Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká

Martin Holub

{Hladka | Holub}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Inter-annotator agreement (IAA) — data 2014

CRY – confusion matrix (50 instances, 33 agreements = 66 %)

ENLARGE – confusion matrix (50 instances, 31 agreements = 62 %)

				В		
		1	2	3	4	u
	1	18	2	0	2	0
	2	4	7	1	4	0
Α	3	0	0	0	0	0
	4	2	1	2	5	0
	u	0	0	0	1	1

What agreement would be reached by chance?

Example 1

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 50 \% & 50 \% \\ A_2 & 50 \% & 50 \% \end{array}$$

Then

- ullet the best possible agreement is $100\,\%$
- the worst possible agreement is 0 %
- the "agreement-by-chance" would be 50 %

What agreement would be reached by chance?

Example 2

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 90 \% & 10 \% \\ \end{array}$$

Then

- ullet the best possible agreement is $100\,\%$
- ullet the worst possible agreement is 80 %
- the "agreement-by-chance" would be 82 %

What agreement would be reached by chance?

Example 3

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 80 \% & 20 \% \end{array}$$

Then

- the best possible agreement is 90 %
- \bullet the worst possible agreement is 70 %
- the "agreement-by-chance" would be 74 %

The situation from Example 3 can be simulated in R

```
# N will be the sample size
> N = 10^6
# two annotators will annotate randomly
> A1 = sample(c(rep(1, 0.9*N), rep(0, 0.1*N)))
 A2 = sample(c(rep(1, 0.8*N), rep(0, 0.2*N)))
# percentage of their observed agreement
> mean(A1 == A2)
[1] 0.740112
# exact calculation -- just for comparison
> 0.9*0.8 + 0.1*0.2
[1] 0.74
```

Cohen's kappa

Cohen's kappa was introduced by Jacob Cohen in 1960.

$$\kappa = \frac{\Pr(a) - \Pr(e)}{1 - \Pr(e)}$$

- \bullet $\Pr(a)$ is the relative observed agreement among annotators
 - = percentage of agreements in the sample
- Pr(e) is the hypothetical probability of chance agreement
 - = probability of their agreement if they annotated randomly
- \bullet $\kappa>0$ if the observed agreement is better than what would be expected by chance

Limitations

- Cohen's kappa measures agreement between two annotators only
- for more annotators you should use the more general Fleiss' kappa

- see http://en.wikipedia.org/wiki/Fleiss'_kappa

Inter-annotator agreement (2014)

CRY

Number of agreements: 33 (66 %) Number of disagreements: 17 (34 %)

Cohen's kappa: 0.437 Fleiss's kappa: 0.434

ENLARGE

Number of agreements: 31 (62 %) Number of disagreements: 19 (38 %)

Cohen's kappa: 0.438 Fleiss's kappa: 0.433

Inter-annotator agreement (2015)

CRY – Cohen's kappa

	Α	В	C	D
Α	_	0.36	0.28	0.41
В	_	_	0.37	0.41
C	–	_	_	0.33
D	–	_	_	_

ENLARGE - Cohen's kappa

CRY – Fleiss's kappa 0.35 ENLARGE – Fleiss's kappa 0.32

Automatic classifier – training error analysis ENLARGE (2014)

		GS						GS				
		1	2	3	4	u		1	2	3	4	u
	1	224	1	1	12	2	1	0.97	0.05	0.05	0.46	0.67
	2	2	17	3	0	0	2	0.01	0.81	0.15	0.00	0.00
C	3	1	2	15	0	0	3	0.00	0.10	0.75	0.00	0.00
	4	3	1	0	14	1	4	0.01	0.05	0.00	0.54	0.33
	u	0	0	1	0	0	u	0.00	0.00	0.05	0.00	0.00

Number of agreements: 270 (90%) Number of disagreements: 30 (10%)

A + B error analysis – ENLARGE (2014)

		GS						GS				
		1	2	3	4	u		1	2	3	4	u
	1	46	0	0	0	0	1	0.64	0.00	0.00	0.00	0.00
	2	11	14	0	1	0	2	0.15	1.00	0.00	0.08	0.00
A+B	3	3	0	0	0	0	3	0.04	0.00	0.00	0.00	0.00
	4	12	0	0	10	0	4	0.17	0.00	0.00	0.83	0.00
	u	0	0	0	1	2	u	0.00	0.00	0.00	0.08	1.00

Number of agreements: 72 (72 %) Number of disagreements: 28 (28 %)

Summary of manual annotation data analysis + Examination Requirements

You should be able to practically compute and understand/use

- categorical data distribution
- confusion matrices
- classifier accuracy
- inter-annotator agreement
 - simple percentage
 - Cohen's kappa
- probability (both conditional and unconditional) of errors of different types

Practical exercises in R

- Download two files with annotated data cry-A.csv and cry-C.csv.
 - https://ufal.mff.cuni.cz/courses/npfl054/demo
- Run R and read the data using read.csv().
 - Hint: see the posted Tutorial, Part I.
 - and create objects cry.A and cry.C.
- Make the confusion matrix between groups A and C.
 - Hint: use table(cry.A\$class, cry.C\$class)
- Compute simple agreement (in percentage) between A and C.
 - Hint: use diag() and sum()
- compute the Cohen's kappa value between groups A and C.
 - For hints see Part III of the Tutorial.

Homework

- Go through all details in the Tutorial (Parts I, II, and III)
- Get familiar with the data.table package
 just to understand Part II
- Do all exercises in Part III