV XY
penalty=3

X is a restaurant
+ 1-hot DA representation
+ penalty = Hamming distance from input DA (on 1-hot vectors)
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Experiments

+ BAGEL dataset:
202 DAs / 404 sentences, restaurant information
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Experiments

+ BAGEL dataset:
202 DAs / 404 sentences, restaurant information

« much less data than previous seq2seq methods
« partially delexicalized (names, phone numbers — “X”)
« manual alignment provided, but we do not use it
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Experiments

+ BAGEL dataset:
202 DAs / 404 sentences, restaurant information
« much less data than previous seq2seq methods

« partially delexicalized (names, phone numbers — “X”)
« manual alignment provided, but we do not use it

+ 10-fold cross-validation

+ automatic metrics: BLEU, NIST
» manual evaluation: semantic errors on 20% data
(missing/irrelevant/repeated)
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Results
Setup BLEU NIST ERR
E Mairesse et al. (2010) - alignments ~ ~67 - 0
Q Dusek & Jurcicek (2015) 59.89 5.231 30
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Results

Setup BLEU NIST ERR

E Mairesse et al. (2010) - alignments ~ ~67 - 0

QU Dusek & Jurcicek (2015) 59.89 5.231 30

Greedy with trees 55.29 5.144 20

§ + Beam search (beam size 100) 58.59 5.293 28

O +Reranker (beam size 5) 60.77 5.487 24

. 2 (beam size 10) 60.93 5.510 25

3 (beam size 100) 60.44 5514 19

Greedy into strings 52.54 5.052 37

+« +Beamsearch (beamsize 100) 55.84 5.228 32

;% + Reranker (beam size 5) 61.18 5.507 27

B (beam size 10) 6240 5.614 21

(beam size 100) 62.76 5.669 19
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=citycentre, near=X-near,
food="Chinese takeaway”, food=Japanese)
Reference Xis a Chinese takeaway and Japanese restaurant in the city centre
near X.

Greedy with trees Xis a restaurant offering chinese takeaway in the centre of town
near X. [Japanese]

+Beam search Xis a restaurant and japanese food and chinese takeaway.

+ Reranker Xis a restaurant serving japanese food in the centre of the city that
offers chinese takeaway.

Greedy into strings X is a restaurant offering italian and indian takeaway in the city
centre area near X. [Japanese, Chinese]

+Beam search Xis a restaurant that serves fusion chinese takeaway in the riverside
area near X. [Japanese, citycentre]
+ Reranker X is a japanese restaurant in the city centre near X providing chinese

food. [takeaway]

drej Dusek Sequence-



Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=riverside, food=French)

Reference Xis a French restaurant on the riverside.

Greedy with trees Xis a restaurant providing french and continental and by the river.
+Beam search Xis a restaurant that serves french takeaway. [riverside]
+ Reranker Xis a french restaurant in the riverside area.

Greedy into strings X is a restaurant in the riverside that serves italian food. [French]
+Beam search Xis a restaurant in the riverside that serves italian food. [French]
+ Reranker Xis a restaurant in the riverside area that serves french food.
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Basic Sequence-to-Sequence NLG = Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
near=X-near, food=Continental, food=French)

Reference Xis a French and Continental restaurant near X.

Greedy with trees Xis a french restaurant that serves french food and near X.
[Continental]

+Beam search Xis a french restaurant that serves french food and near X.
[Continental]
+ Reranker Xis a restaurant serving french and continental food near X.

Greedy into strings  Xis a french and continental style restaurant near X.
+Beam search Xis a french and continental style restaurant near X.
+ Reranker Xis a restaurant providing french and continental food, near X.
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Basic Sequence-to-Sequence NLG = Conclusions

Conclusions

+ both setups produce mostly valid outputs despite limited
training data
+ correct domain style
+ mostly fluent
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Conclusions

+ both setups produce mostly valid outputs despite limited
training data

+ correct domain style
+ mostly fluent
- different types of errors

+ joint: confusion of similar items (/talian vs. French)
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Basic Sequence-to-Sequence NLG = Conclusions

Conclusions

+ both setups produce mostly valid outputs despite limited
training data

+ correct domain style
+ mostly fluent

- different types of errors

+ joint: confusion of similar items (/talian vs. French)
+ 2-step: disfluency, missing/superfluous/repeated items

+ joint generation works better on our domain (+2% BLEU)
+ better results than our previous work with unaligned data
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Adding Entrainment to Trainable NLG

Aim: condition generation on preceding context

.

Problem: data sparsity

Solution: Limit context to just preceding user utterance
+ likely to have strongest entrainment impact

.

Need for context-aware training data: we collected a new set
« input DA
+ natural language sentence(s)

inform(from_stop="Fulton Street”, vehicle=bus, direction="Rector Street”,
departure_time=9:13pm, line=M21)
Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street
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Need for context-aware training data: we collected a new set
« input DA
+ natural language sentence(s)
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Entrainment-enabled NLG = Introduction

Adding Entrainment to Trainable NLG

Aim: condition generation on preceding context

.

Problem: data sparsity

Solution: Limit context to just preceding user utterance
+ likely to have strongest entrainment impact

Need for context-aware training data: we collected a new set
« input DA
+ natural language sentence(s)
« preceding user utterance

I’m headed to Rector Street

inform(from_stop="Fulton Street”, vehicle=bus, direction="Rector Street”,
departure_time=9:13pm, line=M21)

Heading to Rector Street from Fulton Street, take a bus line M21 at 9:13pm.

Sequence-to-Sequence NLG



Entrainment-enabled NLG = System Architecture

Context in our Seq2seq Generator (1)

« Two direct context-aware extensions:

a)

"S *’4'*’

T T T T T T T T You want a later option . <STOP>
is there a later option iconfirm alternative next

D
b%? ‘\\
TEEEETE

is there a later option

S R P A A A
e ][] o] e > o] o]
g g Yiq a g g )l
oo oo J oo

<GO> You want a later option
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Context in our Seq2seq Generator (1)

« Two direct context-aware extensions:

a) preceding user utterance prepended to the DA and fed into the
decoder

*’4'*’

T T T T T T T T You want a later option . <STOP>
is there a later option iconfirm alternative next
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e ][] o] e > o] o]
g g Yiq a g g )l
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Entrainment-enabled NLG = System Architecture

Context in our Seq2seq Generator (1)

« Two direct context-aware extensions:
a) preceding user utterance prepended to the DA and fed into the
decoder
b) separate context encoder, hidden states concatenated

B~ -
T T T You want a la;er optfon T <ST;)P>
iconfirm alternative next
b) M—Plslm%\stm—klslm%—k—»
I
= e,e.}./@) oo oo e
T T <GO> You want a later option .

is there a later opt\on
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Entrainment-enabled NLG = System Architecture

Context in our Seq2seq Generator (2)

+ One (more) reranker: n-gram match

Ondrej Dusek Sequence-to-Sequence NLG



Entrainment-enabled NLG = System Architecture

Context in our Seq2seq Generator (2)

+ One (more) reranker: n-gram match

« promoting outputs that have a word or phrase overlap with the
context utterance

E there a later time

inform_no_match(alternative=next)

A
No route found later Aorry
The next conngction is not feund .
I'm sorry , | can not find a later ride .
| can not find the next one sorry .
I'm sorry , a later connection was not found .
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Entrainment-enabled NLG = System Architecture

Context in our Seq2seq Generator (2)

+ One (more) reranker: n-gram match

« promoting outputs that have a word or phrase overlap with the
context utterance
+ overlap measure: BLEU-2 without brevity penalty:

logprob += weight - \/p; - p2

E there a later time

inform_no_match(alternative=next)

A
No route found later Aorry
The next conngction is not feund .
I'm sorry , | can not find a later ride .
| can not find the next one sorry .
I'm sorry , a later connection was not found .
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Entrainment-enabled NLG = Experiments

Experiments

+ Dataset: public transport information
+ 5.5k paraphrases for 1.8k DA-context combinations
+ delexicalized
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Experiments

+ Dataset: public transport information

+ 5.5k paraphrases for 1.8k DA-context combinations
+ delexicalized

Automatic evaluation results BLEU NIST

Baseline (context not used) 66.41 7.037
n-gram match reranker 68.68 7.577
Prepending context 63.87 6.456
+n-gram match reranker 69.26 7.772
Context encoder 63.08 6.818
+n-gram match reranker 69.17 7.596
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Entrainment-enabled NLG = Experiments

Experiments

+ Dataset: public transport information

+ 5.5k paraphrases for 1.8k DA-context combinations
+ delexicalized

Automatic evaluation results BLEU NIST

Baseline (context not used) 66.41 7.037
n-gram match reranker 68.68 7.577
Prepending context 63.87 6.456
+n-gram match reranker 69.26 7.772
Context encoder 63.08 6.818
+n-gram match reranker 69.17 7.596

« Human pairwise preference ranking (crowdsourced)

+ baseline x prepending context + n-gram match reranker
+ context-aware preferred in 52.5% cases (significant)
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Entrainment-enabled NLG = Experiments

Output Examples

Context is there a later option

Input DA iconfirm(alternative=next)
Baseline Next connection.

n-gram match reranker You want a later connection.
Prepending context + n-gram match reranker ~ You want a later connection.
Context encoder + n-gram match reranker You want a later option.
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Entrainment-enabled NLG = Experiments

Output Examples

Context is there a later option
Input DA iconfirm(alternative=next)
Baseline Next connection.

n-gram match reranker
Prepending context + n-gram match reranker
Context encoder + n-gram match reranker

You want a later connection.
You want a later connection.

You want a later option.

Context i need to find a bus connection
Input DA inform_no_match(vehicle=bus)
Baseline No bus found, sorry.

n-gram match reranker
Prepending context + n-gram match reranker
Context encoder + n-gram match reranker

drej Dusek

I did not find a bus route.
I’m sorry, | cannot find a bus connection.
I’m sorry, | cannot find a bus connection.

Sequence-



Entrainment-enabled NLG = Experiments

Output Examples

Context i rather take the bus
Input DA inform(vehicle=bus, departure_time=8:01am,
direction=Cathedral Parkway, from_stop=Bowling Green,
line=M15)
Baseline At 8:01am by bus line M15 from Bowling Green to Cathedral
Parkway.
n-gram match reranker At 8:01am by bus line M15 from Bowling Green to Cathedral
Parkway.
Prepending context You can take the M15 bus from Bowling Green to Cathedral
+n-gram match reranker Parkway at 8:01am.
Context encoder At 8:01am by bus line M15 from Bowling Green to Cathedral
+n-gram match reranker Parkway.

Sequence-to-Sequence N



Conclusion + Future Plans

Conclusion

+ 1st fully trainable NLG system for dialogue systems capable of
adapting to previous user utterances
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Conclusion + Future Plans

Conclusion
+ 1st fully trainable NLG system for dialogue systems capable of
adapting to previous user utterances
+ significant BLEU improvement over baseline

« confirmed in human evaluation

Future Plans

« Longer context

+ Fuzzy n-gram matching

+ Avoiding delexicalization

+ Integrate into an end-to-end SDS

Ondrej Dusek Sequence-to-Sequence NLG



Thank you for your attention

Download it!

+ Code: bit.ly/tgen_nlg
» Dataset: bit.ly/nlgdata

Contact me
Ondrej Dusek
o.dusek@hw.ac.uk

Ondrej Dusek Sequence-to-Sequence NLG


bit.ly/tgen_nlg
bit.ly/nlgdata
o.dusek@hw.ac.uk
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