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Introduction The Task

NLG in Spoken Dialogue Systems

• converting a meaning representation (dialogue acts, DAs)
to a sentence

• no content selection in SDS

• input: from dialogue manager
• output: to TTS
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Introduction Problems We Solve

Generating from Unaligned Data

• earlier, NLG systems required:
a) manual alignments
b) alignment preprocessing step

• we learn alignments jointly
• no error acummulation / manual annotation
• alignment is latent (needs not be hard/1:1)
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inform(name=X-name, type=placetoeat, area=centre, eattype=restaurant,
near=X-near)

The X restaurant is conveniently located near X, right in the city center.

inform(name=X-name, type=placetoeat, foodtype=Chinese_takeaway)
X serves Chinese food and has a takeaway possibility.

inform(name=X-name, type=placetoeat, pricerange=cheap)
Prices at X are quite cheap.
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Introduction Problems We Solve

Two-Step and Joint NLG Setups

• NLG pipeline traditionally divided into:
1. sentence planning – decide on the overall sentence structure
2. surface realization – decide on specific word forms, linearize

• some NLG systems join this into a single step
• two-step setup simplifies structure generation by abstracting
away from surface grammar

• joint setup avoids error accumulation over a pipeline

• we can do both in one system
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Introduction Problems We Solve

Entrainment in Dialogues and NLG

• speakers are influenced by previous utterances
• adapting (entraining) to each other
• reusing lexicon and syntax

• entrainment is natural, subconscious, helps conversation
success

• natural source of variation
• typical NLG only takes the input DA into account

• no way of adapting to user’s way of speaking
• no output variance (must be fabricated, e.g., by sampling)

• entrainment in NLG limited to rule-based systems so far
• our system is trainable and entrains/adapts
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Sorry, I did not find a later option.
I’m sorry, the next ride was not found.
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Introduction Our Solution

Our NLG system

• based on sequence-to-sequence neural network models

X trainable from unaligned pairs of input DAs + sentences
X two operating modes

• we can compare 2-step and joint setups in a single architecture

X learns to produce meaningful outputs from very little training
data

X context-aware: adapts to previous user utterance
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• we can compare 2-step and joint setups in a single architecture

X learns to produce meaningful outputs from very little training
data

X context-aware: adapts to previous user utterance
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Basic Sequence-to-Sequence NLG System Architecture

SystemWorkflow

• main generator based on sequence-to-sequence NNs
• input: tokenized DAs
• output:
2-step mode – deep syntax trees, in bracketed format
joint mode – sentences

• 2-step mode: deep syntax trees post-processed by a surface
realizer
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Basic Sequence-to-Sequence NLG System Architecture

Our Seq2seq Generator architecture

• Sequence-to-sequence models with attention

• Encoder LSTM RNN: encode DA into hidden states
• Decoder LSTM RNN: generate output tokens
• attention model: weighing encoder hidden states

• basic greedy generation
+ beam search, n-best list outputs
+ reranker (→)
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Basic Sequence-to-Sequence NLG System Architecture

Reranker
• generator may not cover the input DA perfectly

• missing / superfluous information

• we would like to penalize such cases

• check whether output conforms to the input DA + rerank
• NNwith LSTM encoder + sigmoid classification layer

• 1-hot DA representation
• penalty = Hamming distance from input DA (on 1-hot vectors)
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Basic Sequence-to-Sequence NLG Experiments on the BAGEL Set

Experiments

• BAGEL dataset:
202 DAs / 404 sentences, restaurant information

• much less data than previous seq2seq methods
• partially delexicalized (names, phone numbers→ “X”)
• manual alignment provided, but we do not use it

• 10-fold cross-validation
• automatic metrics: BLEU, NIST
• manual evaluation: semantic errors on 20% data
(missing/irrelevant/repeated)
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202 DAs / 404 sentences, restaurant information

• much less data than previous seq2seq methods
• partially delexicalized (names, phone numbers→ “X”)

• manual alignment provided, but we do not use it

• 10-fold cross-validation
• automatic metrics: BLEU, NIST
• manual evaluation: semantic errors on 20% data
(missing/irrelevant/repeated)
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Basic Sequence-to-Sequence NLG Experiments on the BAGEL Set

Results

Setup BLEU NIST ERR
Mairesse et al. (2010) – alignments ∼67 - 0
Dušek & Jurčíček (2015) 59.89 5.231 30

Greedy with trees 55.29 5.144 20
+ Beam search (beam size 100) 58.59 5.293 28
+ Reranker (beam size 5) 60.77 5.487 24

(beam size 10) 60.93 5.510 25
(beam size 100) 60.44 5.514 19

Greedy into strings 52.54 5.052 37
+ Beam search (beam size 100) 55.84 5.228 32
+ Reranker (beam size 5) 61.18 5.507 27

(beam size 10) 62.40 5.614 21
(beam size 100) 62.76 5.669 19
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(beam size 100) 60.44 5.514 19

Greedy into strings 52.54 5.052 37
+ Beam search (beam size 100) 55.84 5.228 32
+ Reranker (beam size 5) 61.18 5.507 27

(beam size 10) 62.40 5.614 21
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Basic Sequence-to-Sequence NLG Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=citycentre, near=X-near,
food=”Chinese takeaway”, food=Japanese)

Reference X is a Chinese takeaway and Japanese restaurant in the city centre
near X.

Greedy with trees X is a restaurant offering chinese takeaway in the centre of town
near X. [Japanese]

+ Beam search X is a restaurant and japanese food and chinese takeaway.
+ Reranker X is a restaurant serving japanese food in the centre of the city that

offers chinese takeaway.

Greedy into strings X is a restaurant offering italian and indian takeaway in the city
centre area near X. [Japanese, Chinese]

+ Beam search X is a restaurant that serves fusion chinese takeaway in the riverside
area near X. [Japanese, citycentre]

+ Reranker X is a japanese restaurant in the city centre near X providing chinese
food. [takeaway]
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Basic Sequence-to-Sequence NLG Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=riverside, food=French)

Reference X is a French restaurant on the riverside.
Greedy with trees X is a restaurant providing french and continental and by the river.
+ Beam search X is a restaurant that serves french takeaway. [riverside]
+ Reranker X is a french restaurant in the riverside area.

Greedy into strings X is a restaurant in the riverside that serves italian food. [French]
+ Beam search X is a restaurant in the riverside that serves italian food. [French]
+ Reranker X is a restaurant in the riverside area that serves french food.
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Basic Sequence-to-Sequence NLG Experiments on the BAGEL Set

Sample Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
near=X-near, food=Continental, food=French)

Reference X is a French and Continental restaurant near X.
Greedy with trees X is a french restaurant that serves french food and near X.

[Continental]
+ Beam search X is a french restaurant that serves french food and near X.

[Continental]
+ Reranker X is a restaurant serving french and continental food near X.

Greedy into strings X is a french and continental style restaurant near X.
+ Beam search X is a french and continental style restaurant near X.
+ Reranker X is a restaurant providing french and continental food, near X.
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Basic Sequence-to-Sequence NLG Conclusions

Conclusions

• both setups produce mostly valid outputs despite limited
training data

• correct domain style
• mostly fluent

• different types of errors
• joint: confusion of similar items (Italian vs. French)
• 2-step: disfluency, missing/superfluous/repeated items

• joint generation works better on our domain (+2% BLEU)
• better results than our previous work with unaligned data
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Entrainment-enabled NLG Introduction

Adding Entrainment to Trainable NLG

• Aim: condition generation on preceding context

• Problem: data sparsity
• Solution: Limit context to just preceding user utterance

• likely to have strongest entrainment impact

• Need for context-aware training data: we collected a new set
• input DA
• natural language sentence(s)
• preceding user utterance
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inform(from_stop=”Fulton Street”, vehicle=bus, direction=”Rector Street”,
departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street
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I’m headed to Rector Street
inform(from_stop=”Fulton Street”, vehicle=bus, direction=”Rector Street”,

departure_time=9:13pm, line=M21)
Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

NEW→
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I’m headed to Rector Street
inform(from_stop=”Fulton Street”, vehicle=bus, direction=”Rector Street”,

departure_time=9:13pm, line=M21)
Heading to Rector Street from Fulton Street, take a bus line M21 at 9:13pm.
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Entrainment-enabled NLG System Architecture

Context in our Seq2seq Generator (1)
• Two direct context-aware extensions:

a) preceding user utterance prepended to the DA and fed into the
decoder

b) separate context encoder, hidden states concatenated
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Entrainment-enabled NLG System Architecture

Context in our Seq2seq Generator (2)

• One (more) reranker: n-grammatch

• promoting outputs that have a word or phrase overlap with the
context utterance

• overlap measure: BLEU-2 without brevity penalty:

logprob += weight ·
√
p1 · p2

19/ 24 Ondřej Dušek Sequence-to-Sequence NLG
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Context in our Seq2seq Generator (2)
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• promoting outputs that have a word or phrase overlap with the
context utterance
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logprob += weight ·
√
p1 · p2
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is there a later time

No route found later , sorry .
The next connection is not found .
I m sorry , I can not find a later ride .
I can not find the next one sorry .
I m sorry , a later connection was not found .

-2.914
-3.544
-3.690
-3.836
-4.003 '

'

inform_no_match(alternative=next)
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Context in our Seq2seq Generator (2)

• One (more) reranker: n-grammatch
• promoting outputs that have a word or phrase overlap with the
context utterance

• overlap measure: BLEU-2 without brevity penalty:

logprob += weight ·
√
p1 · p2
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Entrainment-enabled NLG Experiments

Experiments
• Dataset: public transport information

• 5.5k paraphrases for 1.8k DA-context combinations
• delexicalized

Automatic evaluation results BLEU NIST
Baseline (context not used) 66.41 7.037
n-grammatch reranker 68.68 7.577
Prepending context 63.87 6.456

+ n-grammatch reranker 69.26 7.772
Context encoder 63.08 6.818

+ n-grammatch reranker 69.17 7.596

• Human pairwise preference ranking (crowdsourced)
• baseline× prepending context + n-grammatch reranker
• context-aware preferred in 52.5% cases (significant)

20/ 24 Ondřej Dušek Sequence-to-Sequence NLG
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Entrainment-enabled NLG Experiments

Experiments
• Dataset: public transport information

• 5.5k paraphrases for 1.8k DA-context combinations
• delexicalized

Automatic evaluation results BLEU NIST
Baseline (context not used) 66.41 7.037
n-grammatch reranker 68.68 7.577
Prepending context 63.87 6.456

+ n-grammatch reranker 69.26 7.772
Context encoder 63.08 6.818

+ n-grammatch reranker 69.17 7.596

• Human pairwise preference ranking (crowdsourced)
• baseline× prepending context + n-grammatch reranker
• context-aware preferred in 52.5% cases (significant)
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Experiments
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• 5.5k paraphrases for 1.8k DA-context combinations
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Automatic evaluation results BLEU NIST
Baseline (context not used) 66.41 7.037
n-grammatch reranker 68.68 7.577
Prepending context 63.87 6.456

+ n-grammatch reranker 69.26 7.772
Context encoder 63.08 6.818

+ n-grammatch reranker 69.17 7.596

• Human pairwise preference ranking (crowdsourced)
• baseline× prepending context + n-grammatch reranker

• context-aware preferred in 52.5% cases (significant)
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Prepending context 63.87 6.456
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Entrainment-enabled NLG Experiments

Output Examples

Context is there a later option
Input DA iconfirm(alternative=next)
Baseline Next connection.
n-grammatch reranker You want a later connection.
Prepending context + n-grammatch reranker You want a later connection.
Context encoder + n-grammatch reranker You want a later option.

Context i need to find a bus connection
Input DA inform_no_match(vehicle=bus)
Baseline No bus found, sorry.
n-grammatch reranker I did not find a bus route.
Prepending context + n-grammatch reranker I’m sorry, I cannot find a bus connection.
Context encoder + n-grammatch reranker I’m sorry, I cannot find a bus connection.
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Entrainment-enabled NLG Experiments

Output Examples

Context is there a later option
Input DA iconfirm(alternative=next)
Baseline Next connection.
n-grammatch reranker You want a later connection.
Prepending context + n-grammatch reranker You want a later connection.
Context encoder + n-grammatch reranker You want a later option.

Context i need to find a bus connection
Input DA inform_no_match(vehicle=bus)
Baseline No bus found, sorry.
n-grammatch reranker I did not find a bus route.
Prepending context + n-grammatch reranker I’m sorry, I cannot find a bus connection.
Context encoder + n-grammatch reranker I’m sorry, I cannot find a bus connection.
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Entrainment-enabled NLG Experiments

Output Examples

Context i rather take the bus

Input DA inform(vehicle=bus, departure_time=8:01am,
direction=Cathedral Parkway, from_stop=Bowling Green,
line=M15)

Baseline At 8:01am by bus line M15 from Bowling Green to Cathedral
Parkway.

n-grammatch reranker At 8:01am by bus line M15 from Bowling Green to Cathedral
Parkway.

Prepending context You can take the M15 bus from Bowling Green to Cathedral
+ n-grammatch reranker Parkway at 8:01am.

Context encoder At 8:01am by bus line M15 from Bowling Green to Cathedral
+ n-grammatch reranker Parkway.
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Conclusion + Future Plans

Conclusion
• 1st fully trainable NLG system for dialogue systems capable of
adapting to previous user utterances

• significant BLEU improvement over baseline
• confirmed in human evaluation

Future Plans
• Longer context
• Fuzzy n-grammatching
• Avoiding delexicalization
• Integrate into an end-to-end SDS
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Conclusion + Future Plans

Conclusion
• 1st fully trainable NLG system for dialogue systems capable of
adapting to previous user utterances

• significant BLEU improvement over baseline
• confirmed in human evaluation

Future Plans
• Longer context

• Fuzzy n-grammatching
• Avoiding delexicalization
• Integrate into an end-to-end SDS
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Conclusion
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• significant BLEU improvement over baseline
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Thank you for your attention

Download it!
• Code: bit.ly/tgen_nlg
• Dataset: bit.ly/nlgdata

Contact me
Ondřej Dušek
o.dusek@hw.ac.uk

24/ 24 Ondřej Dušek Sequence-to-Sequence NLG

bit.ly/tgen_nlg
bit.ly/nlgdata
o.dusek@hw.ac.uk

	Outline
	Introduction
	The Task
	Problems We Solve
	Our Solution

	Basic Sequence-to-Sequence NLG
	System Architecture
	Experiments on the BAGEL Set
	Conclusions

	Entrainment-enabled NLG
	Introduction
	System Architecture
	Experiments

	Conclusion + Future Plans

