Sentence diagrams: their evaluation and combination

Jirka Hana

Barbora Hladká

Ivana Lukšová

Charles University in Prague,
Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics
Prague, Czech Republic
http://ufal.mff.cuni.cz/capek

Motivation

Data: treebanks in HamleDT

• Annotation scheme: Prague Dependency Treebank style

Parser: Malt Parser 1.7

Performance measure: Unlabeled Attachment Score

ar	bg	bn	ca	cs	da	de	el	en	es
80.4	90.9	80.3	89.7	86.7	88.0	88.4	82.5	88.2	89.8
et	eu	fa	fi	grc	hi	hu	it	ja	la
88.9	80.7	84.1	80.3	62.9	94.0	81.5	83.1	90.2	53.0
nl	pl	pt	ro	ru	sk	sl	sv	ta	te
81.4	91.2	86.7	84.2	85.4	82.2	82.0	85.0	77.4	90.3
tr							<u> </u>		AVG
81.6									83.6

Credit to Daniel Zeman.

- The results are not that great.
- More data should help
- Annotated data are expensive.
 - → Crowdsourcing

- The results are not that great.
- More data should help.
- Annotated data are expensive.
 - → Crowdsourcing

- The results are not that great.
- More data should help.
- Annotated data are expensive.
 - → Crowdsourcing

- The results are not that great.
- More data should help.
- Annotated data are expensive.
 - \rightarrow Crowdsourcing

Sentence diagrams and treebanks

capture relationships between words in the sentence.

will go mushrooming with my friend in the morning.

Our goals

- Collecting sentence diagrams produced by teachers and students.
 - Design a tool for drawing sentence diagrams.
 - 2 Collect diagrams of suitable quality and quantity.
- Using sentence diagrams as training data for parsers.

Our goals

- Collecting sentence diagrams produced by teachers and students.
 - Design a tool for drawing sentence diagrams.
 - 2 Collect diagrams of suitable quality and quantity.
- Using sentence diagrams as training data for parsers.

Our goals

- Collecting sentence diagrams produced by teachers and students.
 - Design a tool for drawing sentence diagrams.
 - 2 Collect diagrams of suitable quality and quantity.
- Using sentence diagrams as training data for parsers.

Čapek: A tool for drawing sentence diagrams

Data quality

Two aspects

- Similarity between sentence diagrams
- Combination of multiple diagrams

Similarity of sentence diagrams: Tree edit distance

- D_1 , D_2 two diagrams over an *n*-token sentence
- $TED(D_1, D_2, n)$ the minimal cost of turning D_2 into D_1 using a set of simple operations; normalized by n; inspired by (Bille, 2005)

$$TED(D_1, D_2, n) = \min \frac{\#SPL + \#JOIN + \#INS + \#LINK + \#SLAB}{n}$$

LAW VIII '2014 Hana, Hladká & Lukšová 8/19

Similarity of sentence diagrams: Tree edit distance

- D_1 , D_2 two diagrams over an *n*-token sentence
- $TED(D_1, D_2, n)$ the minimal cost of turning D_2 into D_1 using a set of simple operations; normalized by n; inspired by (Bille, 2005)

$$TED(D_1, D_2, n) = \min \frac{\#SPL + \#JOIN + \#INS + \#LINK + \#SLAB}{n}$$

LAW VIII '2014 Hana, Hladká & Lukšová 8/19

Similarity of sentence diagrams: Tree edit distance

- D_1 , D_2 two diagrams over an *n*-token sentence
- $TED(D_1, D_2, n)$ the minimal cost of turning D_2 into D_1 using a set of simple operations; normalized by n; inspired by (Bille, 2005)

$$TED(D_1, D_2, n) = min \frac{\#SPL + \#JOIN + \#INS + \#LINK + \#SLAB}{n}$$

LAW VIII '2014 Hana, Hladká & Lukšová 8/19

Similarity of sentence diagrams

$$TED(D_1, D_2, 6) = 7/6$$

LAW VIII '2014 Hana, Hladká & Lukšová 9/19

Goal: Combine m diagrams D_1, \ldots, D_m over a sentence $S = w_1 w_2 \ldots w_n$ into a single diagram by majority voting.

- First, determine the set of nodes (FinalNodes),
- Then, determine the set of edges (FinalEdges) over those nodes.

Goal: Combine m diagrams D_1, \ldots, D_m over a sentence $S = w_1 w_2 \ldots w_n$ into a single diagram by majority voting.

- First, determine the set of nodes (FinalNodes),
- Then, determine the set of edges (FinalEdges) over those nodes.

LAW VIII '2014 Hana, Hladká & Lukšová 11/19

$D_{_{1}}$	$D_{_2}$	D_3
d	c,d	C
<u>C</u>	a,b	a,b,d
a,b		

	a	b	С	d
а	Х	3	0	1
b	Х	Χ	0	1
С	Х	Χ	Χ	1
d	X	3 x x x	X	Χ

 $FinalNodes = \{[a, b], [c], [d]\}$

 $FinalNodes = \{[a, b], [c], [d]\}$

- $FinalNodes = \{[a, b], [c], [d]\}, FinalEdges = ?$
- Step 1: Assign weights to all token pairs (in each diagram)
- Step 2: Assign weights to all node pairs, i.e. potential edges
- Step 3: Greedily build a tree over the set of nodes.

- FinalNodes = $\{[a, b], [c], [d]\}$, FinalEdges =?
- Step 1: Assign weights to all token pairs (in each diagram)
- Step 2: Assign weights to all node pairs, i.e. potential edges
- Step 3: Greedily build a tree over the set of nodes.

Combination of sentence diagrams: Edges Step 1: Assign weights to all token pairs

token pair	D_1	D_2	D_3
(a, b)	0	0	0
(a,c)	1/2	1/4	1/3
(a, d)	0	1/4	0
(b, a)	0	0	0
(b,c)	1/2	1/4	1/3
(b,d)	0	1/4	0
(c, a)	0	0	0
(c,b)	0	0	0
(c,d)	1	0	0
(d, a)	0	0	0
(d,b)	0	0	0
(d,c)	0	0	1/3

LAW VIII '2014 Hana, Hladká & Lukšová 14/19

Combination of sentence diagrams: Edges Step 2: Assign weights to all node pairs

$$\begin{array}{l} \forall E = (N_1, N_2) \in \textit{Nodes} \times \textit{Nodes} : \\ \textit{weight}(E) = \sum_{(t, u) \in \textit{tokens}(N_1) \times \in \textit{tokens}(N_2)} \sum_{d=1}^m \operatorname{weight}^d(t, u) \end{array}$$

Weight of
$$([a, b], [c]) = (1/2+1/4+1/3) + (1/2+1/4+1/3) = 13/6$$

Because:

$$\begin{array}{cccc} D_1 & D_2 & D_3 \\ \hline d & c,d & c \\ \hline c & a,b & a,b,d \\ \hline a,b & \end{array}$$

token pair	D_1	D_2	D_3
(a, c)	1/2	1/4	1/3
(b,c)	1/2	1/4	1/3

LAW VIII '2014 Hana, Hladká & Lukšová 15/19

Combination of sentence diagrams: Edges Step 2: Assign weights to all node pairs

$$\forall E = (N_1, N_2) \in Nodes \times Nodes :$$
 $weight(E) = \sum_{(t,u) \in tokens(N_1) \times \in tokens(N_2)} \sum_{d=1}^{m} \operatorname{weight}^d(t, u)$

Weight of
$$([a, b], [c]) = (1/2+1/4+1/3) + (1/2+1/4+1/3) = 13/6$$

Because:

$$\begin{array}{cccc} D_1 & D_2 & D_3 \\ \hline d & c,d & c \\ c & J & J \\ c & a,b & a,b,d \\ \hline a,b & \end{array}$$

token pair	D_1	D_2	D_3
(a,c)	1/2	1/4	1/3
(b,c)	1/2	1/4	1/3

LAW VIII '2014 Hana, Hladká & Lukšová 15/19

Combination of sentence diagrams: FinalEdges Step 3: Greedily build a tree over the set of nodes.

 $FinalNodes = \{[a, b], [c], [d]\}$

	FinalEdges PotentialEdges weight	([a, b], [c]) 13/6	([c], [d]) 1	([a, b], [d]) 1/2	([c], [a, b]) 0	([d], [a, b]) 0	([d], [c]) 0
1^{st}	FinalEdges	([a, b], [c])					
	PotentialEdges		([c], [d])	([a, b], [d])	([c],[a,b])	([d], [a, b])	([d], [c])
2 nd	FinalEdges	([a, b], [c])	([c], [d])		-		
	PotentialEdges			([a,b],[d])		([d], [a, b])	([d], [c])

```
• Thus: FinalEdges = \{([a, b], [c]), ([c], [d])\}
```

Combination of sentence diagrams: FinalEdges Step 3: Greedily build a tree over the set of nodes.

 $FinalNodes = \{[a, b], [c], [d]\}$

	FinalEdges PotentialEdges weight	([a, b], [c]) 13/6	([c], [d]) 1	([a, b], [d]) 1/2	([c], [a, b]) 0	([d], [a, b]) 0	([d], [c]) 0
1 st	FinalEdges	([a, b], [c])					
	PotentialEdges		([c], [d])	([a, b], [d])	([c],[a,b])	([d], [a, b])	([d], [c])
2 nd	FinalEdges	([a, b], [c])	([c], [d])		-		
	PotentialEdges			([a,b],[d])		([d], [a, b])	([d], [c])

```
• Thus: FinalEdges = \{([a, b], [c]), ([c], [d])\}
```

Combination of sentence diagrams: FinalEdges Step 3: Greedily build a tree over the set of nodes.

 $FinalNodes = \{[a, b], [c], [d]\}$

	FinalEdges PotentialEdges weight	([a, b], [c]) 13/6	([c], [d]) 1	([a, b], [d]) 1/2	([c], [a, b]) 0	([d], [a, b]) 0	([d], [c]) 0
1 st	FinalEdges	([a, b], [c])					
	PotentialEdges		([c], [d])	([a, b], [d])	([c],[a,b])	([d], [a, b])	([d], [c])
2 nd	FinalEdges	([a, b], [c])	([c], [d])		-		
	PotentialEdges			([a,b],[d])		([d], [a, b])	([d], [c])

• Thus: $FinalEdges = \{([a, b], [c]), ([c], [d])\}$

Combination of sentence diagrams: FinalEdges **Step 3: Greedily build a tree over the set of nodes.**

 $FinalNodes = \{[a, b], [c], [d]\}$

	FinalEdges PotentialEdges weight	([a, b], [c]) 13/6	([c], [d]) 1	([a, b], [d]) 1/2	([c], [a, b]) 0	([d], [a, b]) 0	([d], [c]) 0
1 st	FinalEdges	([a, b], [c])					
	PotentialEdges		([c], [d])	([a, b], [d])	([c],[a,b])	([d], [a, b])	([d], [c])
2 nd	FinalEdges	([a, b], [c])	([c], [d])		-		
	PotentialEdges			([a,b],[d])		([d], [a, b])	$([d], \{c\})$

• Thus: $FinalEdges = \{([a, b], [c]), ([c], [d])\}$

LAW VIII '2014 Hana, Hladká & Lukšová 17/19

Sentence diagrams in Czech classes

- workbench of 101 sentences
- teachers (T_1, T_2) , secondary school students (S_1, S_2) , undergraduates (U_1, \ldots, U_7)

	(T1,T2)	(T1,S1)	(T1,S2)	(S1,S2)
# of sentences	101	91	101	91
TED	0.26	0.49	0.56	0.69

	U1	U2	U3	U4	U5	U6	U7	$ \!\! \!\! \vee$
# of sentences	10	10	10	10	10	10	10	10
TED	0.78	0.63	0.56	0.76	0.38	0.62	1.21	0.40

(relative to T1)

Sentence diagrams in Czech classes

- workbench of 101 sentences
- teachers (T_1, T_2) , secondary school students (S_1, S_2) , undergraduates (U_1, \ldots, U_7)

	(T1,T2)	(T1,S1)	(T1,S2)	(S1,S2)
# of sentences	101	91	101	91
TED	0.26	0.49	0.56	0.69

	U1	U2	U3	U4	U5	U6	U7	\mathbb{W}
# of sentences	10	10	10	10	10	10	10	10
TED	0.78	0.63	0.56	0.76	0.38	0.62	1.21	0.40

(relative to T1)

Sentence diagrams in Czech classes

- workbench of 101 sentences
- teachers (T_1, T_2) , secondary school students (S_1, S_2) , undergraduates (U_1, \ldots, U_7)

	(T1,T2)	(T1,S1)	(T1,S2)	(S1,S2)
# of sentences	101	91	101	91
TED	0.26	0.49	0.56	0.69

	U1	U2	U3	U4	U5	U6	U7	MV
# of sentences	10	10	10	10	10	10	10	10
TED	0.78	0.63	0.56	0.76	0.38	0.62	1.21	0.40

(relative to T1)

Thank you!

http://capek.herokuapp.com/?lang=en → log in as 'guest', pwd: 'Guest1'

LAW VIII '2014 Hana, Hladká & Lukšová 19/19