

A Context-aware Natural Language Generation Dataset for Dialogue Systems

Ondřej Dušek and Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague

May 28, 2016 LREC RE-WOCHAT workshop

- A new NLG dataset for dialogue systems
 - English public transport domain

- A new NLG dataset for dialogue systems
 - English public transport domain
- "Ordinary" NLG dataset (in our setting):
 - input DA (meaning) + natural language sentence(s)

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21) Go by the 9:13pm bus on the M21 line from Fulton Street directly to

4□ > 4問 > 4 至 > 4 至 > 至 り Q ○

Rector Street

- A new NLG dataset for dialogue systems
 - English public transport domain
- "Ordinary" NLG dataset (in our setting):
 - input DA (meaning) + natural language sentence(s)
- Our set:
 - input DA + natural language sentences + preceding context

NEW→I'm headed to Rector Street

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

- A new NLG dataset for dialogue systems
 - English public transport domain
- "Ordinary" NLG dataset (in our setting):
 - input DA (meaning) + natural language sentence(s)
- Our set:
 - input DA + natural language sentences + preceding context

I'm headed to Rector Street

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

 If the generator knows how the user asked, it should be able to produce a more natural response

- A new NLG dataset for dialogue systems
 - English public transport domain
- "Ordinary" NLG dataset (in our setting):
 - input DA (meaning) + natural language sentence(s)
- Our set:
 - input DA + natural language sentences + preceding context

I'm headed to Rector Street

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

<u>Heading to Rector Street</u> from Fulton Street, take a bus line M21 at 9:13pm.

 If the generator knows how the user asked, it should be able to produce a more natural response

Outline of this talk

1. Why should we look at preceding context: entrainment

3/13

Outline of this talk

- 1. Why should we look at preceding context: entrainment
- 2. How to obtain naturally looking contextual data
 - collecting our set

Outline of this talk

- 1. Why should we look at preceding context: entrainment
- 2. How to obtain naturally looking contextual data
 - collecting our set
- 3. A summary of the collected set

- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said

- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said
- Reusing words and syntax

Entrainment/alignment/adaptation in dialogue

- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said
- Reusing words and syntax
- · Occurs naturally, subconscious

how bout the next ride Sorry, I did not find a later option. I'm sorry, the next ride was not found.

- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said
- · Reusing words and syntax
- · Occurs naturally, subconscious

```
how bout the next ride

Sorry, I did not find a later option.

I'm sorry, the next ride was not found.
```

```
what is the distance of this trip
The trip covers a distance of 10.4 miles.
It is around 10.4 miles.
The distance is 10.4 miles.
```


- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said
- Reusing words and syntax
- Occurs naturally, subconscious
- Found to help dialogue success (Friedberg et al. '12)

Entrainment/alignment/adaptation in dialogue

- "Mutual linguistic convergence"
 - speakers primed (influenced) by previously said
- Reusing words and syntax
- Occurs naturally, subconscious
- Found to help dialogue success (Friedberg et al. '12)

Entrainment in dialogue systems

- Several experiments, successful (Lopes et al. '13, '15; He et al. '14)
- Limited, partially or completely rule-based

- Fully trainable NLG that allows entrainment
 - let the system adapt to users' words and syntax
 - · let the data handle the rules

- Fully trainable NLG that allows entrainment
 - let the system adapt to users' words and syntax
 - · let the data handle the rules
- · We hope for:
 - more natural system responses
 - · possibly higher task success
 - applicability to other domains, chat-based systems

- Fully trainable NLG that allows entrainment
 - let the system adapt to users' words and syntax
 - · let the data handle the rules
- · We hope for:
 - more natural system responses
 - · possibly higher task success
 - applicability to other domains, chat-based systems
- We need training data

- Fully trainable NLG that allows entrainment
 - let the system adapt to users' words and syntax
 - · let the data handle the rules
- · We hope for:
 - more natural system responses
 - · possibly higher task success
 - applicability to other domains, chat-based systems
- · We need training data
- ...that is why we collected this dataset!

- Alex English SDS for NYC public transport
 - https://github.com/UFAL-DSG/alex

6/13

- Alex English SDS for NYC public transport
 - https://github.com/UFAL-DSG/alex
- · Bus/subway services on Manhattan
 - Alex can do more, limited just for this set

6/13

- Bus/subway services on Manhattan
 - Alaman da mana limita dinat familia
 - Alex can do more, limited just for this set
- Users ask for a schedule, may request details/modify search

- Bus/subway services on Manhattan
 - Alex can do more, limited just for this set
- Users ask for a schedule, may request details/modify search
- 13 slots
 - from_stop, to_stop
 - departure_time
 - vehicle
 - duration
 - ...

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - both context and response

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - both context and response
- Limiting context to previous sentence
 - likely to have the strongest entrainment impact

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - · both context and response
- · Limiting context to previous sentence
 - likely to have the strongest entrainment impact

Collection progress

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - both context and response
- Limiting context to previous sentence
 - likely to have the strongest entrainment impact

Collection progress

1. Get natural user utterances in calls to a live dialogue system

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - both context and response
- Limiting context to previous sentence
 - likely to have the strongest entrainment impact

Collection progress

- 1. Get natural user utterances in calls to a live dialogue system
- Generate response DA

Getting natural utterances cheap and fast

Using crowdsourcing (CrowdFlower)

Addressing data sparsity

- Delexicalization (places, times etc. → "X")
 - both context and response
- Limiting context to previous sentence
 - likely to have the strongest entrainment impact

Collection progress

- 1. Get natural user utterances in calls to a live dialogue system
- 2. Generate response DA
- 3. Collect natural language paraphrases

- Record calls to live Alex SDS
 - assign tasks to people on CrowdFlower

You want a connection – your departure stop is *Marble Hill*, and you want to go to *Roosevelt Island*. Ask how long the journey will take. Ask about a schedule afterwards. Then modify your query: Ask for a ride at six o'clock in the evening. Ask for a connection by bus. Do as if you changed your mind: Say that your destination stop is *City Hall*.

You are searching for transit options leaving from *Houston Street* with the destination of *Marble Hill*. When you are offered a schedule, ask about the time of arrival at your destination. Then ask for a connection after that. Modify your query: Request information about an alternative at six p.m. and state that you prefer to go by bus.

Tell the system that you want to travel from *Park Place* to *Inwood*. When you are offered a trip, ask about the time needed. Then ask for another alternative. Change your search: Ask about a ride at 6 o'clock p.m. and tell the system that you would rather use the bus.

- 1. Record calls to live Alex SDS
 - assign tasks to people on CrowdFlower
 - varying synonyms in task description
 - people unaware that wording is important

8/13

- Record calls to live Alex SDS
 - assign tasks to people on CrowdFlower
 - varying synonyms in task description
 - · people unaware that wording is important
- 2. Manually transcribe on CrowdFlower

- Record calls to live Alex SDS
 - assign tasks to people on CrowdFlower
 - varying synonyms in task description
 - people unaware that wording is important
- 2. Manually transcribe on CrowdFlower
- Parse using Alex handcrafted SLU
 - parsing transcriptions gives better results than ASR n-best lists

9/13

Generating response DA

· Handcrafted simple rule-based bigram policy

Generating response DA

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance

what about a connection by bus

Generating response DA

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology

request(to_stop)

request for additional information

what about a connection by bus

Generating response DA

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information
- In a real dialogue, the correct reply would depend on longer history, but here we try them all

CrowdFlower interface

Context displayed at hand

- Context displayed at hand
- Minimal slot name description

- Context displayed at hand
- Minimal slot name description
- Short instructions

- Context displayed at hand
- Minimal slot name description
- Short instructions
- · Checks: contents, spelling; automatic + manual
 - · ca. 20% overhead (repeated submissions)

Dataset summary

Size

total response paraphrases	5,577
unique (delex.) context + response DA	1,859
unique (delex.) context	552
unique (delex.) context with min. 2 occurrences	119
unique response DA	83
unique response DA types	6
unique slots	13

Entrainment

Syntactic	\sim 59%
Lexical	\sim 31%
Both	\sim 19%

• subjective, based on word & phrase reuse, word order, pronouns

Thank you for your attention

Dataset available for download

- JSON + CSV
- CC BY-SA 4.0
- GitHub: bit.ly/nlgdata (link given in the paper)

Contact us

Ondřej Dušek & Filip Jurčíček Charles University in Prague odusek@ufal.mff.cuni.cz

References

Friedberg et al. (2012). Lexical entrainment and success in student engineering groups. *SLT*, pp. 404–409.

Hu et al. (2014). Entrainment in pedestrian direction giving: How many kinds of entrainment. *IWSDS*, pp. 90–101.

Lopes et al. (2013). Automated two-way entrainment to improve spoken dialog system performance. *ICASSP*, pp. 8372–8376.

Lopes et al. (2015). From rule-based to data-driven lexical entrainment models in spoken dialog systems. *Computer Speech & Language*, 31(1):87–112.