Automatic Text Categorization: The Case of Authorship Detection A gentle introduction to Machine Learning for students of Social Studies and Digital Humanities

Martin Holub holub@ufal.mff.cuni.cz Jakub Genči genci.jakub@gmail.com

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

- To demonstrate elementary principles of Machine Learning (ML)
 practical procedures
- Intuitively clear examples without technical details
- A typical Natural Language Processing task
- Students' work in an introductory ML course — first experience with a "real" ML task
- Follow-up to the previous introductory lesson on natural language processing and machine learning Class #8 (April 5, 2022)

Outline of the talk — logical parts

I. Elementary principles of Machine Learning

• Classification tasks in ML, training and test data, feature vectors, learning process, confusion matrices, evaluation, overfitting

II. General remarks on Text Categorization tasks

- Typical ML approach: models based on n-gram features
- Examples: Topic Detection, Native Language Identification

III. Authorship recognition

- Definition of the task, available data, authorship vs. authorial style
- Data preprocessing, development data sets
- Experiments and results

IV. Recap

- What we learned about automatic authorship recognition
- What we learned about general machine learning principles

Prague, Jun 17, 2022

A randomly chosen passage from a classical Czech novel

Uchopil ji za ni a vtiskl na růžové prsty žhavý polibek. »Ano, ruku ... I o mou i o tvou jde.« »Nastaly snad překážky?« »Nikoliv ... Zůstává při tom, že máš v neděli dopoledne přijít a rodiče o mne požádat.« »Proč má být tedy zle? ...«

»Dověděla jsem se zrazeným tajemstvím, že ti budou položeny podmínky, které prý nebudeš ani chtít a snad ani moci vyplnit.«

Can you recognize the author?

Can you recognize the author?

Uchopil ji za ni a vtiskl na růžové prsty žhavý polibek. »Ano, ruku ... I o mou i o tvou jde.« »Nastaly snad překážky?« »Nikoliv ... Zůstává při tom, že máš v neděli dopoledne přijít a rodiče o mne požádat.«

»Proč má být tedy zle? ... «

»Dověděla jsem se zrazeným tajemstvím, že ti budou položeny podmínky, které prý nebudeš ani chtít a snad ani moci vyplnit.«

Possible authors:

- (1) A. Stašek
- (3) J. Arbes
- (5) F. X. Šalda

(2) J. Neruda

- (4) K. Klostermann
- (6) T. G. Masaryk

Can you recognize the author?

Possible authors:

(1)	Α.	Stašek	(2) J	J.	Neruda
(3)	J.	Arbes	(4) K	ζ.	Klostermann
(5)	F.	X. Šalda	(6) T	Γ.	G. Masaryk

How to prepare for such a task?

- Read a lot of texts by given authors
- Try to recognize their "characteristic styles"
- Keep this knowledge in your mind
- Compare the given passage with the different styles of the authors
- Predict the author with the most similar style

Prague, Jun 17, 2022

How to recognize the author?

- Compare the given passage with the different styles of the authors
- Predict the author with the most similar style

In fact, you do NOT recognize authorship, BUT author's style!

Problems

- What if the styles of different authors are NOT different? ... or, only a little bit?
- What if the given passage does NOT reflect its author's typical style?

\longrightarrow Authorship recognition cannot be always certain, especially if the given passage is short

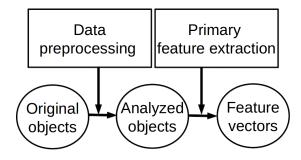
Prague, Jun 17, 2022

Machine Learning works similar!

- Computer learns from training data set
- It needs a large number of training examples
 a lot of example passages with known authors
- It creates a model with encoded "knowledge" of different authors
 "training procedure" or "learning process"
- Then the model can be used to predict even authors of new passages that were not seen during the learning process
- Different authors are interpreted as different **categories**, also called **"target values"**, which are assigned to passages

Prague, Jun 17, 2022

Each training example should be first analyzed ... and represented as a feature vector

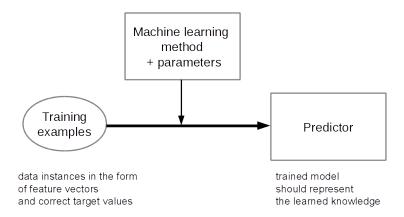


Each passage is analyzed and represented as an exactly organized set of characteristic properties (= feature vector)

Prague, Jun 17, 2022

Supervised learning process: From training examples to a trained model/predictor

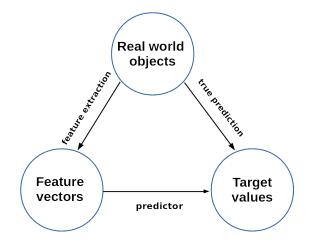
A predictor is the output of machine learning process



If target values are discrete, the predictor can be also called classifier

Prague, Jun 17, 2022

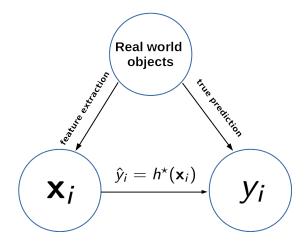
Predictor is a function



Categories that should be predicted are called target values

Prague, Jun 17, 2022

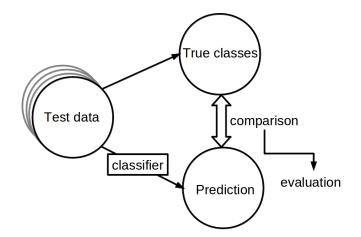
Prediction function should be found and chosen as a "best/optimal" hypothesis



From the mathematical point of view, the learning process is an **optimization problem**

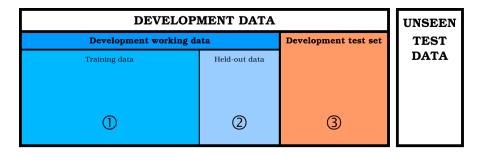
Prague, Jun 17, 2022

Finally, predictor should be evaluated



Test data set is a set of example passages with known authors that were **NOT used during the learning process**

Prague, Jun 17, 2022



Development data set is the only data that the developer can use

Development test set should simulate the "real" test set

Prague, Jun 17, 2022

Basic evaluation measures: accuracy and error rate

- Accuracy is the proportion of corretly predicted examples in a test set
- Error rate = 1 -accuracy

Examples

- There are 200 test examples. In the evaluation experiment, 180 of them were correctly predicted. What is the accuracy? What is the error rate?
- A model was improved and accuracy increased from 95% to 96%.
 Is it a good/great improvement?

A detailed view on evaluation results: Confusion Matrix (CM)

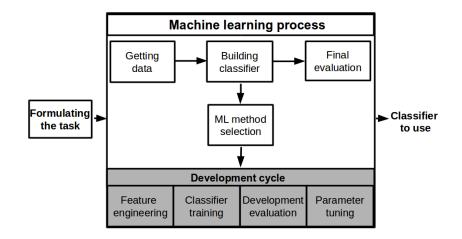
Example of evaluation results

- 6 target categories to be predicted, 431 test examples

	true					
predicted	01	02	03	04	05	06
01	85	3	7	0	0	0
02	0	64	18	14	1	1
03	0	1	41	1	0	0
04	2	1	0	57	1	1
05	1	1	4	1	53	5
06	0	1	16	0	0	51
Total predi Correct pre Accuracy		= 4 = 3 = 8				

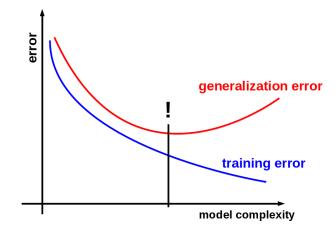
Prague, Jun 17, 2022

Typical machine learning development cycle



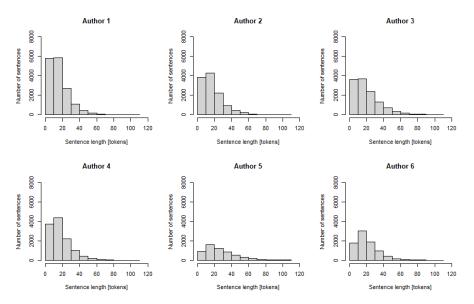
The central problem of Machine Learning (both theoretical and practical)

How to minimize the generalization error?



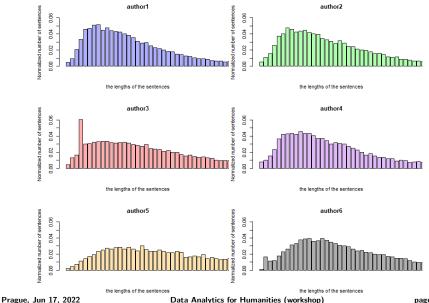
Prague, Jun 17, 2022

Sentence length distribution – does it differ?



Prague, Jun 17, 2022

Sentence length distribution – normalized!



page 21/57

- 1) Predictions based on Kolmogorov-Smirnov statistic: 35 % accuracy
- 2) Predictions using SVM learning algorithm: 40 % accuracy

Exploiting sentence length distributions — Part II Recognizing one author vs. others

A binary classification problem

Accuracy

- Author 1: 77 %
- Author 2: 78%
- Author 3: 78 %
- Author 4: 75 %
- Author 5: 85 %
- Author 6: 78 %

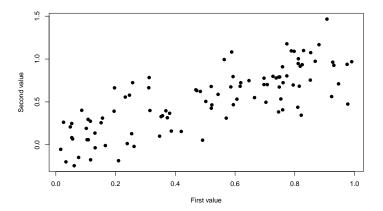
We used a learning method called Support Vector Machines (SVM)

- originally created by Vapnik and Chervonenkis in 1963
- further developed in 90s
- still commonly used (not only) with NLP tasks

Let us introduce it briefly.

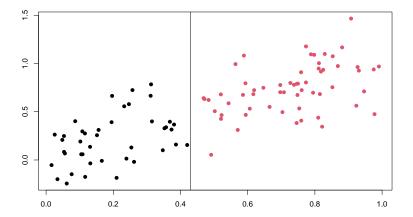
Firstly, what are vectors?

Each point in this graph visualizes one feature vector and represents one passage



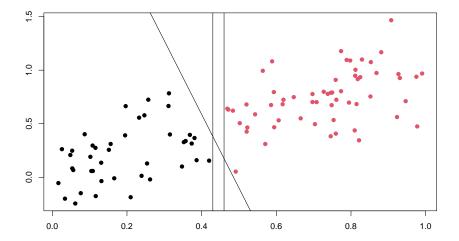
How do SVMs work?

They allow us to differentiate between two groups by looking for a *separating hyperplane*



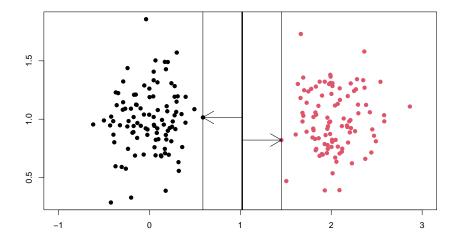
How do SVMs work?

However, there are many hyperplanes...



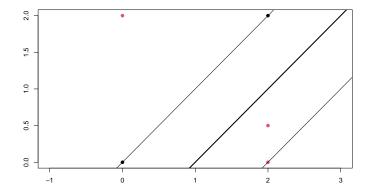
Which hyperplane is the best?

We want to maximize distance between the hyperplane and the vectors

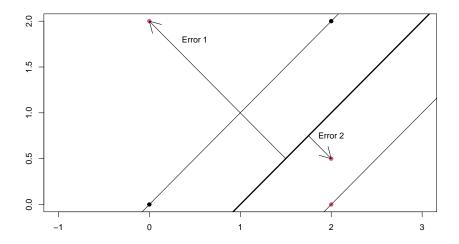


When this does not work?

We assumed that we can divide our vectors into two groups. That does not happen every time...



How to fix this problem?



How is it handled?

- we assign an error to each point which is inside the margin or incorrectly classified
- we want to minimize the sum of errors during the learning
- usually, sum of errors has some weight called cost

Cost is a **hyper parameter** - we have to find its optimal value during the training. Non-optimal values of cost lead to overfitting.

- small value of cost \implies large margin
- high value of cost \implies no points inside the margin

We only did binary classification. What if we have more than 2 classes? We use so called **one-vs-all** approach

- for *n* classes, we train *n* binary classifiers
- each classifier must give us some probability
- we choose the class with the highest probability

We want to get from the **n-grams in the text** to some **numeric feature vectors**

- one vector is one passage
- we start with number of occurences of an n-gram in a passage
- re-scaling to a value between 0 and 1
 - relative term frequency
 - weighted term frequency

Training the model (part 1)

We start with a table of n-gram frequencies:

•	author $^{\diamond}$	X. [‡]	můj [‡]	být [‡]	jenž [‡]	samý [‡]	na [‡]	\$	ten [‡]	v [‡]	všechen 🌼
1	1	0.004975124	0.014925373	0.089552239	0.009950249	0.004975124	0.009950249	0.004975124	0.014925373	0.019900498	0.009950249
2	1	0.000000000	0.000000000	0.044776119	0.014925373	0.000000000	0.004975124	0.009950249	0.024875622	0.014925373	0.009950249
3	1	0.004761905	0.000000000	0.052380952	0.009523810	0.000000000	0.004761905	0.000000000	0.004761905	0.004761905	0.004761905
4	1	0.000000000	0.004950495	0.059405941	0.004950495	0.000000000	0.009900990	0.004950495	0.039603960	0.019801980	0.000000000
5	1	0.000000000	0.000000000	0.036269430	0.005181347	0.000000000	0.005181347	0.005181347	0.015544041	0.010362694	0.000000000
6	1	0.000000000	0.000000000	0.009216590	0.013824885	0.000000000	0.004608295	0.018433180	0.004608295	0.013824885	0.000000000
7	1	0.005235602	0.000000000	0.036649215	0.005235602	0.000000000	0.010471204	0.015706806	0.020942408	0.010471204	0.000000000
8	1	0.030769231	0.000000000	0.025641026	0.005128205	0.000000000	0.015384615	0.015384615	0.015384615	0.005128205	0.000000000
9	1	0.015000000	0.000000000	0.04000000	0.010000000	0.000000000	0.020000000	0.010000000	0.000000000	0.005000000	0.000000000
10	1	0.010309278	0.015463918	0.030927835	0.010309278	0.000000000	0.015463918	0.015463918	0.030927835	0.000000000	0.005154639
11	1	0.000000000	0.000000000	0.009569378	0.023923445	0.000000000	0.004784689	0.009569378	0.033492823	0.000000000	0.004784689
12	1	0.010000000	0.005000000	0.020000000	0.000000000	0.000000000	0.010000000	0.010000000	0.020000000	0.030000000	0.000000000
13	1	0.030612245	0.000000000	0.015306122	0.000000000	0.000000000	0.015306122	0.000000000	0.010204082	0.010204082	0.005102041
14	1	0.000000000	0.000000000	0.028846154	0.014423077	0.000000000	0.019230769	0.019230769	0.014423077	0.014423077	0.004807692
15	1	0.000000000	0.000000000	0.027472527	0.021978022	0.000000000	0.000000000	0.021978022	0.010989011	0.032967033	0.005494505
16	1	0.000000000	0.000000000	0.008849558	0.008849558	0.000000000	0.008849558	0.004424779	0.039823009	0.030973451	0.022123894
17	1	0.010471204	0.000000000	0.010471204	0.010471204	0.000000000	0.005235602	0.000000000	0.020942408	0.010471204	0.000000000
18	1	0.009852217	0.000000000	0.019704433	0.009852217	0.000000000	0.009852217	0.004926108	0.009852217	0.014778325	0.000000000
19	1	0.000000000	0.000000000	0.009756098	0.014634146	0.004878049	0.019512195	0.009756098	0.000000000	0.000000000	0.004878049

Prague, Jun 17, 2022

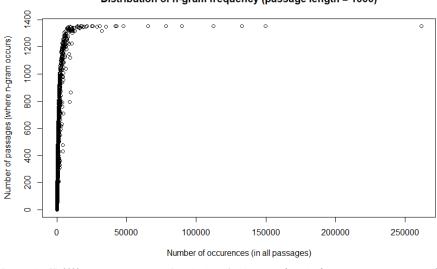
Next steps are:

- **1** estimating the value of cost (hyper parameter)
- 2 training the model
- **3** evaluate the model and (if needed) change the value of cost
 - we use the devel(opment) data set in this step

After this, we can evaluate the trained model using test passages and predict their authors

Which data did we use?

Let us look at the n-gram frequencies...



Distribution of n-gram frequency (passage length = 1000)

Prague, Jun 17, 2022

Which data did we use?

... or use a better way to visualize them:

1400 900 OO OO OO 000 000 Number of passages (where n-gram occurs) 1200 1000 800 009 0 400 ଞ୍ଚ 200 0 2 6 8 10 12

Distribution of n-gram frequency (passage length = 1000)

Log-scaled number of occurences (in all passages)

Prague, Jun 17, 2022

And the results were...

Trained on train and devel data sets with average passage length of 1000

Tested on test data set with average passage length of 1000

	true					
pred.	01	02	03	04	05	06
01	88	0	0	0	0	0
02	0	71	0	0	0	0
03	0	0	86	0	0	0
04	0	0	0	73	0	0
05	0	0	0	0	55	0
06	0	0	0	0	0	58
Total predictions			= 431			
Correct predictions		= 431				
Accuracy		= 100.0	0 %			

And the results were...

Trained on train and devel data sets with average passage length of 1000

Tested on test data set with average passage length of 200

	true					
pred.	01	02	03	04	05	06
01	429	4	2	4	3	1
02	1	333	9	0	3	3
03	0	5	406	0	1	0
04	2	7	4	353	3	1
05	5	4	4	7	263	0
06	3	2	5	1	0	284
Total predictions		= 2152				
Correct	predict	ions	= 2068			
Accurac	У		= 96.10	D %		

This model has some problems:

- it is a black-box we do not know what is important to determine the authorship
- lower number of n-grams may give us the same results
- we want to discover more about the task

- Can we identify key n-grams that are the best indicators?
- Can we select an effective subset of all n-grams?
 → "feature selection"
- Which n-grams are better frequent, or rare?
 → Is there any "measure" to recognize the good ones?
- A few experiments are shown

Using only first m most frequent n-grams for feature vectors

The value of m	SVM accuracy on the dev. data
20	62~%
40	75~%
60	$85 \ \%$
80	93~%
100	94~%
300	99~%
1000	100~%

Analyzing n-grams: Can most frequent ones help?

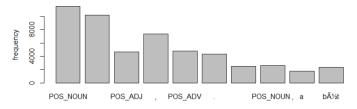
1	'POS_NOUN'	cf = 261382	df = 1352
2	'POS_VERB'	cf = 149630	df = 1352
3	'POS_ADJ'	cf = 132726	df = 1352
4	, ,	cf = 112382	df = 1352
5	'POS_ADV'	cf = 89798	df = 1352
6	· . ·	cf = 78393	df = 1352
7	'POS_ADJ POS_NOUN'	cf = 65496	df = 1351
8	'POS_NOUN ,'	cf = 47716	df = 1352

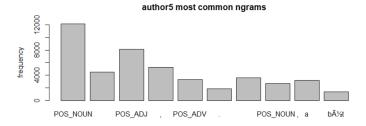
- 1 'POS_NOUN'
- 2 'POS_VERB'
- 3 'POS_ADJ'
- 4 ','
- 5 'POS_ADV'
- 6 '.'
- 7 'POS_ADJ POS_NOUN'
- 8 'POS_NOUN ,'
- 9 'a'
- 10 'být'

- 11 'se'
- 12 'POS_PROPN'
- 13 'POS_NOUN .'
- 14 'POS_NOUN POS_ADJ'
- 15 'POS_NOUN POS_NOUN'
- 16 'POS_NOUN POS_VERB'
- 17 'v
- 18 'POS_VERB ,'
- 19 'ten'
- 20 'on'

Most frequent 10 n-grams — different authors

author4 most common ngrams

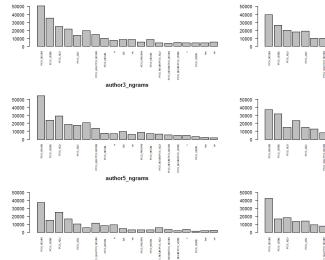


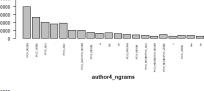


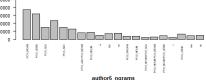
Most frequent 20 n-grams — distributions

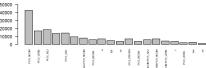
author1 ngrams

author2 ngrams





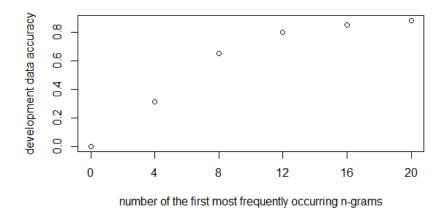




Prague, Jun 17, 2022

Reduced n-gram set – experiment 2

Using only first 20 most frequent n-grams and combining their proportions to feature vectors



We decided that we will ignore n-grams only in the lowest and the highest 1% of passages.

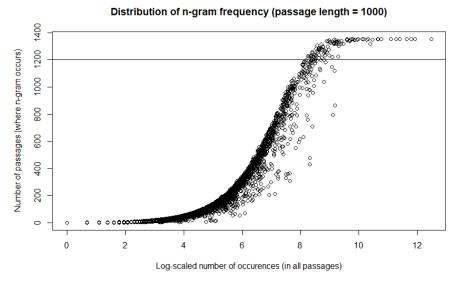
We had 4 options for training the SVM and 2 for predicting the authorship. So we did it:

Training data set	Test $(L = 1000)$	Test $(L = 200)$
Train (L = 1000)	99.07%	93.54%
Train + devel (L = 1000)	98.84%	94.28%
Train (L = 200)	99.30%	95.63%
Train + devel (L = 200)	99.30%	96.10%

Table: Table with accuracies for different predictions.

Lowering "number of passages" threshold

Reminder:



Prague, Jun 17, 2022

Trained on train and devel data sets with average passage length of 1000

Tested on test data set with average passage length of 1000

- started with n-grams which are in less than 1766 passages (99%)
- decreased the number of passages by 100
- stopped at 466

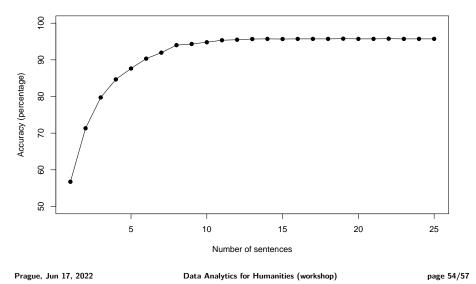
Results:

Max. number of passages	Correct predictions	Accuracy
466	429 / 431	99.54%
566	428 / 431	99.30%
 866	430 / 431	99.77%
 1466	427 / 431	99.07%
1566	427 / 431	99.07%
1666	371 / 431	86.08%
1766	419 / 431	97.22%

Unfortunately, we did not manage to analyze this in time. However, expectations are similar.

- We trained this model on the train data with average passage length of 200 and tested it on the devel set with average passage length of 200
- We took only the first sentence from each passage, then first two sentences, then first three, ..., until we used first 25 sentences from each passage (if possible)
 - 26 was the maximum number of sentences in 1 passage

If we choose only first few sentences...



What do our experiments tell us:

- adding development data to the training set improves performance
- it is better to use longer passages for testing
- less frequent n-grams are probably the key to this problem
- few sentences are enough to predict authorship

- Learning from the data
- Creating feature vectors
- Evaluation
- Generalization error

- Data sets for this project were developed by the Digilab research group in the National Library of the Czech Republic (https://digilab.nkp.cz)
- Experiments presented here were done by students of the NPFL 054 course – "Introduction to machine learning in the R system" at Faculty of Mathematics and Physics, Charles University, namely Jakub Genči and Aibat Kossumov