
Named entity type classification: Using local and context features.
Sergio Duarte

1. Introduction

Named entity classification is the recognition
and identification of linguistics elements that can
be cataloged in several categories as names of
organizations, persons, locations, time
expressions, among others [1]. This
classification represents an important subtask of
more complex information extraction and
linguistic applications, given that named entities
represents the main content of a document [2].

Several rule based approaches have been used to
work out this problem. Usually in these
approaches finite state patters are built using
specific linguistic information and word patters
[3]. However, recently machine learning
approaches have became more attractive given
that such methods overcome many of the
difficulties intrinsic in based rules approaches, as
their adaptability to different application contexts
and cost of maintenance [2].

Thus in the present work two different machine
learning approaches are contrasted. The first
method applied is Classification tree learning.
This method was chosen because it is easier to
understand and to interpret the results intrinsic in
the algorithm, which is very useful since the
main goal of this work is to analyze the impact
of different features in the classification task.
The second method is Bayesian learning and
particularly naïve Bayes classifier. This method
is studied because it has been used in a variety of
practical linguistic problems. Naturally the aim
of this work is to analyze which method is more
convenient given a particular scenario and to
study how the features behave for both
approaches.

The predefined named entity types are taken
from the hierarchy proposed by Magda
Ševčíková [4].

2. Data Description

The annotated data used for the experiments
were extracted from the Prague Dependency

Treebank1 which contains a subset of the Czech
National corpus. Three different sets of data
were used: training data, development data and
test data. Table 1 summarizes the length of each
dataset. For the training date 6109 samples were
considered, for the test data 803 samples and for
the development data 782, which correspond to
the number of named entities in the data.

Table 1: Datasets length and number of named entities in
each file

Data Sentences Words Named entities
Training 1.608 41.710 6.109
Development 201 4.915 782
Test 201 5.296 803

The information provided in each data includes
the lemma, form and morphological tag for each
word. The information is shown in Table 2. The
word form refers to the actual word that is found
in the text, for example in Table 2 is shown the
word “Krasnou” which is the Czech word for
“beautiful” inflated into the fourth case
(accusative). The lemma is a common
representation for the set of all the forms that
have the same meaning. Following the example,
the lemma for the word form “Krasnou” is
krásný, which is the word form without
inflections. It is important to mention that the
lemma was not considered in this study given
that its selection or codification is somehow
dependent of the data provider, for this reason its
use could be not reproducible in studies using
data from different sources.

Additionally, datasets provide morphological
information of the words. The Prague
Dependency Treebank use positional tags with
15 fields, which are summarize in Table 3. For
the present study only three fields were
considered: part of speech, gender and case. The
fields 6, 7, 13, 14, 15 are undefined in 99% of
the data, meanwhile the fields 8, 9, 10 and 12 are
undefined in more than 90% of the data, thus
these field were ignored. In addition the second
field that correspond to sub part of speech was
not considered given that the information
provided is highly specific and it would difficult

1 The data was provided by the lectures of the course
Introduction to Machine Learning (2007)

the reproduction of the experiments performed in
this work with data from different sources.

It is important to mention that it is not feasible to
consider all the information provided by the tag
given the enormous degrees of freedom that this
introduce to the hypothesis representation, which
is around 1010 solely for the morphological tag.
In particular it was found that when it is
considered more than 3 fields of the tag, the
computational resources to process and train the
models become very expensive.

Additionally, it is convenient to use only three
fields since a bigger hypothesis representation
requires more data, thus it is important to keep
the number of features as small as possible given
the size of the datasets (see Table 1).

Table 2: Information provided per word by the datasets

Element Description Example
Word form Word as is found

in the text
“Krásnou”

Lemma Headword or
form chosen by
convention to
represent the
lexeme.

krásný

Morphological
tag

Annotated
morphological
information of
the word form

AAFS4----1A----

Table 3: Enumeration of the morphological tag elements

Position Description
1 Part of speech
2 Sub part of speech
3 Gender
4 Number
5 Case
6 Possessive gender
7 Possessive number
8 Person
9 Tense
10 Grade
11 Negation
12 Voice
13 Reserve 1
14 Reserve 2
15 Variant

In the hierarchy classification provided in [4]
there are two different levels of predefined
named entities type. Table 4 illustrates the
classes only considering the first level and Table
5 extends some of the classes given Table 4 to
the second level.

Table 4 shows 11 types of named entities. 10 of
these classes are suggested by Ševčíková
hierarchy. The class “s” is annotated in the data
and even if it does not belong to the hierarchy it
was included in this study given than 7% of the
named entity corresponds to this class.

Table 5 illustrates some named entity type
classification considering two levels in the
hierarchy. It is important to mention that each
type in the first level can be expanded to more
than 5 and up to 11 classes. For more details of
these classifications refer to the reference [4].

Table 4: Named entity types for the first level in the
hierarchy

Class Named entity Example
a Number of

addresses
356

c Bibliographic
items

3.2

g Geographical
names

Prague

i Institutions Cambridge
m Media names Gazette
n Specific number

usages
0-0

o Artifact names Christoslaus
p Personal names Santiago
q Quantitative

expressions
Fifth

t Time expressions 2008
s Abbreviations SPP

Table 5: Some of the named entity types in the hierarchy
when two levels are considered

Class Named entity Example
pd Tittles Wolf
g_ Underspecified Mojunkumech

i_ Underspecified IHS
or Directive, norms Listiny
tf Feast Silvestra
at Phone numbers 57321068

In the current work only the first level is
considered for the classification, which means
that subtypes were merged into their main type.
This approach is convenient given that many
subtypes are not frequent in the data, producing a
negative impact in learning algorithms. In Table
6 is shown some of the low frequencies named
entity found in the data. In this table is possible
to see that many entity types have less than 5
samples, which makes those types irrelevant to
any machine learning algorithm. However after
merging the second level into its first level, we
obtain a significant better distribution of
frequencies, as it is shown in Table 7.

Table 6 Named entity frequency without merging (two
level) for some of the low frequency types

f Type
1 Pd
2 g_
3 i_
3 Or
3 Tf
4 At

Table 7 Named entity frequency considering only the
main level

f type
0 n
0 c
23 a
79 m
297 o
385 s
451 i
731 t
1133 g
2632 p

Additionally all the words found in the data that
does not belong to the hierarchy classification
were ignored. Consequently the following types
were ignored: segm, text,cap, lower,upper, ?, f

It is important to mention that for some samples
there are two or more named entity type
classification. Even if these samples reduce the
accuracy of the machine learning method
implemented, they were not ignored because it is
considered that such situation represents better a
real world scenario, where sometimes we don’t
have access to the test data to filter those kind of
annotations, furthermore it can be relevant for
specific applications to annotate a single sample
with two different named entity types.

Also it was found that the percentage of these
samples represents 12% of the training data and
16% of the testing data. Given these percentages,
the elimination of these samples may bias the
fairness of the experiments. Similarly it was not
found strong criteria to choose a particular
annotation for each one of the samples. For this
reason it is convenient to analyze the methods
including these samples.

3. Machine learning methods

3.1 Classification Trees

This method tries to find a set of rules to predict
a dependent variable Y from n training samples
Xi, which are called predictors. Each training
sample has categorical and/or continuous values–
measurable features for each observation- [5].
This prediction is performed building a decision
tree which approximates the target function. A
decision tree represents a set of if-then rules
based on the feature values of the samples, this
tree is built from the known data and it is used to
predict the class for further samples with known
features but unknown class. The Figure 1 shows
an example of a Partitioning tree [6].

The leaves in the tree represent a partition of the
space of all possible observations. It is important
to note that in statistical problems the
distribution of classes over X can overlap [6], for
this reason the distribution of the class at each
node can be represented as a probability
distribution in which some criteria is used – for
instance Bayes decision rule- to select the one
that has the maximum probability or the one that
minimize the error.

Figure 1: Partition tree example: The leaves show the
proportion of class #1 over class #2 reached the given
node [6]

The tree is built recursively starting with the root
containing all the samples of the training data,

then the algorithm choose the “best” feature to
split the sample space, in this step all the features
and its possible values are evaluated over some
criteria function which measure the “purity” of
the two children nodes (for binary splitting case
that is the method used in this work), this
function measure somehow the quality of the
distribution in each node [7]. The Gini index was
used as the splitting criteria [6]:

Equation 1: Gini index

∑∑ =
−=

k
ikkj ikij ppp 2

!
1

The value pik represents a multinomial
distribution over the classes at the node i.

Once the best possible feature to split the current
node is found, the algorithm assigns a class to
the node. This task is done using the following
formula [7]:

The partition and classification processes are
done on every node until it has been reached a
maximum level in the three –established as a
parameter- or when there is only one observation
in each new child created [7].

Equation 2: Assigning of classes to nodes [7]. c(i|j) is the
cost of misclassifying i as j, π(i) is the prior probability of
i (estimated from the training data), Ni is the number of
class i in the training data and Ni(t) is the number of
samples with class i in the node. We select class if the
inequality is satisfied.

j

i

i

i

N
N

tNjjic
tNijic

>
)()()|(
)()()|(

π
π

3.2 Naïve Bayes

This classification method is suitable when each
instance of the problem can be represented as
tuples of attributes of the form {a1, a2, a3, …, an},
and the target function evaluated on each
instance, f(x), can take any value from a finite set
of values V [8].

The prediction of the target function for new
instances is obtaining getting the most probable
target value Vmax as is described in equation 3
[8].

Equation 3: Most probable target value for a given
sample

)()|,...(maxarg

),...|(maxargmax

2,1

2,1

jjn
Vv

nj
Vv

vPvaaaP

aaavPV

j

j

∈

∈

=

=

The two probabilities involved in equation 3 are
calculated assuming that the conditional
probabilities of the features are independent.
This assumption leads us to the Naïve Bayes
classifier which is expressed by equation 4 [8].

Equation 4: Naive Bayes Classifier. Where ai refers to the
i-th attribute of the sample and vj denotes the j-th possible
class value.

∏
∈

=
i

jij
Vv

vaPvPVnb
j

)|()(maxarg

The probability P(vj) is estimated counting the
frequency of each possible class in the training
data., The probability P(ai | vj) is estimated using
equation 5 [8].

Equation 5: m-estimate of probability

mn
mpnC

+
+

In equation 5, n correspond to the total number
of time that vj appears in the data and nc is the
number of times of vj in the presence of the
attribute value ai, p corresponds to a prior
estimation of the probability of for this case is
set to 1/k (where k is the number of possible
values). [8]

4. Implementation

Given that both methods can use the same
problem representation, that is a set of tuples in
the form xi (a1, a2, a3, …, an ,) and classes ci that
characterized the sample, a matrix representation
is used to store the attributes values and classes
calculated from the training and testing data.

In the present work the entire implementation
was done in R. The library XML was used to
extract the data, the library rpart was used to
perform the classification tree and the library
e1071 to run naïve Bayes.

The implementation was organized in three
different R script files: f_engine.R, training.R
and testing.R, in the following sections is

described the organization of each file and the
main R functions used.

4.1 Feature extraction (Script f_engine.R)

First lines of this script define the following
parameters:

• w1 and w2: Size of the window for the
morphological features: w1 represents
the number of words before and w2 the
number of words after.

• ww1 and ww2: Size of the window for
the word length feature

• www1 and www2 : Size of the window
for the word class feature

The main function of this script is getFeatures.
This function constructs the matrix with the
feature values for each sample of the training or
test data. For this purpose the function has too
arguments: the path of the XML file from which
we will extract the features and the vector with
the named entity references.

Also this script defines several functions to
extract the following features:

• Morphological information (Function
morphoF): This feature is calculated in
a window of size specified by the
parameters w1 (number of words
consider before the name entity) and w2
(number of words consider after the
name entity). In fact for each word is
generated the three following features:

o POS (1)
o Gender (3)
o Case (5)

• Word Classification (Function

wordClass): This function assigns a
class to the word in evaluation and its
context. The size of the window is
specified by the parameters www1 and
www2. The possible classes are listed
above:

o L: all letter are lowercase
o C: starts with capital
o U: all uppercase
o N: contains a number
o A: all numbers
o Z: other

• Hyphened (Function wordHyphen):
This function determines in the word
contains special characters or if it is
hyphened. The word is classified in one
of the following options:

o H: constains hyphen
o D: contains dot
o M: constains $
o F: contains ‘/’
o P: contains ‘%’
o Z: other

• Word length (Function wordLength):
This function calculates the length of
the word and its context. The window
size is specified by the parameters ww1
and ww2.

• Ne distance : This feature is calculated

inside the function getFeatures and
represent the number of words between
the word in evaluation and the previous
two named entities found – the value
store correspond to the mean of the two
distances-.

• Position of the word in the sentence and

length of the sentence are calculated
inside the main function as well
(getFeatures)

It is important to mention that numerical features
were categorized using quintiles, which are
quantiles with 5 regular intervals, each one
having the same number of items. The
motivation of this categorization is to let both
machine learning methods to create more general
rules, avoiding some over fitting. For this
purpose the data was preprocessed in order to
obtain the correct interval of values for each non
categorical feature. The function mycut evaluates
a given number and returns its category
according to the intervals preprocessed. Each
category is represented by a letter from the
following set: {A,B,C,D,E}.

4.2 Training and testing script

The training and testing script files start
including the script f_engine.R which contains
the functions needed to extract and calculate the
features from the training and test XML files.
After this line it is necessary to specify three
different paths:

• path: path in hard disk for the file
*.ne.oneword.xml

• path2: path in hard disk for the file
*.m.xml

• file_= path where the user wants to save
the table with the features value matrix
(and its classes for the training case).

Then, the script construct two vectors with the
classes and references from the
*.ne.oneword.xml files, these vectors are called
type and id respectively. In this part of the script
the methods xmlTreeParse, getNodeSet and
xmlAttrs are used to access to the XML
hierarchy, extract the nodes and access the fields
of the node.

Once we obtain the references of the named
entities samples – and its classes-, we call the
function getFeatures which is defined in the file
f_engine.R. This function construct the matrix
with the features calculated from the training or
text data.

The training script defines the function train,
which receives two parameters: an integer value
specifying the method that the user wants to use,
and the matrix with the features and class values
of the samples – the matrix returned by the
method getFeatures-. The integer value for the
current implementation can have only two
values: 1 for decision trees and 0 for naïve
Bayes. This function returns in a variable the
model obtained with the chosen training method.

For decision trees method it was used the
function rpart -with the method “class”- using
the following features:

• Morphological tag (in a window
defined as: wi-2,wi-1, wi, wi+1, wi+2)

• Word class,
• ne distance

It is important to mention that other features
were also used in the experiments but the
features mentioned above produced the best
results – a further analysis can be found in the
next section of this document-.

The previous script chooses automatically the
complexity parameter associated with the
smallest cross validation error [9]. A further
analysis concerning cross validation and the
pruning of the tree will be covered in the results
section.

The function naiveBayes is used to perform the
Naïve Bayes method. This function receives two
arguments: the matrix with the training feature
values and classes, and the function with the
attributes to use in the training. The following
features are specified in the attributes expression
–which correspond to the best combination of
features found-

• Word class
• Word length : with window context of

size 1: ,wi-1, wi, wi+1
• Morphological tag: window of size 1 :

wi-1, wi, wi+1
• Ne distance

Similarly the script test.R defines the function
test which has three arguments: the kind of
model to use for the test – Naïve Bayes (0) or
decision trees (1)-; the model itself – returned by
the method train- and the matrix with the
features values, which is generated once the
test.R script is loaded. The script shows the
accuracy of the model chosen with the test data
provided.

5. Experiments and Results

Several experiments were run for both machine
learning algorithms to understand the behavior of
the features in each model and evaluate their
suitability for the two algorithms. Also it was
explore the convenience of some features applied
in context using different window sizes. Another
aim of the experiments was to analyze the
importance of specialized linguistic information
as features, case of the morphological tag, which
let us discern at the same time which simple
features can lead to decent predictor models.

The different settings of the models explored in
following sections were tested using the
development data.

It is important to mention that the baseline of the
problem studied in this work is 44%, which
correspond to the frequency in the data of the
type p. This percentage gives a intuition of the
difficulty nature of the problem of named entity
classification.

5.1 Classification tree experiments

For the classification tree algorithm, several
window sizes were set in order to discern the

most convenient one given the limited amount of
training data.

The experiments were carried out using the word
class feature and increasing the size of the
window steadily for the feature that is being
studied. It is important to mention that the
accuracy for the evaluation data obtained using
only the feature mentioned was 52.5%, which is
high considering its simplicity. However this can
be explained by the fact that the most frequent
named entities are ps, pf, gc and gu, which
correspond to 54% of the named entities in the
data and follow patters discern by the word class
feature (for instance the words that starts with
capital letters).

Table 8 summarized the results obtained. The
first experiment showed that adding the features
POS, gender and case increase the accuracy by
17.3%. Furthermore, increasing the size of the
window of these features showed an
augmentation in the accuracy of 4.24%
(considering one word before and one word
after). This result shows that using
morphological features lead to significant
improvements in the accuracy of the model.
However, it was found that bigger windows
don’t produce better results. This can be
explained by the fact that using bigger windows
implies using bigger training data.

The same experiment was carried out to find the
most suitable size window for the features length
of word and hyphen classification. However
these attempts did not produce better results.
This result is understandable since there are not
many samples with the special characters that are
matched with the feature hyphen. Also there is
not a clear trend in the word size according its ne
type, for this reason this feature does not provide
information to the method.

After, the tree was trained using all the features
describe in section 4.1 – with windows of size 2
for context features-. This experiment is useful
because classification tree learning involves well
defined criteria to select the best attributes at
each step, then the method is able to discard
irrelevant features leading to the best
combination of them. The tree obtained using
this approach is shown in Figure 2. The method
was training using the features: Morphological
tag (with window size = 2), word class, ne
distance, hyphen class, length of the sentence,
length of the word, position in the sentence. The

accuracy obtained was 74.55%. However Figure
2 shows that only the features gender, case and
POS (for wi); gender and POS for wi-1; gender
for wi+1, word class and ne distance were used.

A better understanding of the learning algorithm
behavior can be obtained through the confusion
matrix of the prediction. Table 9 illustrates three
different confusion matrices: Table 9.1 shows the
confusion matrix for the prediction using only
the word class feature, Table 9.2 shows the
confusion matrix for the prediction using the
word class feature and POS, and the last table
shows the matrix for the best combination of
features found (which are enumerated above).
These matrices were chosen given the significant
accuracy increase obtained by the different
predictions as can be seen from Table 8. Also,
this selection eases the analysis of the features
impact and its behavior.

Table 9.1 shows that types t and p are discerned
correctly by the learning algorithm when only
the feature word classification is used. However
it misclassifies the types g,s,i and o since they
are classify as p. These results follow the nature
of the word classification feature which detects
numbers (classifying type t). Nonetheless, it is
not able to distinguish between the types g,s,i
and p because the patters considered for this
feature are the same for the name of people,
places and institutions.

Table 9.2 illustrates how the accuracy increase is
obtained when morphological features are added.

Morphological information let the decision tree
to classify quite well the type s and discern
partially between the types q and p. A better
classification of these types leads to a
considerable accuracy increase (in this case
18.7%) given their high frequency in the data
(types p,q and s sum up around the 70% of the
training data). However types m,o,i are still
misclassified

Table 9.3 shows that if we consider
morphological information in context (using a
window of size two) and the named entity
feature, type p and q are better discerned.
Nonetheless this table also shows that around
7.07% of the names with type p and q are still
misclassified. Similarly the algorithm remains
unable to recognize types m,o and performs
poorly classifying i. However special emphasis
should be stress in the design of features for the

recognition of name entity types p and q because
these two are the most frequent in the data and
slight improvements in its detection represents
high increase in the accuracy of the entire
prediction.

Additionally, it was examined the cross entropy
errors results, which are shown in Figure 3. This
graph is useful to decide where to prune the tree
since it relates the relative error with the size of
the tree. For our particular case it turns out that
cutting the tree at 9 (the size is given in number
of nodes) it is obtained a equivalent tree in terms
of relative error but a more general one giving
that smaller trees represent more general models
that may behave better in future test data, or in
other words the prune of the tree helps to reduce
the overfitting. The tree can be pruned using the
R method prune(model, cp,..), where model is
the trained tree and cp is the complexity
parameter to cut the tree. The complexity
parameter with the smallest cross-validation
error is assigned –according Figure 3 the value
0.013 is chosen, which means that the tree was
cut at size 9. This can be done with the following
script [9]:

cp=
mode$cptable[which.min(mode$cptable[,"xerror"]),"CP"]

The accuracy obtained when the tree is pruned
was 73.27%. Table 9.4 shows the resulting
confusion matrix after pruning the tree. The
pruning of the tree decreases slightly the
accuracy of the prediction of the type p and i.
However the pruned model seems to predict
more accurately type s. It is interesting to note
that most of the changes occur because the
model stop attempting to classify the instances as
type i since the corresponding row has only 0
values. This suggests that the prune process cut
some of the rules where the type i was
considered.

Table 8: Results obtained by the Classification tree
method. Word C stands for word classification feature
and tag(n) for morphological information (case, POS,
gender) applied if a window of size n

Features Accuracy

Word C 52.5%
Word C, tag 69.8%
Word C, tag(1) 74.04%
Word C, tag(2) 74.55%
Word C, tag(3) 74.55%

Table 9: Confusion matrices for the prediction of the
decision tree: 4.1 Matrix when word classification
attribute is used; Table 4.2 Matrix when morphological
information is added; Table 4.3: Matrix for the best
combination of features; Table 4.4: Matrix for the best
combination of features after the tree is pruned. Bold
values show the changes. Note: Columns represents the
predicted values and rows the real values.

9.1)

T\P a g i m o p s t

a 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0

p 0 178 72 8 54 334 38 7

s 0 2 1 1 0 0 4 0

t 6 0 0 0 4 0 0 73

9.2)

T\P a g i m o p s t

a 0 0 0 0 0 0 0 0

g 0 166 41 5 19 58 1 6

i 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0

p 0 4 10 1 7 265 3 1

s 0 10 22 3 29 11 38 0

t 6 0 0 0 3 0 0 73

9.3)

T\P a g i m o p s t

a 0 0 0 0 0 0 0 0

g 0 149 36 5 5 18 2 6

i 0 2 11 3 13 5 7 0

m 0 0 0 0 0 0 0 0

o 0 7 0 1 16 2 0 0

p 0 14 15 0 5 303 2 1

s 0 8 11 0 16 6 31 0

t 6 0 0 0 3 0 0 73

9.4)

T\P a g i m o p s t

a 0 0 0 0 0 0 0 0

g 0 149 36 5 5 24 2 6

i 0 0 0 0 0 0 0 0

m 0 0 0 0 0 0 0 0

o 0 7 0 1 16 2 0 0

p 0 14 15 0 5 297 2 1

s 0 10 22 3 29 11 38 0

t 6 0 0 0 3 0 0 73

Figure 2: Decision tree obtained: In the tree is shown that
only the features V8(Gender wi), V16 (word class), V9
(Case wi), V6(POS wi-1) , V17(ne distance), V5 (Gender
wi-1), V11(Gender wi+1) were used.

Figure 3: Cross validation error

5.2 Naïve Bayes experiments

The approach followed to study the Naïve Bayes
method was to run a series of experiments were
each feature was tested independently to see its
impact in the model, similarly the test were done
in first place on the development data.

Additionally several experiments were run in
order to find the most suitable windows size for
the training data. The results are summarized in
Table 10. These results are for training the

method with the feature specified in the table
plus the word class and ne distance features.

Given these results, it is possible to state that the
features hyphened classification don’t provides a
significant improvement in the accuracy, which
is consistent with the result found for
classification trees.

Additionally, the results of the Table 10 show
that the features that improves the accuracy for
Naïve Bayes are word length, length of the
sentence, case, gender, POS, and word
classification The best results were obtained
using windows size of one (for word length and
morphological information) and two for word
classification. Note that previously the feature
word length was not considered by the
classification tree method and for this method
represents a 5.68% increase of accuracy.

Further experiments were carried out to combine
the features that represented improvements in the
accuracy (from the analysis done in Table 10).
These experiments shown that the best
combination of features for this method is: word
classification (applied in window of size 2),
morphological information and word length,
both applied in window of size 1. The accuracy
obtained applying these features was 74.8% (on
development data). The features chosen are
similar to the ones found for the classification
tree algorithm; however for Naïve Bayes the
sizes of the windows were different and the
feature word length becomes important in the
model.

Additionally, an important difference is the
higher accuracy obtained without considering
morphological information, which is 65.7%
(with the features word length, word class and
length of the sentence) against 52.5% obtained
by the previous method.

In addition, it was found that adding several of
the features that increase the accuracy not
necessarily lead to better results, contrary to
classification trees where the agglomeration of
features did not decrease the accuracy. This can
be explained by the fact that the estimated
probabilities for some features can be very low,
result that is propagated in equation 4 creating
some biased in the sense that the probability will
be underestimated. This case was not present in
decision trees, where not relevant features are
ignored by the method.

Table 11 summarizes the results of these
experiments. From this table we can see that
when the features word class, morphological tag
and length of the sentence are combined the
performance of the system decrease, even if the
features increase the accuracy of the system
when are tested independently.

Also a confusion matrix was built for the best
combination of features found for this method;
the results are shown in Table 12. From this table
it is possible to state that the name entities types
classified correctly are very similar to the ones
classified for the classification trees method
(g,p,s,t). However the system confuses more
often the type p and q which are very frequent in
the data and consequently have a bigger impact
in the performance of the algorithm. It is also
interesting to note that this algorithm discern the
name entity type o (Artifact names) which is
highly misclassified by the classification trees
algorithm. Even if words with this name entity
type only represent 5% of the training data, it
would be more convenient to use Bayesian
learning when the detection of Artifact names is
more relevant or are more important in a specific
application.

It is important to mention that several of the
experiments described so far were repeated
including Lagrange smoothing but it was not
found better results.

 5.3 Algorithms comparison

Finally, a paired test [8] was performed on both
algorithms in order to compare their performance
and be able to determine the confidence interval
in which one algorithm outperforms the other.
For this purpose the training data was divided
into 10 disjoint subsets of 570 elements each
one.

The parameter to be estimated is the expected
error difference of both algorithms on a data
sample which is subscript to the instance
distribution. The estimators are shown in
equation 6 [8]:

Equation 6: Paired t estimators

∑

∑

=

=

−=

=

k

i
i

k

i
i

k
s

k

1

2

1

)(1

1

δδ

δδ

And the interval is calculated using equation 7.

Equation 7: Paired t estimators

δδ st kN 1, −±

Each value δi in equation 6 correspond to the
error difference of the two algorithms when the
training data provided correspond to the union of
k-1 subsets and the test data is the i-th set. The
results obtained for a confidence level of 95%
were: 0.039 ± 0.029. This means that the error
of Naïve Bayes is bigger than the error of
decision trees between 1% and 6.8% given 95%
as confidence level.

Additionally, a bootstrap algorithm was
performed. For this purpose it was trained a
model for each algorithm choosing the best
combination of features found. Then each model
was tested using 1000 subsets of the evaluation
data. Each subset was of size 100 and it was built
randomly from the evaluation data.

Two different measures were taken. First, the
error measure for each one of the 1000
experiments was store in a vector. After this
vector was sorted in order to obtain the elements
25th and 975th of the vector which correspond to
the interval with confidence level 95%. For the
classification tree model the interval obtained
using the method was: [12%, 32%]. For Naïve
Bayes the interval was: [16%, 42%].

Also it was calculated the interval using equation
7. The estimator applied were the mean of the
vector containing the errors and the standard
deviation. The results for both methods are
summarized in Table 13.

6. Conclusions

The best results were obtained using similar
features in both methods. For classification trees
the best combination of features was:
morphological tag considered in a window of
size 2, name entity distance and word

classification. The features that provide the best
results for the Naïve Bayes method are word
classification (applied in window of size 2),
morphological information and word length,
both applied in window of size 1. The accuracy
obtained by the decision tree using the evaluation
data was 78.49% and for Naïve Bayes 74.7%

Nonetheless, classification trees tend to be more
convenient for the ne type classification with the
features considered, since it was obtained better
accuracy results. More precisely, the paired test
performed to compare both algorithms showed
that with a 95% confidence level, decision trees
outperform Naïve Bayes by a value between 1%
and 6.8%. However the bootstrap method shows
that even if the classification has a smaller and
lower error interval, not always it can
outperforms Naïve Bayes, since the intervals
overlap.

Additionally it is handier to evaluate the impact
of potential features in classification trees since
the method employs a measure to quantify “how
good” is a feature to split the hypothesis space,
contrary to Naïve Bayes in which features with
low probability can bias the class estimation,
making more difficult the analysis.

However, promising results were obtaining with
Naïve Bayes when morphological features were
ignored. This result is interesting in the sense
that in some real applications it is possible to do
not have access to such kind of information.

Furthermore, the accuracy obtained by both
methods can be improved merging some of the
named entity types. The classification tree
generated shows that no rules were generated for
the types a, m and f, which occurs given its low
frequency in the data. However, this merging can
be conditioned to the situation in which the
system is implemented. Similarly, ignoring the
double annotations for some of the samples in
the training data can produce better results.
Nonetheless ignoring these samples or some of
their annotations may be dependent the context
of the language application as well.

Table 10: Naïve Bayes accuracy results: s_length refers to
length of the sentence, w_position to word position in the
sentence, w_length to the length of the word, tag to the
gender, case and POS of the word, class to the word class
feature. Parenthesis state the size of the window used.

Features Accuracy

Word Class 52.50%

S_length 57.80%

w_position 58.00%

w_length 55.11%

w_length(1) 58.56%

w_length(2) 58.18%

w_length(3) 58.18%

Hyphen 52.55%

tag 71.09%

tag(1) 72.25%

tag(2) 71.86%

class(1) 55.11%

class(2) 55.37%

Table 11: Naïve Bayes accuracy results: s_length refers to
length of the sentence, w_position

Features Accuracy

class(2),w_length(1) 64.32%
class(2),w_length(1),tag(1) 74.8%
class(2),tag(1) 73.4%
class(2),Ne,tag(1) 72.89%
class(2),wlength(1),s_length 65,72%
class(2),tag(1), s_length 72,63%
class(2),tag(1),
wlength(1),S_length 74,29%
tag(1), wlength(1),S_length 73.65%

Table 12: Naïve Bayes: confusion matrix for the best
combinations of features found (using development data):
Note: Columns represents the predicted values and rows
the real values.

 T\P a g i m o p s t
a 2 0 0 0 0 0 0 0
g 0 124 24 2 0 13 0 6
i 0 16 13 3 1 13 1 0
m 0 1 1 0 0 1 1 0
o 0 6 0 1 36 6 1 1
p 0 26 16 0 8 299 1 0
s 0 7 19 3 13 1 38 0
t 4 0 0 0 0 1 0 73

Table 13: Bootstrap analysis: Results of the bootstrap
algorithm on both algorithms. The confident interval of
the error has a confidence of 95%.

 Mean Standard
deviation

Interval

C. Trees 24,9% 3.79% [17.3%, 32.4%]
Naïve Bayes 31.9% 5.3% [21.4, 42.3%]

Table 14: Confusion matrices using evaluation data on
both methods. Table 14.1 shows the confusion matrix for
the classification tree model. Table 14.2 shows the
confusion matrix for Naïve Bayes. Note: Columns
represents the predicted values and rows the real values.

14.1)

 T\P g i m o p s t
g 125 27 1 4 18 1 4
I 6 11 5 13 3 5 0
m 0 0 0 0 0 0 0
o 5 3 0 7 0 0 0
p 10 4 0 9 327 0 3
s 4 8 7 8 4 43 0
T 0 0 0 5 0 0 88

14.2)

 T\P g i m o p s t
g 101 22 1 4 25 1 4
i 27 5 0 3 8 0 0
m 0 1 1 1 0 1 0
o 5 4 0 22 10 1 2
p 11 5 0 5 306 0 3
s 6 16 11 11 3 46 0
t 0 0 0 0 0 0 86

According the confusion matrices, the features
showed similar behavior in both learning
algorithms since it is possible to discern between
the classes p,q,t and s. However it is important to
state that there is still significant place for
improvement if the distinction of these classes,
particularly future work should focus in the
design of features able to classify the name
entities that belong to the types p and q because
these are the types that have the biggest impact
in the accuracy given it is high frequency in the
data. Also new features are needed to classify
the name entity types m and i which are almost
always misclassified by the methods explored.

Interestingly, Naïve Bayes was able to classify
instances that belong to the type o contrary to
Decision trees. This suggests that it would be
more convenient to apply this method in

scenarios where this entity type is more
common.

Finally, the experiments performed in both
methods show that simple features as the nature
of the word characters – if it is capital,
numerical, etc – provide significant information
to the classifier. Additionally, morphological
information represents an important source of
information to improve the quality of the models
and more if it is analyzed in the context of the
words evaluated. However the size of the
window seems to be conditioned to the size of
the data. Training and test with bigger data
would be helpful for future work.

References

[1] http://www.cisuc.uc.pt/lct/view_project.php?id_p=70
[2] Named Entity Recognition using an HMM-based Chunk
Tagger. GuoDong Zhou Jian Su, Kent Ridge Digital Labs,
Heng Mui Keng Terrace, Singapore 119613
[3] Beyond Named Entity Recognition Semanticlabelling for
NLP tasks Centro Cultural de Belem
LISBON, Portuga 25th may 2004 In Association with 4th
International conference of language resources and
evaluation,LREC2004. Main conference 26-27-28 May 2004
[4] http://ufal.mff.cuni.cz/~hladka/project.html
[5] http://www.statistics.com/resources/glossary/c/cart.php6]
Modern Applied Statistics with S Fourth edition by . N.
Venables and B. D. Ripley, Springer (mid 2002)
[7] An Introduction to Classification and Regression Tree
(CART) Analysis. Roger J. Lewis, M.D., Ph.D. Department
of Emergency MedicineHarbor-UCLA Medical Center.
Torrance, California
[8] Machine Learning, Tom Mitchel, 177
[9] http://www.statmethods.net/advstats/cart.html

