
Referenceless Quality Estimation for Natural Language Generation

Quality Estimation for NLG

• estimate NLG system output quality by comparing with source MR only – no reference texts needed

• useful for system development: word-overlap metrics such as BLEU unreliable + need costly references

• useful at runtime: reranking, triggering fallback strategies

Our Dataset

• outputs of 3 NLG systems on 3 datasets

• TGen & LOLS & RNNLG

• BAGEL & SFHot & SFRest

• CrowdFlower used to obtain human ratings

• overall quality rating on a 1–6 Likert scale

• 3+ ratings per system output

• using medians for consistency

• 2,460 instances total

• synthesising additional data:

a) introducing artificial errors
& lowering ratings

b) additional human references from source 
NLG datasets (with “perfect” ratings)

• up to 78k synthesised instances

Our NLG Quality Estimation Model

1) RNN GRU encoders for source MR
+ NLG system output to be rated

2) fully connected tanh layers

3) final layer – linear, predicting rating 
as a floating point number

• trained by minimising mean square error
against human-assigned ratings

• delexicalization to fight data sparsity
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Experiments & Results

• 5-fold cross-validation

• always better correlations than metrics

• lower than MT (less data & harder)

• 21% improvement with synthetic data

• with synthetic data: 
better MAE/RMSE than constant baseline

• cross-domain & cross-system 
performance poor, but small amounts of 
in-set data help greatly

bold = significantly better correlation than S1
* = using human reference texts for test MRs (i.e. not strictly referenceless)
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Conclusions

• 1st quality estimation system for NLG

• no need for references, better segment-level 
correlations than word-overlap metrics

• improvements over constant baseline suggest 
occasional large errors

• code available at:

https://github.com/tuetschek/ratpred

• future work: better networks, better error synthesis, 
more data (E2E NLG challenge), post-edits prediction
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