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Lecture #7

Outline

• Naïve Bayes algorithm

• Bayesian networks
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Bayes theorem

Probabilistic approach to classification Y = {y1,2 , . . . , yK }

y⋆ = argmaxyk ∈Y Pr(yk |x1, . . . , xm) (1)

Bayes theorem

posterior probability = prior probability × likelihood
marginal likelihood (2)

Pr(Y | A1, . . . , Am) = Pr(Y ) · Pr(A1, . . . , Am | Y )
Pr(A1, . . . , Am)

Then

y⋆ = argmaxyk ∈Y
Pr(yk) · Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm) (3)
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Conditional independence

Let X , Y and Z be three descrete random variables. We say that X is
conditionally independent of Y given Z if

∀xi , yj , zk , xi ∈ Values(X ), yj ∈ Values(Y ), zk ∈ Values(Z ) :

Pr(X = xi |Y = yj , Z = zk) = Pr(X = xi |Z = zk) (4)

I.e., P(X |Y , Z ) = P(X |Z ).
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Conditional independence

Do we enjoy our favorite water sport on this day? (Credit: T. Mitchel, 1997)

Sky AirTemp Humidity Wind EnjoySport
sunny warm normal strong No
sunny warm high strong Yes
rainy cold high strong No
sunny warm high strong Yes

Conditional independence of features given EnjoySport: presence of one particular
feature value does not affect the other features’ values given EnjoySport, e.g., if
the temperature is hot, it does not necessarily mean that the humidity is high and
the features have an equal effect on the outcome
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Conditional independence

If we work with two features A1, A2 and we assume that they are conditionally
independent given the target class Y , then

Pr(A1, A2|Y ) product rule= Pr(A1|A2, Y ) · Pr(A2|Y ) c. i. assumption= Pr(A1|Y ) · Pr(A2|Y )

Note: Product rule (a.k.a. Chain rule)

Pr(Am, . . . , A1) = Pr(Am|Am−1, . . . , A1) · Pr(Am−1, . . . , A1)
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Naïve Bayes classifier

y⋆ = argmaxyk ∈Y Pr(yk |x1, . . . , xm) = argmaxyk ∈Y
Pr(yk) · Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm)

– Assume conditional independence of features A1, . . . , Am given Y . Then

Pr(x1, x2, . . . , xm|yk) product rule=
∏m

j=1 Pr(xj |x1, x2, . . . , xj−1, yk) c. i. a.=

=
∏m

j=1 Pr(xj |yk)

– Pr(x1, . . . , xm) is constant. Then

y⋆ = argmaxyk ∈Y Pr(yk)
m∏

j=1
Pr(xj |yk) (5)

NPFL054, 2023 Hladká & Holub Lecture 7, page 7/23



Discriminative vs. generative classifiers

Computing Pr(y |x)

• discriminative classifier does not care about how the data was generated.
It directly discriminates the value of y for any x.

• generative classifier models how the data was generated in order to classify
an example.
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Discriminative vs. generative classifiers

• Logistic regression classifier is a discriminative classifier

f (x; Θ) = p(y = 1|x, Θ)

• Naïve Bayes classifier is a generative classifier

1 Learn Pr(x|y) and Pr(y)

2 Apply Bayes rule to get

Pr(y |x) = Pr(x|y) · Pr(y)
Pr(x) ∼ Pr(x|y) · Pr(y)

3 Classify x
y⋆ = argmaxy Pr(y |x) = argmaxy Pr(x|y) · Pr(y)
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Naïve Bayes classifier

Naive assumption of feature conditional independence given a target
class is rarely true in real world applications (high bias). Nevertheless,
Naïve Bayes classifier surprisingly often shows good performance in
classification (low variance).

Bias-Variance Trade-off -> next lecture
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Naïve Bayes Classifier
is a linear classifier

NB classifier gives a method for predicting rather than for building an explicit
classifier.

Let us focus on binary classification Y = {0, 1} with binary features A1, . . . , Am.

We predict 1 iff

Pr(y = 1)
∏m

j=1 Pr(xj |y = 1)
Pr(y = 0)

∏m
j=1 Pr(xj |y = 0)

> 1
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Naïve Bayes Classifier
is a linear classifier

Denote pj = Pr(xj = 1|y = 1), qj = Pr(xj = 1|y = 0)

Then

Pr(y = 1)
∏m

j=1 pxj
j (1 − pj)1−xj

Pr(y = 0)
∏m

j=1 qxj
j (1 − qj)1−xj

> 1

Pr(y = 1)
∏m

j=1(1 − pj)( pj
1−pj

)xj

Pr(y = 0)
∏m

j=1(1 − qj)( qj
1−qj

)xj
> 1
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Naïve Bayes Classifier
is a linear classifier

Take logarithm

log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1 − pj
1 − qj

+
m∑

j=1
(log pj

1 − pj
− log qj

1 − qj
)xj > 0

NB classifier as a linear classifier where

θ0 = log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1 − pj
1 − qj

θj = log pj
1 − pj

− log qj
1 − qj

, j = 1, . . . , m

NPFL054, 2023 Hladká & Holub Lecture 7, page 13/23



Bayesian belief networks (BBN)

• Naïve Bayes classifier assumes that ALL features are conditionally
independent given a target attribute.

• A Bayesian network is a probabilistic graphical model that encodes
probabilistic relationships among attributes of interest.

• BBNs allow stating conditional independence assumptions that apply to
subsets of the attributes.

• Dependencies are modeled as graph where nodes correspond to attributes
and edges to dependency between attributes.
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Bayesian belief networks
Settings

Consider an arbitrary set of random variables X1, X2, ..., Xm. Each variable Xi can
take on the set of possible values Values(Xi).

We define the joint space of the variables X1, X2, ..., Xm to be the cross product
Values(X1) × Values(X2) × Values(X3) × ... × Values(Xm).

The probability distribution over the joint space is called the joint probability
distribution Pr(x1, x2, ..., xm) where
x1 ∈ Values(X1), x2 ∈ Values(X2), ..., xn ∈ Values(Xm).

BBN describes the joint probability distribution for a set of variables by specifying
a set of conditional independence assumptions together with sets of local
conditional probabilities.
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Bayesian belief networks

Representation
1 A directed acyclic graph G = (V , E )

• nodes are random variables
• arcs between nodes represent probabilistic dependencies
• Y is a descendant of X if there is a directed path from X to Y

2 The network arcs represent the assertion that the variable X is conditionally
independent of its nondescendants given its immediate predecessors
Parents(X ); Pr(X |Parents(X ))

3 A set of tables for each node in the graph - a conditional probability table is
given for each variable; it describes the probability distribution for that
variable given the values of its immediate predecessors.
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Building a Bayes net

1. Choose the variables to be included in the net: A, B, C , D, E
2. Add the links
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Building a Bayes net

3. Add a probability table for each root node Pr(X ) and nonroot node
Pr(X |Parents(X ))
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Once the net is built ...

The join probability of any assignment of values x1, x2, ..., xm to the tuple of
network variables X1, X2, ..., Xm can be computed by the formula

Pr(x1, x2, ..., xm) = Pr(X1 = x1 ∧X2 = x2 ∧· · ·∧Xm = xm) =
m∏

i=1
Pr(xi |Parents(Xi))

(6)
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Bayesian belief networks

Two components
1 A function for evaluating a given network based on the data.
2 A method for searching through the space of possible networks.

Learning the network structure
• searching through the space of possible sets of edges
• estimating the conditional probability tables for each set
• computing the quality of the network
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Bayesian belief networks
Naïve Bayes Classifier
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K2 algorithm

This ’search and score’ algorithm heuristically searches for the most probable
belief-network structure given a training data.

It starts by assuming that a node has no parents, after which, in every step it adds
incrementally the parent whose addition mostly increase the probability of the
resulting structure. K2 stops adding parents to the nodes when the addition of a
single parent cannot increase the probability of the network given the data.
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Summary of Examination Requirements

• Hyperplane, margin, functional margin, geometric margin of example and
data set

• Large margin classifier
linearly separable data, supporting hyperplanes, support vectors, optimization
task, prediction function

• Soft margin classifier
not linearly separable data, supporting hyperplanes, support vectors, slack
variables, optimization task, hyperparameter C , prediction function

• Kernel trick
feature mapping, Kernel functions, prediction function

• Discriminative and generative classifiers
• Naïve Bayes Classifier

conditional independence, linear decision boundary
• Bayesian networks

structure, conditional probabilities
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