
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Jan Václ

A Suspected Annotation Detection

Institute of Formal and Applied Linguistics

Supervisor of the thesis: Mgr. Barbora Vidová Hladká, Ph.D.

Study programme: Informatika

Specialization: Obecná informatika

Prague 2011

I would like to thank Mgr. Barbora Vidová Hladká for her great help and assis-
tance with this thesis, and my parents for their admirable support and patience.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date Jan Václ

Název práce: Detekce podezřelých anotaćı

Autor: Jan Václ

Vedoućı bakalářské práce: Mgr. Barbora Vidová Hladká, Ph.D., Ústav formálńı
a aplikované lingvistiky

Abstrakt:

Tato práce popisuje zp̊usob kontroly morfologické anotace pomoćı strojového
učeńı a představuje implementaci tohoto př́ıstupu – aplikaci MissTagger. Pro-
cedura kontroly zahrnuje jak detekci chyb, tak jejich opravu. Tento př́ıstup je za-
ložen na zjednodušeném algoritmu strojového učeńı, který si jednotlivé trénovaćı
př́ıpady (instance) ukládá př́ımo do paměti bez zobecňováńı. Za tyto instance
jsou považovány morfologické značky jednotlivých slov a jako rysy těchto instanćı
je brán jejich větný kontext pevné délky. Konkrétńı slova, jejichž morfologické
značky tvoř́ı tento kontext, se vyb́ıraj́ı buď př́ımo podle lineárńı struktury věty,
nebo na základě závislostńıho stromu jej́ı syntaktické analýzy. Do experiment̊u
k vyhodnoceńı tohoto př́ıstupu jsou zapojeny dva jazyky – čeština a angličtina.

Kĺıčová slova: anotace, detekce chyb, strojové učeńı

Title: A suspected annotation detection

Author: Jan Václ

Supervisor: Mgr. Barbora Vidová Hladká, Ph.D., Institute of Formal and Ap-
plied Linguistics

Abstract:

This work describes a machine learning approach for checking the part-of-speech
annotation, and presents its implementation – a system called MissTagger. The
checking procedure covers both error detection and error correction. MissTagger
employs a simplified instance-based learning algorithm where the words in the
text are recognized as instances. Part-of-speech tags of context of static length
are selected as features, no lexical information is included. The words whose tags
comprises this context are chosen based either on a linear or on a dependency-tree
structure of the sentence. Two languages are examined in the experiments for
evaluation, Czech and English.

Keywords: annotation, error detection, machine learning

Contents

Introduction 1

0.1 Motivation . 1

0.2 Corpus Annotation . 1

0.3 Goals and Contents . 2

1 Research 4

1.1 Related Work . 4

1.2 Our Approach . 5

2 Theory 6

2.1 Supervised machine learning . 6

2.2 Instance-based learning . 7

2.3 Classification Features . 8

2.3.1 Linear Features . 8

2.3.2 Dependency-tree Features 9

2.3.3 Positional and Non-positional Tags 11

3 From Theory to Implementation 13

3.1 Instance-based Idea . 13

3.1.1 Metric and Similarity . 13

3.2 Learning and Memory Representation 14

3.3 Searching and Classification . 15

3.4 Time and Memory Complexity . 16

3.5 User Interface . 17

3.6 Programming Language . 17

4 Experiments and Evaluation 19

4.1 Data . 19

4.1.1 Data Sources . 19

4.1.2 Training and Test Datasets 19

4.1.3 Tag Sets . 21

4.2 Tools . 21

4.2.1 Taggers and Parsers . 21

4.2.2 Other Tools . 22

4.3 Performance measures . 23

4.4 Results . 24

5

Conclusion 30

Bibliography 32

List of Figures 33

List of Tables 34

Appendix - CD-ROM Contents 35

Introduction

0.1 Motivation

Annotated linguistic corpora serve as a valuable resource for various linguistic

purposes. Their large sizes are especially helpful as a training material for a num-

ber of statistical methods often leading to practical applications. However, the

performance of these automatic approaches is closely related to the correctness of

the linguistic data and particularly its annotation, as summarized in (Dickinson,

2005, pp. 5–15). With the sizes of the corpora, manual error checking is very

expensive in the terms of money, time and people (qualified linguists are often

needed). Thus the research in this area is focused on the options of an automatic

error correction, or at least error detection.

0.2 Corpus Annotation

Linguistic corpus is a term for a large structured set of texts of a given language

(or multiple languages) with an additional information called annotation. This

annotation is of linguistic nature and is often designed to serve both manual

examination and automatic processing of the data. While its format may be quite

diverse, the linguistic areas that the information targets allows us to distinguish

two most common types of annotation:

Morphology Morphological annotation is word-oriented, i.e. to each word,

there is a corresponding piece of annotation called morphological tag. The tag

describes one or more features of the word, for example its part of speech, gender,

number etc. These features are often dependent on the context, some of them

can be determined directly from the form of the word, but often with some degree

of ambiguity. The term part-of-speech tag is also used in this area for denoting a

tag which indicates only the part of speech of this word. The process of assigning

morphological tag to each word in a text is called (morphological) tagging and

can be performed manually (by a linguist) or automatically (by an application

called tagger). The automatic tagging usually has two phases; the first one is

called morphological analysis and its output is a set of possible tags for a given

word regardless of its context (dictionaries and morphological rules are usually

used to achieve this task). The second phase, called disambiguation (or simply

tagging again), then chooses the appropriate tag from this set. This problem

1

can be used by linguistic rule-based approaches, machine learning methods or a

combination of both.

Syntax Syntactic annotation tries to depict the structure of sentence. It often

consists of word-oriented pieces of information describing the functions of the

words in the sentence, and a structure capturing relations between the words.

In modern linguistics, there are many theories about language grammars and

particular syntactic annotation form varies according to the theory it is based

on. One of the most common structure used in corpora is the phrase structure,

which is characteristic by gradually “grouping” the words into phrases forming

the sentence constituents. In this work, the dependency syntax is used, since it

is the most common approach for capturing the structure of the Czech language

sentences. As its name suggests, it represents rather dependency relations be-

tween the words and is somehow more robust to pitfalls of the free word-order

languages. Creating the syntactic structure of a sentence is called parsing, and

similarly to tagging, it can be achieved either manually or automatically. Simi-

larly to the case of morphology, an automatic parser can be based on linguistic

rules based on the corresponding grammar theory, on a machine learning method

or on a combination of both these approaches.

0.3 Goals and Contents

This work describes an experimental implementation of a simple supervised ma-

chine learning idea oriented on detection and correction of errors in the morpho-

logical annotation of a linguistic corpus. The system called MissTagger is based

on a simplified instance-based learning algorithm and works only with the mor-

phological tags instead of words. It takes the context of the examined word as a

feature vector, matches it with a learned instance, and in the case of error sus-

picion gives a suggestion of an alternative tag. However, the experimental part

is particularly the feature of choosing the context with the help of a syntactic

dependency tree instead of the simple linear sentence structure. The context size

can be set parametrically, but remains fixed throughout both the training and

the classification phase.

Description of the testing experiments are also presented in this work, as well

as their results. The MissTagger system is tested on Czech data (from the Prague

Dependency Treebank 2.01 – PDT) with both linear and dependency context,

1http://ufal.mff.cuni.cz/pdt2.0

2

http://ufal.mff.cuni.cz/pdt2.0

and on English data (Wall Street Journal from the Penn Treebank2 – WSJ). The

evaluation is presented using the standard performance measures.

The MissTagger application itself works with morphological (and syntactic)

annotation in the PML format3. However, several scripts enclosed as a part of

this work (see 4.4) provide conversion to allow working with the Penn Treebank

format. More format conversion scripts are also available as parts of the tools for

PDT and Czech Academic Corpus mentioned further in this work.

The first part of Chapter 1 shows some research and publications related to the

problem of annotation error detection and correction, the second one compares

generally these approaches with our solution. Chapter 2 depicts a basic theoretical

background of our approach and describes the focal part of the experiment –

choosing the type of classification features. The transition from the theory to

implementation is analysed in Chapter 3. Chapter 4 then shows the results of the

experiments, as well as the description of the testing process and the evaluation

measures used.

2http://www.cis.upenn.edu/~treebank/
3PML is the main format for PDT and Czech Academic Corpus 2.0.

3

http://www.cis.upenn.edu/~treebank/

1. Research

1.1 Related Work

Several automatic methods have already been examined in the area of corpora an-

notation error detection, namely concerning the part-of-speech annotation. The

approaches used so far are based either on linguistic rules as in (Květoň and Oliva,

2002) or on statistical models, as described for example in (Dickinson and Meurers,

2003), (Dickinson, 2005), and in (Boyd et al., 2007).

The authors Květoň and Oliva (2002) use automatically induced rules for tag-

ging error detection with the focus on negative (i.e. impossible) unigrams and

bigrams of tags and manual adjustments between multiple passings through the

corpus. The rules are applied gradually to unigrams, bigrams, and n-grams. How-

ever, these n-grams are in fact also bigrams, but somehow stretched — certain

classes of words are allowed to come between this pair of words (for example

punctuation).

Dickinson and Meurers (2003) suggest focusing on so-called variations, i.e.

strings of the same words annotated differently in different contexts. This idea

is structurally quite close to our approach, although they work with n-grams of

a variable length. They employ two heuristics to distinguish whether a variation

is an error or just a genuine ambiguity. The first one distrusts the long variation

n-grams, i.e. the longer the identical context is, the more likely the variation

is an error. The second heuristict considers the position of the examined word

within the variation — those located near the fringe of the variation n-gram are

more likely to be ambiguities than errors.

The idea of focusing not on the actual word strings, but working with their

part-of-speech classes, is proposed in (Dickinson, 2005). This approach implies

a significant increase of the error detection recall, since the more coarse division

of the compared units brings more statistical information about them. However,

more sophisticated heuristics are needed to maintain some reasonable level of

precision. An example of application of these ideas is shown in (Boyd et al.,

2007). The heuristics employed there make use of the phrase structure trees to

identify more reliable context for deciding between the error and the ambiguity.

It is also notable that almost none of the systems concerned with the anno-

tation checking detects and corrects errors produced by a tagger, but only the

manual annotation. While an exception can be found for example in (Elworthy,

1994), the application mentioned there is quite specific — it is specialized on one

4

type of tagger only and can be seen as just an extension of the tagger.

1.2 Our Approach

Our approach has two key ideas. The first one is the same as one of the key ideas

in (Dickinson, 2005), that is, somehow generalizing from the actual words to their

morphological tags. Actually, we go a little bit further than any of the methods

mentioned earlier — we do not concern with the word forms at all. Our method

checks each word (or to be more precise, its morphological tag) in a way that it

fetches its context’s tags and compares them with the learned instances, as well

as the word’s tag itself.

The second key idea of our approach is an alternative view of the context.

In the second part of our experiments, the fixed-size context is not based on

the linear structure of the sentence, but rather on the syntactic dependencies as

recognized by a parser. It should be kept in mind, however, that since we are

operating on possibly erroneous data, the errors in the morphological annotation

can be negatively reflected in the local efficiency of the parser, thus making this

dependency information less reliable.

5

2. Theory

2.1 Supervised machine learning

Supervised learning is a type of machine learning where the target function is

inferred with the help of labeled training data. This data consists of a set of

training examples paired with the according target function outputs. The learning

algorithm can then make use of the training dataset to construct an appropriate

hypothesis as an approximation of the target function (Kotsiantis, 2007).

The crucial part of the supervised learning approach is handling the previously

unseen instances, i.e. how to classify the instances that were not members of the

training dataset. The most common method is to generalize in some way. This

generalization often takes form of constructing a data structure, based on the

training data, that infers the information from this dataset to classify the new

instances in a similar manner. In the real-world applications, this is of course

done at the cost of losing the classification precision on data similar to (or same

as) the training set — the more generalization applied, the less precise this result

could be. Thus some balance between the ability to classify unknown instances

(generalization) and maintaining the classification precision has to be established.

The process of changing parameters of the machine learning algorithm to find this

balance is called tuning the algorithm (or its parameters).

One of the weak spots of relying on the training data blindly is their question-

able correctness. In the real applications, no training data (of some reasonable

amount) can be said to be absolutely correct, there is always some noise, a certain

amount of wrongly labeled examples. This is yet another reason to generalize in

some way over the training data.

The actual supervised learning algorithms can be divided into several cate-

gories according to the employed data structure used for the generalization:

• Logic based, for example decision tree learning,

• Perceptron-based, also known as neural networks, can be a single- or multi-

layered, or RBF (Radial Basis Function network – a special case of a three-

layered perceptron),

• Statistical – Naive Bayes or Bayesian networks

• Instance-based, also called lazy, for example k-Nearest Neighbor

6

• Support vector machines

A nice table comparing these methods from a number of various aspects can

be found in (Kotsiantis, 2007).

2.2 Instance-based learning

One of the most straightforward concepts among the machine learning approach-

es is the instance-based learning. It is based on the idea of storing all the training

examples in memory and postponing any generalization to the moment of classi-

fication. Then, the new instances are compared to the stored examples and the

classification is computed directly from the training data labels. In case of an

unknown instance, however, some generalization has to be done. The solution is

to find the most similar instance among the trained examples and let its output

label determine the classification of the new one.

The key part of this approach is obviously in defining what similar means.

A common solution is to establish some metric in the space of the instances and

according to this metric, the closest instance is considered to be the most similar.

The choice of the distance metric is often the crucial part of the algorithm

design. The most common is the Euclidean metric – the distance between two

instances xi and xj is defined:

d(xi, xj) ≡

√

√

√

√

n
∑

r=1

(ar(xi)− (ar(xj))2

where ar(x) denotes the value of the r-th attribute of instance x.

The k-Nearest Neighbor algorithm (also known just as k-NN) is a simple gener-

ic method of the instance-based learning application (Mitchell, 1997). The letter

k stands for the number of nearest (most similar) training examples which are

taken into account when deciding how the system should classify a new instance.

Then a majority vote (or the mean value, in case of a real-valued target function)

of these neighbors is usually used for determining the final classification of the

instance. Formally, the discrete-valued classifier function (i.e. the approximation

of the target function) f̂ can be defined as follows:

f̂(x) ≡ argmaxv∈V

k
∑

i=1

δ(v, f(xi))

7

where V is finite set of possible output classifications {v1, ..., vs} and δ(a, b) = 1

if a = b and 0 otherwise.

Another refinement of this method employs weighting of the votes according

to the neighbors’ distance to the new instance, so that the nearest neighbor have

more influence to the final classification than the most distant one. This weighting

will be reflected in f̂ by multiplying each neighbor by its weight:

f̂(x) ≡ argmaxv∈V

k
∑

i=1

wiδ(v, f(xi))

where the weights wi are computed as follows:

wi ≡
1

d(x, xi)2

2.3 Classification Features

The learning algorithm used in this work belongs to the class of supervised learn-

ing algorithms, namely instance-based learning algorithms (Aha et al., 1991).

The instances are assumed to be represented each by the same set of m fea-

tures. We recognize a feature to be a part-of-speech tag in a specific position

either in a linear list or in a tree structure, and a feature vector of length m is

considered as a context.

2.3.1 Linear Features

We assume a text Text = w1, w2, ..., wN to be a sequence of words in the sen-

tences. If the words are manually or automatically tagged, we can write Textt =

w1/t1, w2/t2, ..., wN/tN where ti is the part-of-speech tag corresponding to the

word wi. Since we disregard any lexical information, we are interested in a se-

quence of tags T = t1, t2, ..., tN only. A linear list T represents the data structure

from which we select the linear contexts. For the instance wi, we assume X pre-

ceding and Y following tags as a feature list, X + Y = m. The resulting feature

vector (ti−X , ..., ti−1, ti+1, ..., ti+Y) of length m is considered as the linear context

mX.Y . See Table 2.1 for the lengths of linear contexts we employ in this work.

For illustration, we list Czech sentence “Měśıčńı produkce uzenin a bouraného

masa se pohybuje okolo 120 tun.” (En: “The monthly production of the smoked

and cut meat fluctuates around 120 tons.”) in Table 2.2 with morphological tags

of the words.

8

context description

m1.1 one tag before and one after

m2.0 two tags before and none after

m2.1 two tags before and one after

m2.2 two tags before and two after

Table 2.1: Linear contexts

word in English morphological tag

Měśıčńı (The) monthly AAFS1----1A----

produkce production NNFS1-----A----

uzenin (of the) smoked (meat) NNFP2-----A----

a and J^-------------

bouraného cut AANS2----1A----

masa meat NNNS2-----A----

se (itself) P7-X4----------

pohybuje revolves VB-S---3P-AA---

okolo around RR--2----------

120 120 C=-------------

tun tons NNFP2-----A----

. . Z:-------------

Table 2.2: Linear context sentence example

Working with the linear context m2.1, the resulting feature vector for the

instance masa is

(J^-------------, AANS2----1A----, P7-X4----------)

i.e. tags of the underlined words.1

In a sample English sentence “The company had no comment on whether a

replacement would be named.”, using the linear context m2.1, the feature vector

of the word replacement is (IN, DT, MD).

2.3.2 Dependency-tree Features

We assume a text to be a sequence of sentences S = w1, w2, ..., wn. If the sentences

are manually or automatically parsed and the words are manually or automati-

cally tagged, we can write TreeS(V,E). Applying dependency-based approach to

parsing, a sentence is represented as a rooted tree with labeled nodes V and edges

E that capture dependency relation between two nodes, i.e. between the depen-

1For details on the tag set used see Section 4.1.3.

9

dent (child) and its governor (parent). The nodes are labeled by the words and

their part-of-speech tags. A dependency tree Tree represents a data structure

from which we select dependency-tree contexts. Let node N stands for the word

wi in Figure 2.1; we assume the (grand)parent nodes P1, P2, ..., PX on the path

from N to the root node R and children C1, C2, ..., CY of N as the feature list,

X+Y = m. Then the resulting feature vector (P1, ..., PX , C1, ..., CY) of length m

is considered as the dependency-tree context sX.Y of the word wi. See Table 2.3

for the dependency-tree context types we employ in the experiments.

N

C
1

C
2

...

R

Figure 2.1: Children and parents in the dependency-tree contexts

context description

s1.1 parent’s tag and the first child’s tag

s0.2 tags of the first two children

s1.2 parent’s tag and tags of the first two children

s2.2 parent’s tag, grandparent’s tag,

and the first two children’s tag

Table 2.3: Dependency-tree contexts

Returning to the sentence listed above, its dependency tree is shown in Fig-

ure 2.2. Working with the dependency-tree context s1.2, the resulting feature

vector for the instance masa is

(J^------------=, AANS2----1A----=, 0--------------=2)

i.e. tags in the circled nodes.

Using dependency-tree contexts is motivated by an idea that these contexts

are more relevant and thus more informative and reliable than the linear contexts,

which are of rather local character from the word order perspective. This concerns

2A special tag for “null child”.

10

Měsíční

AAFS1----1A----

produkce

NNFS1-----A----

uzenin

NNFP2-----A----

a

J^-------------

bouraného

AANS2----1A----

masa

NNNS2-----A----

se

P7-X4----------

pohybuje

VB-S---3P-AA---

okolo

RR--2----------

120

C=-------------

tun

NNFP2-----A----

.

Z:-------------

Figure 2.2: An example of a dependency tree

mainly the free word order languages, for which the dependencies captured in

trees bring particularly valuable information.

2.3.3 Positional and Non-positional Tags

Our basic typology of the morphological (or part-of-speech)3 tag notation is based

on the division summarized in (Feldman and Hana, 2010, pp. 60–63). They

distinguish two basic categories of tagsets, atomic and structured, dividing the

second one into two further subcategories – compact and positional. Since the

tagsets employed in this work are only the atomic and positional ones, we will

leave the compact subcategory aside. Also, for the sake of contrast, we will often

use a denomination non-positional for the atomic tags in the scope of this work.

The positional tags are applied mostly to the morphological tags (in the literal

sense) since they allow the description of more word features in a more compact

way. In this system, the tag of a word is a string of fixed length where each

position has its own meaning, specified by the author of the system. Using the

3The termsmorphological and part-of-speech tag are often used synonymously in this context,
meaning the broader sense of these labels. However, literally taken, part-of-speech tags capture
less information than the morphological tags, which can describe many other features of the
word, such as case or number.

11

example from Table 2.2, the word masa has a positional tag NNNS2-----A----

(using the Czech Positional Tag System4) with the meaning shown in Table 2.4.

pos meaning of the position value meaning of the value

1 Part of Speech N Noun

2 Detailed Part of Speech N Noun (general)

3 Gender N Neuter

4 Number S Singular

5 Case 2 Genitive

6 Possessor’s Gender - Not applicable

7 Possessor’s Number - Not applicable

8 Person - Not applicable

9 Tense - Not applicable

10 Degree of comparison - Not applicable

11 Negation A Affirmative (not negated)

12 Voice - Not applicable

13 Unused - Not applicable

14 Unused - Not applicable

15 Variant, Style, - Not applicable

Register, Special Usage

Table 2.4: Example – positional tag

The atomic tag system does not use position-specific information and often

denotes only one feature of a word, typically part of speech. On the other hand,

this notation is often more readable as the value of the tag may be an (more or

less) expressive abbreviation of its meaning, since its length is not theoretically

limited. For example, the word replacement from the English example from

Section 2.1 has tag NN, meaning that it is a “Noun, singular or mass” (using the

Penn Treebank tagset as described in (Marcus et al., 1993)). This example also

demonstrates that non-positionality is not necessarily constrained to one feature

only, however its characteric property is a limited set of tags given explicitly by

an enumeration.

4http://ufal.mff.cuni.cz/czech-tagging/

12

http://ufal.mff.cuni.cz/czech-tagging/

3. From Theory to

Implementation

During the reading of this chapter, it is important to have in mind the main

targets we pursued while designing the implementation. These were the runtime

speed of the final application and simplicity of the ideas and constructions used (to

enable a possible consecutive development). These targets were chosen because

of the experimental character of this work and influenced some of the decisions

mentioned further.

The implementational aspects are described in this chapter in rather general

manner. For more details on any of the actual programming solutions, the reader

is encouraged to read the Programming Documentation, which can be found on

the CD-ROM as a part of this work.

3.1 Instance-based Idea

After thorough examining the problem of experimental annotation detection and

correction, the instance-based machine learning approach was the foremost can-

didate for the solution. The first and main reason is that its quite straightforward

idea is simple to implement and the computational demands are not high even

when working with large amounts of the linguistic data.

The decision not to work with the lexical information of the words as the

instance features and consider their morphological tags only was motivated by

the idea to “help” the statistics. Using the wordforms (or lemmata) instead,

after training we would end up with an enormous amount of instances in memory,

while almost each of it had been seen only once. Then during the classification, we

would again encounter a large number of unknown words and moreover, we would

have no reasonable way to establish any similarity metric between the instances.

By generalizing to the morphological tags, which represent certain “bins” for the

words, these problems can be largely solved.

3.1.1 Metric and Similarity

The question of how to establish the similarity metric between two tags was

maybe the most problematic one in the whole implementation design. Working

with positional morphological tags, the first simple solution that comes in mind

13

is to define the distance of given two tags as the number of different values on

the corresponding positions.1 The definition of the distance of two strings (tags)

s1 and s2 of the same lenght l would be defined in this sense as follows:

d(s1, s2) ≡
l

∑

i=1

δ(s1[i], s2[i])

where δ(a, b) = 1 when a = b and 0 otherwise.2 Moreover, there is also the

possibility of weighting the individual positions to emphasize the morphological

categories according to them. Having the weight wi for the position i, we can

slightly modify the previous definition:

d(s1, s2) ≡
l

∑

i=1

wi · δ(s1[i], s2[i])

However, it proved to be that using this method, the mechanism of searching

for the most similar instances among the learned examples in the memory would

be either really slow (for each word to classify, it would have to go through all

the stored instances3), or very difficult to implement – using some sophisticated

heuristics. Thus the final decision was not to focus on the particular positions

within the tag and define the distance between two strings s1, s2 simply by their

comparison:

d(s1, s2) ≡ δ(s1, s2)

(having defined δ similarly for whole strings). In other words, the generic term

similarity is instantiated in this implementation as identity.

3.2 Learning and Memory Representation

During the learning phase, the necessary annotation data are read from the in-

dividual annotation files and saved into the memory. The data input of the

application is one or more PML files with the morphological layer of annotation

(plus the referenced analytical-layer files, if the dependency-tree context approach

is chosen). A simple XML parser extracts the tag contexts of each token and this

context is stored in the memory along with the given token’s own tag. When

encountering the sentence boundary while fetching the context, a special tag is

added to the context (one for the beginning of the sentence, another for its end

1This is also known as the Hamming distance as defined in (Hamming, 1950).
2And using the common computer science notation of indexing the string positions with the

square brackets.
3Number of the stored contexts varied from tens to hundreds of thousands in the experiments.

14

– i.e. after the final punctuation). Similarly, when fetching a dependency-tree

context, another special tag is added for the “null child” to capture the context

of a token which has not enough dependency children. (A special tag for a “null

parent” is not needed in this case, because the PDT implementation adds a tech-

nical root to each dependency tree, not corresponding to any of the words in the

sentence.)

In fact, the string of text representing the context serves as a key for further

searching — each unique context is stored only once and indexes a set of “target”

tags encountered in this context with their absolute frequency count among the

training data. The memory representation of an entry corresponding to one

context (of type m2.1) can be seen as a lookup table entry shown in the Table 3.1.

context tag count

(IN, DT, MD) NN 104

, 43

VB 37

Table 3.1: Example – memory representation of a context entry

3.3 Searching and Classification

When the learning is finished, the application opens the file with the morpholog-

ical annotation to correct (or more files, but they are actually processed one at a

time) and begins the classification phase with the use of the learned information.

Again, the application proceeds token by token, and the procedure of fetching

the context is analogous to the one during the learning phase. When the context

of a token is collected, the learned table is searched for the corresponding entry.

If this context is not found, the application does not dare to make any decision

and leaves the token as it is. But if the context exists in the table, then its set

of “target” tags is searched for the given token’s tag. If the tag exists in this set

(regardless of its frequency count), everything seems to be okay4 and the token

is again left as it is. But if the token’s tag is not found in the learned context’s

tag set, it seems suspicious and the application will alter the tag. For this substi-

tution, the tag with the maximum frequency count is chosen from the context’s

learned set of “target” tags.

For illustration, going back to the example shown in Table 3.1; let us con-

4This case can be seen as if the program were saying “I have seen this combination of context
and tag somewhere, so it is alright.”

15

sider having the learned table consisting only of this one context.5 Then the

Table 3.2 shows the summary of the possible classification outputs depending on

the circumstances.

examined token’s examined token’s action output

context tag tag

(IN, XX, MD) YY no change YY

(IN, DT, MD) , no change ,

(IN, DT, MD) YY change to NN NN

Table 3.2: Example – classification outputs

One remark has yet to be made: When the tag of a token is changed, the

newly assigned tag is used when fetching the following tokens’ contexts.6

3.4 Time and Memory Complexity

Due to the simplification of the similarity concept (see 3.1.1 for details), all the

procedures handling the learned table entries could be implemented quite fast.

Therefore in practice, more time-consuming are the operations of file opening and

reading than the actual computation. However, we will describe the theoretical

ammortized complexity of the individual procedures. For sake of the following

description, let n be the number of tokens in the given training data set and m

the number of tokens in the test data set.

Time

• The learning procedure for each training token consists of searching the

learning table for the given context and searching its set of “target” tags

for the tag of the token. Thanks to the effective tree implementation of

these two sets, each of the operations takes up to O(log(n)) time units.

Adding an entry to these sets costs each up to an additional O(log(n)).

Having considered this process for up to n tokens, the time complexity of

the whole learning phase is O(n · log2(n)).

• Searching the learned table during the classification is similar to the learn-

ing case, but when changing a suspicious tag, the process is a little more

5Of course, this would be practically impossible, as the context tags would have to be learned
as well along with their own contexts.

6This setting can be switched off in a specific combination of options described explicitly in
the parameter file.

16

complex. It requires going through all the “target” tags in the context’s

set looking for the one with the greatest frequency count, which costs O(n)

in the worst case. However, the worst cases of the two stages are in fact

somehow inverted (the more contexts, the smaller tag set has each of them,

and vice versa), therefore the combination of these two operations is again

somewhere around O(log2(n)). Hence for m testing data tokens, the overall

time complexity of the classification phase is O(m · log2(n)).

Memory The main and by far the most memory demanding data structure is

the learning table, consisting of a large amount of context and some number of

tags corresponding to them. This combination varies by the input language and

types of input texts used, but the theoretical upper bound of this number is O(n).

Or to put in another way, it is at most (t + 1) · n, where t is the context length

(i.e. each entry of the learned table is represented mainly by the context and one

“target” tag). In this case, the size of a string representing the morphological tag

is used as a unit.

3.5 User Interface

As an experimental application intended for use mainly by computational lin-

guists, MissTagger is designed as a command-line application. The paths to the

relevant files are passed to it through the command-line arguments. Most of the

parameters related to the learning algorithm and runtime of the application (such

as context type setting, details of the output format etc.) are specified in a special

parameter file.

For details on the usage of MissTagger and overview of its actual features and

settings, the reader is encouraged to read the User Documentation (and examine

the sample parameter file), which can be found along with the Programming

Documentation on the CD-ROM enclosed to this work.

3.6 Programming Language

The MissTagger application is programmed in C++ with use of the STL library

containers and algorithms. This choice was made early in the beginning of the

work and was motivated by the speed of the resulting code, which proved to be a

valid expectation. However, if this decision had to be re-thought again now when

the work is done, it might have ended up differently. The most serious candidate

17

language as an alternative would be Perl. The speed difference between these

two languages (most likely only slight on this task) would probably be only a

small price for the comfort of the code writing and backgrounds of the linguistic

libraries available especially from our university researchers.

18

4. Experiments and Evaluation

4.1 Data

Although the MissTagger application was originally intended to work with Czech

data only, we decided to conduct some of the experiments also on English data

for comparison of the results from the language-level perspective. This process

involved some adaptation of the data formats and still the English data was

restricted to participate only on some parts of the experiments.

4.1.1 Data Sources

Czech data The Prague Dependency Treebank (PDT) presents the largest an-

notated corpus of Czech language.1 The texts are syntactically analyzed using

the dependency approach with the main role of the verb. The annotations go

from the morphological layer through to the intermediate syntactic-analytical

layer to the tectogrammatical layer (the layer of an underlying syntactic struc-

ture). The process of annotation was performed in the same direction, i.e. from

the simplest layer to the most complex. This fact corresponds with the amount

of data annotated on each level — 2 million words have been annotated on the

lowest morphological layer, 1.5 million words on both the morphological and the

syntactic layer, and 0.8 million words on all three layers.

English data The Penn Treebank 2 was the first syntactically annotated English

corpus and remains quite popular for various academic purposes. It was created

at the University of Pennsylvania and contains about one million words, both

morphologically and syntactically annotated. The main part of the data consists

of the Wall Street Journal articles gathered during years 1988–89.

4.1.2 Training and Test Datasets

Both Czech training and test data were selected from PDT 2.0. The statistics

and description of data selection from the LDC edition of PDT 2.0 3 (Hajič et al.,

2006) is summarized in Table 4.1, Table 4.2 and Table 4.3. Both English training

and test data were selected from the Wall Street Journal section of the Penn

1http://ufal.mff.cuni.cz/pdt2.0
2http://www.cis.upenn.edu/~treebank/
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T01

19

http://ufal.mff.cuni.cz/pdt2.0
http://www.cis.upenn.edu/~treebank/
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T01

Treebank, release 2.4 The statistics and description of the English data selection

is presented along with the Czech in Tables 4.1, 4.2 and 4.3.

notation source # of # of

corpus tokens sentences

dCZ
1 PDT 2.0 364,640 22,333

dCZ
2 PDT 2.0 518,647 29,768

dCZ
3 PDT 2.0 883,287 52,101

dCZ
4 PDT 2.0 1,171,191 68,495

dCZ
5 PDT 2.0 1,535,831 90,828

dEN
1 PennTreebank 392,764 17,045

dEN
2 PennTreebank 875,105 38,241

dEN
3 PennTreebank 1,234,804 53,981

Table 4.1: Training data sets

notation source # of # of

corpus tokens sentences

dCZ
0 PDT 2.0 25,255 1,678

dEN
0 PennTreebank 24,995 1,061

Table 4.2: Testing data sets

notation source

folder

dCZ
1 full/mw/train-[1-8]

dCZ
2 full/amw/train-[1-8]

dCZ
3 full/{mw,amw}/train-[1-8]

dCZ
4 full/{amw,tamw}/train-[1-8]

dCZ
5 full/{mw,amw,tamw}/train-[1-8]

dCZ
0 full/mw/dtest5

dEN
1 TAGGED/WSJ/[00-07]

dEN
2 TAGGED/WSJ/[00-16]

dEN
3 TAGGED/WSJ/[00-23]

dEN
0 TAGGED/WSJ/24/WSJ 24[50-99].POS

Table 4.3: Training and test data source folders

The original intention was to include also some data from the Czech Academic

Corpus 2.06 (Hladká et al., 2008) in the test data, as its morphological annota-

tion is possibly erroneous. However, since there is no “correct” counterpart for

this annotation, all the testing data would have to be corrected and evaluated

4http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T7
5For technical reasons, only 139 (out of 179) files from this folder were used.
6http://ufal.mff.cuni.cz/rest/CAC/cac_20.html

20

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T7
http://ufal.mff.cuni.cz/rest/CAC/cac_20.html

manually in order to measure the performance. Unfortunately, performing this

task on such amount of data (i.e. of a size comparable to the other two testing

datasets) would require time and resources far beyond the scope of this work. For

those reasons, testing on the CAC 2.0 was relinquished eventually.

4.1.3 Tag Sets

Two primary tag sets were used in the experiments. The first one is the Czech

morphological positional tag system,7 the second one is the non-positional part-

of-speech tag set of the Penn Treebank – for illustration see Table 4.4.

When working with a positional tag set, the application allows the users to

focus only on some of the categories, i.e. tag positions. Therefore, we have

conducted two subsections of the experiment with the Czech tag set. The first

one used all of the 15 positions (tCZ
15) of the morphological tag, the second one

focused only on the positions for part-of-speech, gender, number, case and person

of the given word (tCZ
5). These five categories were chosen for their supposed

contribution to the desired context information, because in the Slavic languages,

the last four are the categories involving in the agreement (Corbett, 1994) (and the

part-of-speech is added for its undisputable importance for the context reliability).

The settings of the position choosing was common for both context tags and

the tag of the examined word, and, of course, remained the same through both

training and application phase.

description notation example

Czech positional tag set tCZ
15 AANS2----1A----=,

P7-X4----------=

Czech restricted positional tag set tCZ
5 A*NS2**-********,

(* stands for an ignored position) P*-X4**-********

Penn Treebank tag set tEN NPS, JJS

Table 4.4: Tag sets

4.2 Tools

4.2.1 Taggers and Parsers

The following linguistic tools were used for the morphological and syntactic anal-

ysis of the Czech and English data:

7http://ufal.mff.cuni.cz/czech-tagging/

21

http://ufal.mff.cuni.cz/czech-tagging/

• Czech

– perceptron-based tagger Morče;8

– perceptron-based parser (McDonald et al., 2005).

• English

– Stanford Log-linear Part-Of-Speech Tagger (Toutanova et al., 2003).9

The analyzers listed above are referred to in this work as AnyTagger and

AnyParser, respectively (for the corresponding language).

The accuracy of Czech tagger on the test data (see Table 4.2) is 88.5% and

the accuracy of English tagger on the test data is 96.7%. Such high accuracy of

the English tagger influenced our decision not to perform the experiments with

dependency-tree features for English.

4.2.2 Other Tools

For more convenient tagging, parsing and other data manipulation, several other

tools were used:

• tool chain10 – UNIX shell script for automatic text processing, integrating

processes of tokenization, morphological analysis, tagging and parsing, as

well as some basic format conversions (using btred – see further). It was

created for the Czech Academic Corpus project and is part of its distribu-

tion.

• btred11 – Perl-based interface for macro scripting specialized on processing

the PDT data. Created as a tool for PDT 2.0, and used in this work

especially for various data format conversions.

• various Perl and shell scripts – for tasks when the tools listed above were

insufficient, some simple scripts were written for the purposes of this work.

These tasks included especially the MissTagger output evaluation, but also

format conversions and adaptations of the English data. All these scripts

are enclosed to this work on the CD-ROM (see 4.4).

8http://ufal.mff.cuni.cz/morce
9http://nlp.stanford.edu/software/tagger.shtml

10http://ufal.mff.cuni.cz/rest/CAC/doc-cac20/cac-guide/eng/html/ch3.html#nastroje
11http://ufal.mff.cuni.cz/~pajas/tred/btred.html

22

http://ufal.mff.cuni.cz/morce
http://nlp.stanford.edu/software/tagger.shtml
http://ufal.mff.cuni.cz/rest/CAC/doc-cac20/cac-guide/eng/html/ch3.html#nastroje
http://ufal.mff.cuni.cz/~pajas/tred/btred.html

• Tree Editor TrEd12 – a viewer and editor of the PDT annotation files,

part of the PDT 2.0 distribution.

• Lexical Annotation Workbench (LAW)13 – an integrated environment for

morphological annotation created for Czech Academic Corpus project. It is

intended to be the primary viewer and editor for the MissTagger output.

4.3 Performance measures

We use standard performance measures to evaluate MissTagger. Before specifying

them, we introduce a set of variables that stands for the frequency of five different

situations that can appear while MissTagger checks the output of AnyTagger; the

variables are listed in Table 4.5.

variable # of words that

ok no AnyTagger tags correctly and MissTagger confirms its output

ok ko AnyTagger tags correctly and MissTagger re-tags them incorrectly

ko no AnyTagger mistags and MissTagger confirms its output

ko ok AnyTagger mistags and MissTagger re-tags them correctly

ko ko AnyTagger mistags and MissTagger re-tags them incorrectly

Table 4.5: Variables to evaluate experiments

We evaluate the subtasks of error detection and error correction using mea-

sures Accuracy, Recall, Precision, and F-measure separately:

• Adet =
ok no+ko ok+ko ko

ok no+ok ko+ko no+ko ok+ko ko

• Rdet =
ko ok+ko ko

ko no+ko ok+ko ko

• Pdet =
ko ok+ko ko

ok ko+ko ok+ko ko

• Fdet =
2∗Pdet∗Rdet

Pdet+Rdet

• Acor =
ok no+ko ok

ok no+ok ko+ko no+ko ok+ko ko

• Rcor =
ko ok

ko no+ko ok+ko ko

• Pcor =
ko ok

ok ko+ko ok+ko ko

• Fcor =
2∗Pcor∗Rcor

Pcor+Rcor

12http://ufal.mff.cuni.cz/~pajas/tred/index.html
13http://ufal.mff.cuni.cz/~hana/law.html

23

http://ufal.mff.cuni.cz/~pajas/tred/index.html
http://ufal.mff.cuni.cz/~hana/law.html

4.4 Results

We have performed 36 experiments with “any-tagged” Czech data so that 5·4+4 =

24 experiments with the linear contexts (five different training sets times number

of different linear contexts plus four experiments with the chosen tag positions)

and 2 · 4 + 4 = 12 experiments with dependency-tree contexts was conducted.

Only 3 · 4 = 12 experiments with the English data were performed. The smaller

number of experiments with the English data was caused by the fact that there

was only three different training data sets and we considered linear contexts only

(also because of the non-positional nature of the English tag set there was no

meaning of experimenting with chosen tag positions). Tables 4.6–4.9 provides a

concise summary of all the experiments. Each experiment is uniquely specified

by the training data set and by the context, the performance is listed separately

for the error detection and the error correction.

The experiments with the chosen tag positions (“tCZ
5 ”, see Section 4.1.3 for

details) were performed only on the largest training datasets of the Czech data

(i.e. dCZ
5 for linear contexts and dCZ

4 for dependency-tree contexts). Due to

their relatively non-convincing results we decided not to employ it in the further

experiments. The results obtained in these eight experiments are summarized in

Tables 4.8 and 4.9. All the other not explicitely marked results with the Czech

data concerns performing with all the tag positions (“t15
CZ”).

Some of the results are highlighted graphically. Namely, Figure 4.1 visualizes

the F-measure of error detection with the contexts m1.1 and s1.1 and with the

largest Czech and English training data sets, Figure 4.2 shows the best results

across the contexts and training datasets for individual “tasks” with both Czech

and English. One of the interesting things in this last comparison is that not

everywhere the largest training data sets are the most successful. This is due to

the nature of the learning algorithm, described in more detail in Section 3.

Detection When examining more deeply the relative success of the particular

context types within each language, there is a nice exhibit of a different character

of these two languages. While the Czech benefits mainly from the tags of the

preceding words (in the linear context), in the English also the following tags are

important. Looking at the results of the dependency-tree experiments with the

Czech sentences, it appears to be that going deep or broad into the tree does not

pay off, when the s1.1 context type gives by far the best results.

24

Correction Probably the most important column of the correction results from

the practical point of view is the Acor measure. It shows the accuracy of a ful-

ly automated tagging system where AnyTagger is followed by the MissTagger

correction. Comparing it with the separate AnyTagger accuracy (88.5% for the

Czech tagger and 96.7% for the English tagger), the numbers actually show cer-

tain degradation. Although the performance results in this field are not quite

convincing, some smaller tendencies can be seen here as well. The results appear

to be quite unrelated to the size of the training data (although there is a slight

tendency of the precision growth with the growth of the data volume), but some

of the context types are systematicely more successful than the others. Interest-

ingly, these are different ones than for the detection task – m2.2 for Czech and

m1.1 for English, this time. Although the dependency-tree results are not as ex-

plicit as the linear ones, there can also be a surmise of need of a “bigger” context

for the Czech language.

Yet another view on the performance of MissTagger is presented by the Ta-

ble 4.10. Its first numeric column displays results of experiments when no Any-

Tagger was employed and MissTagger was applied on correct (“clean”) data. The

second column shows the numbers of the previously described experiments and

the difference between these two columns is computed in the third one (in per-

centage points). For easy reference and comparison, the numbers expressing the

error rates of the Czech and English tagger are repeated in the last column, be-

cause these two last values are somehow comparable. The difference between the

number of changes MissTagger has made on “clean” and any-tagged data should

ideally be adequate to the AnyTagger error rate — this relation shows how the

MissTagger reacts to the actual number of errors in the annotation checked. How-

ever, it is obvious from this table that also this performance aspect of MissTagger

has quite poor results. Speaking of the English experiments, it could be almost

said that MissTagger is just guessing almost blindly, regardless of the actual er-

rors.

25

Figure 4.1: F-measure, contexts m1.1, s1.1, the largest training data sets

Figure 4.2: F-measure, best results across contexts

26

data context detection correction

set Adet Pdet Rdet Fdet Acor Pcor Rcor Fcor

(%) (%) (%) (%) (%) (%) (%) (%)

dCZ
1 m1.1 81.7 25.2 31.3 28.0 78.5 2.8 2.2 2.5

dCZ
1 m2.0 77.8 23.5 42.5 30.2 73.4 2.9 2.3 2.5

dCZ
1 m2.1 74.7 18.1 34.9 23.8 71.5 3.8 3.3 3.5

dCZ
1 m2.2 82.0 25.0 29.5 27.1 79.3 6.0 4.8 5.3

dCZ
2 m1.1 81.8 25.7 32.1 28.6 78.4 2.5 1.9 2.1

dCZ
2 m2.0 78.6 23.0 37.9 28.7 74.6 1.9 1.5 1.7

dCZ
2 m2.1 74.6 18.2 35.6 24.1 71.1 2.8 2.3 2.5

dCZ
2 m2.2 81.1 25.5 34.9 29.5 77.7 4.9 3.8 4.3

dCZ
3 m1.1 84.1 30.1 30.3 30.2 81.0 3.5 2.5 2.9

dCZ
3 m2.0 82.1 27.0 34.1 30.2 78.5 2.8 2.1 2.4

dCZ
3 m2.1 76.5 20.0 35.7 25.6 73.1 3.4 2.8 3.0

dCZ
3 m2.2 80.9 24.6 33.1 28.2 77.9 6.2 5.0 5.5

dCZ
4 m1.1 84.1 30.1 30.1 30.1 81.0 3.2 2.3 2.7

dCZ
4 m2.0 82.6 28.2 34.4 31.0 79.1 3.3 2.5 2.9

dCZ
4 m2.1 76.4 19.4 34.4 24.8 73.1 3.3 2.8 3.0

dCZ
4 m2.2 79.9 24.7 37.9 29.9 76.2 4.8 3.8 4.2

dCZ
5 m1.1 85.3 33.1 28.7 30.8 82.4 4.0 2.8 3.3

dCZ
5 m2.0 84.2 30.7 31.4 31.1 81.0 3.8 2.7 3.2

dCZ
5 m2.1 77.8 20.6 33.7 25.6 74.5 3.7 3.0 3.3

dCZ
5 m2.2 80.4 24.5 35.1 28.8 77.1 5.6 4.5 5.0

dEN
1 m1.1 96.0 18.9 6.1 9.2 95.9 6.1 5.3 5.7

dEN
1 m2.0 95.7 8.4 3.0 4.5 95.6 2.8 2.7 2.8

dEN
1 m2.1 92.6 10.4 15.9 12.6 92.2 2.3 2.1 2.2

dEN
1 m2.2 87.6 8.0 25.9 12.2 86.9 1.7 1.6 1.7

dEN
2 m1.1 96.4 24.8 4.3 7.3 96.3 7.0 5.7 6.3

dEN
2 m2.0 96.2 10.3 1.9 3.3 96.1 3.5 3.2 3.3

dEN
2 m2.1 94.1 11.6 11.8 11.7 93.7 2.0 1.8 1.9

dEN
2 m2.2 89.9 8.9 22.0 12.7 89.3 1.5 1.4 1.5

dEN
3 m1.1 96.5 27.1 3.5 6.2 96.4 7.1 5.6 6.3

dEN
3 m2.0 96.3 10.7 1.6 2.8 96.2 2.7 2.5 2.6

dEN
3 m2.1 94.5 11.8 9.9 10.7 94.3 2.6 2.3 2.4

dEN
3 m2.2 90.6 8.7 19.2 12.0 90.0 1.5 1.4 1.4

Table 4.6: Error detection and correction: linear contexts

27

data context detection correction

set Adet Pdet Rdet Fdet Acor Pcor Rcor Fcor

(%) (%) (%) (%) (%) (%) (%) (%)

dCZ
2 s1.1 84.4 29.7 27.3 28.4 83.0 3.3 2.7 3.0

dCZ
2 s0.2 84.5 21.7 14.3 17.2 81.7 4.4 3.2 3.7

dCZ
2 s1.2 82.4 19.3 17.3 18.3 80.8 3.3 2.8 3.0

dCZ
2 s2.2 83.3 21.2 17.3 19.0 81.8 5.4 4.5 5.0

dCZ
4 s1.1 85.8 32.9 24.2 27.9 83.6 3.0 2.4 2.6

dCZ
4 s0.2 85.0 22.3 13.1 16.5 83.4 6.0 4.3 5.0

dCZ
4 s1.2 83.4 20.3 16.0 17.9 81.9 4.0 3.3 3.6

dCZ
4 s2.2 83.3 20.3 16.1 18.0 81.9 5.4 4.5 4.9

Table 4.7: Error detection and correction: dependency-tree contexts

data context detection correction

set Adet Pdet Rdet Fdet Acor Pcor Rcor Fcor

(%) (%) (%) (%) (%) (%) (%) (%)

dCZ
5 m1.1 86.3 24.5 10.0 14.2 85.2 1.2 0.9 1.1

dCZ
5 m2.0 86.3 27.3 12.6 17.3 84.9 2.0 1.5 1.7

dCZ
5 m2.1 79.7 16.3 19.3 17.7 77.6 1.4 1.2 1.3

dCZ
5 m2.2 78.5 16.4 22.0 18.8 76.2 2.0 1.7 1.9

Table 4.8: Error detection and correction: tCZ
5 with linear contexts

data context detection correction

set Adet Pdet Rdet Fdet Acor Pcor Rcor Fcor

(%) (%) (%) (%) (%) (%) (%) (%)

dCZ
4 s1.1 86.5 26.8 11.1 15.7 85.3 3.4 2.6 3.0

dCZ
4 s0.2 86.4 16.6 5.1 7.8 85.8 1.7 1.5 1.6

dCZ
4 s1.2 83.9 15.7 9.6 11.9 82.9 1.6 1.4 1.5

dCZ
4 s2.2 82.5 15.0 11.6 13.1 81.3 1.4 1.2 1.3

Table 4.9: Error detection and correction: tCZ
5 with dependency-tree contexts

28

data context clean any-tagged difference AnyTagger

changed changed (pp) error rate

(%) (%) (%)

dCZ
1 m1.1 11.6 14.1 +2.5 11.5

dCZ
1 m2.2 11.4 13.4 +2.0 11.5

dCZ
5 m1.1 6.6 9.8 +3.2 11.5

dCZ
5 m2.2 14.0 16.2 +2.2 11.5

dEN
1 m1.1 1.0 1.1 +0.1 3.3

dEN
1 m2.2 10.7 10.8 +0.1 3.3

dEN
3 m1.1 0.4 0.4 +0.0 3.3

dEN
3 m2.2 7.3 7.4 +0.1 3.3

dCZ
2 s1.1 5.7 10.4 +4.7 11.5

dCZ
2 s2.2 7.1 9.2 +2.1 11.5

dCZ
4 s1.1 3.9 8.4 +4.5 11.5

dCZ
4 s2.2 6.6 9.0 +2.4 11.5

Table 4.10: Cross-section comparison of results with clean and any-tagged data

29

Conclusion

In this work we have implemented an instance-based learning system called

MissTagger and evaluated it on the output of an automatic tagger. This ap-

plication checks the morphological layer of a corpus annotation for possible an-

notation errors. The main focus of this work was on involving also the syntactic

layer of annotation and to compare it to the morphological-only approach. In the

experiments, either linear or dependency-tree feature vectors were trained on the

manually tagged and parsed data. Then the test data were tagged and parsed au-

tomatically by the supervised learning procedures that show accuracy below 90%

for Czech (accuracy 88.5% of the Czech tagger and 84.5% accuracy of the Czech

parser) and 96.5% accuracy of English tagger. Looking at the evaluation results,

the F-measures of English experiments are significantly smaller than F-measures

of Czech experiments mainly because of the significantly high difference between

the performance of the two taggers.

Contrary to the initial anticipation, the dependency-tree contexts does not

show significantly better results to the linear contexts. It is possible to guess

that this is caused by the relatively low accuracy of Czech parser. Having Czech

parser with higher accuracy will probably bring some improvement over the linear

contexts with respect to a free word order character of Czech. However, excellent

results cannot be expected since the parser itself operates on the output of a

tagger which is again automatic, therefore has also only a limited accuracy.

The error detection is definitely more successful than the error correction.

Improving the error correction is closely related to the size of training data and

the tag sequences distribution in it. This tendency can be seen also on comparison

of the Czech and English correction results.

Experimenting with choosing the tag positions in the Czech tag set did not

show any performance improvement. Although the corresponding categories play

important role in the agreement and context comparison, focusing only on them

did not help significantly the results of the method employed. One of the reasons

for this could be the quite complex relations between all the tag positions, so it

is difficult to just isolate some of them.

Unfortunately, the results have shown that the application in this form is not

employable in large scale in practice even for annotation error detection. With

this task in mind, the key measure is recall, and having the best numbers of this

value only around 35% (i.e. only one third of the actual errors are covered, plus

the corresponding precision also not quite convincing), the practical use of this

30

method does not seem realistic. However, the approach idea is still promising and

it seems worth further attempts to some modification and improvement. One of

the direction of the adjustment could be for example loosening the similarity

definition, thus increasing the detection recall. Another idea yet to be examined

is some sort of more tight cooperation between the morphological and syntactic

layer, for example starting with the more confident parts of the automatic tagger

and parser outputs and building on them gradually further.

31

Bibliography

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-Based Learning
Algorithms. In Machine Learning, vol. 6(1):pp. 37–66.

Boyd, A., Dickinson, M., and Meurers, D. (2007). Increasing the Recall of Corpus
Annotation Error Detection. In Proceedings of the Sixth Workshop on Treebanks

and Linguistic Theories. Bergen, Norway.

Corbett, G. G. (1994). Agreement, pp. 54–60. Pergamon Press, Oxford, UK.

Dickinson, M. (2005). Error Detection and Correction in Annotated Corpora.
Ph.D. thesis, The Ohio State University, USA.

Dickinson, M. and Meurers, W. D. (2003). Detecting Errors in Part-of-Speech
Annotation. In Proceedings of EACL-03, pp. 107–114. Budapest, Hungary.

Elworthy, D. (1994). Automatic Error Detection in Part of Speech Tagging.
In Proceedings of the International Conference on New Methods in Language

Processing.

Feldman, A. and Hana, J. (2010). A resource-light approach to morpho-syntactic

tagging. Rodopi, Amsterdam/New York, NY.

Hajič, J., Panevová, J., Hajičová, E. J., Sgall, P., Pajas, P., Štěpánek, J., Havelka,
J., and Mikulová, M. (2006). Prague Dependency Treebank 2.0.

Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. In The

Bell System Technical Journal, vol. XXIX(2).

Hladká, B. V., Hajič, J., Hana, J., Hlaváčová, J., Mı́rovský, J., and Raab, J.
(2008). Czech Academic Corpus 2.0.

Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification
Techniques. In Informatica, vol. 31:pp. 249–268.

Květoň, P. and Oliva, K. (2002). (Semi-)Automatic Detection of Errors in PoS-
Tagged Corpora. In Proceedings of the 19th Conference on Computational

Linguistics. Taipei, Taiwan.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a Large
Annotated Corpus of English: The Penn Treebank. In Computational Linguis-

tics, vol. 19(2):pp. 313–330.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-projective
dependency parsing using spanning tree algorithms. In HLT ’05 Proceedings

of the conference on Human Language, Technology and Empirical Methods in

Natural Language Processing, pp. 523–530. Vancouver, Canada.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. ISBN 0-07-042807-7.

Toutanova, K., Klein, D., Manning, C., and Singer, Y. (2003). Feature-Rich
Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of

HLT-NAACL, pp. 252–259.

32

List of Figures

2.1 Children and parents in the dependency-tree contexts 10

2.2 An example of a dependency tree 11

4.1 F-measure, contexts m1.1, s1.1, the largest training data sets 26

4.2 F-measure, best results across contexts 26

33

List of Tables

2.1 Linear contexts . 9

2.2 Linear context sentence example 9

2.3 Dependency-tree contexts . 10

2.4 Example – positional tag . 12

3.1 Example – memory representation of a context entry 15

3.2 Example – classification outputs 16

4.1 Training data sets . 20

4.2 Testing data sets . 20

4.3 Training and test data source folders 20

4.4 Tag sets . 21

4.5 Variables to evaluate experiments 23

4.6 Error detection and correction: linear contexts 27

4.7 Error detection and correction: dependency-tree contexts 28

4.8 Error detection and correction: tCZ
5 with linear contexts 28

4.9 Error detection and correction: tCZ
5 with dependency-tree contexts 28

4.10 Cross-section comparison of results with clean and any-tagged data 29

34

Appendix - CD-ROM Contents

• data folder – Contains sample data from three annotated copora: the Czech
Academic Corpus 2.0 (cac20 sample), the Prague Dependency Treebank
2.0 (pdt20 sample) and the Wall Street Journal part of the Penn Treebank
(Release 2, penntb-wsj sample). All the files with the .m (or .a) extension
in this folder are in the PML format and ready to be used by MissTagger.
Sample filelists with a basic division of the files to training and testing sets
are also located in the respective folders.

• misstagger folder – Source, binary and documentation of the MissTagger
application. Contains all the original source files along with the other mod-
ules used by MissTagger. The file bin/MissTagger-win32.exe is an ex-
ecutable binary file compiled for the 32-bit Windows operating system.
Linux users are recommended to use the Makefile in the source folder to
compile the binary themselves. The install-readme.txt file provides the
details about the installation, the two .pdf documentation files contains
various information about the application usage and implementation.

• scripts-[linux|perl|win] folder – Auxiliary scripts for data preparation
and evaluation of the MissTagger procedure.

• vacl-bach thesis.pdf file – This work in pdf format.

• readme.txt file – General information about the contents of the CD-ROM.

35

	Introduction
	Motivation
	Corpus Annotation
	Goals and Contents

	Research
	Related Work
	Our Approach

	Theory
	Supervised machine learning
	Instance-based learning
	Classification Features
	Linear Features
	Dependency-tree Features
	Positional and Non-positional Tags

	From Theory to Implementation
	Instance-based Idea
	Metric and Similarity

	Learning and Memory Representation
	Searching and Classification
	Time and Memory Complexity
	User Interface
	Programming Language

	Experiments and Evaluation
	Data
	Data Sources
	Training and Test Datasets
	Tag Sets

	Tools
	Taggers and Parsers
	Other Tools

	Performance measures
	Results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendix - CD-ROM Contents

