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Semantic Pattern Classification

The aim of the term project is to solve "the best you can" classification task. 

Your classifiers will work with English verbs and their one-sentence contexts and 

should  recognize  semantic  patterns  of  verb  usages.  Each  occurrence  of  the 

selected  verbs  should  be  classified  into  a  given  set  of  semantic  patterns 

according to the specific verb's context.

1. What are semantic patterns?

Traditional  lexicographers  usually  assume  that  various  uses  of  polysemous 

words can be sorted into discrete senses. When building a dictionary entry for a 

given word, the lexicographer sorts a number of its occurrences into discrete 

senses present (or emerging) in his/her mental lexicon, which is supposed to be 

shared by all  speakers of  the same language. The assumed common mental 

representation of a word's meaning should make it easy for other humans to 

assign  random  occurrences  of  the  word  to  one  of  the  pre-defined  senses 

(Fellbaum et al., 1997). However, this approach to  lexical disambiguation has 

turned out to be very difficult, especially because it has never been clear how to 

define the ''right''  list  of  senses for a given word. The very notion of  ''word 



sense'' is slippery and controversial (see e.g. Kilgarriff (1997)). For humans, it is 

hard to make agreement about the ''right'' senses, and for computers it is hard 

to perform the classic task of word sense disambiguation (WSD), which means 

to  automatically  assign  the  ''correct''  sense  to  a  word  occurring  in  a  given 

particular context. On finer-grained sense distinctions, top accuracies from 59% 

to 69% have been reported in recent evaluation exercises, where the baseline 

accuracy  of  the  simplest  possible  algorithm  of  always  choosing  the  most 

frequent  sense  was  about  54%.  Even  interannotator  agreement  between 

humans is usually quite low. A brief overview of the WSD field is available at 

http://en.wikipedia.org/wiki/Word-sense_disambiguation.

Semantic pattern recognition (SPR) is a novel, alternative approach to lexical 

disambiguation, which is different from the traditional word-sense assignment 

tasks. The SPR approach does not assume that words have fixed senses but that 

regular  patterns  of  their  usage  can  be  identified  in  a  corpus,  and  that  the 

patterns  activate  different  conversational  implicatures from  their  meaning 

potentials (Hanks and Pustejovsky, 2005).

In  this  project  we  will  focus  on  English  verbs  and  will  use  the  Pattern 

Dictionary of English Verbs (PDEV) (Hanks and Pustejovsky, 2005). PDEV is a 

database of manually extracted patterns of frequent and normal verb uses. The 

patterns are, roughly speaking, intuitively similar uses of a verb that express—in 

a syntactically  similar  form—similar events in which similar  participants (e.g. 

humans, artifacts, institutions, or other events) are involved. Two patterns can 

be semantically so tightly related that they could appear together under one 

sense in a traditional dictionary. The patterns are not senses but syntactico-

semantically characterized prototypes (see the example verb submit in Table 1). 

A few examples can be found at https://wiki.ufal.ms.mff.cuni.cz/external:spr. 

https://wiki.ufal.ms.mff.cuni.cz/external:spr


Motivation

Lexical  disambiguation  is  a  traditional  task  of  corpus  linguistics  and  natural 

language processing. The goal is to recognize different meanings of polysemous 

words in particular  contexts.  Lexical  disambiguation is  important and can be 

used  in  many  subfields  of  applied  computational  linguistics,  e.g.  in 

computational  lexicography,  textual  entailment,  discourse  analysis,  question 

answering, machine translation, or information retrieval.



2. Your task in detail

In this project, you will deal only with the following 6 verbs:  ally, arrive, cry,  

halt, plough, submit. Their patterns are available in the directory data/patterns. 

For each verb you will implement a supervised classifier.

  As  your training (development)  data you will  have a set  of  250 manually 

annotated  sentences  for  each  verb,  which  are  available  in  the  directory 

data/development-instances. Each sentence contains one of the selected verbs, 

and is considered as a data instance to be classified. First, you should make 

feature vectors to describe all data instances. Then you will choose a suitable 

method of machine learning, design and implement a classifier,  and tune its 

parameters.  Finally,  when  you  submit  your  code,  it  will  be  evaluated  on 

''unseen'' test sets (50 test sentences for each verb).

Two tasks to be completed

You  will  have  to  work  on  and  complete  two  tasks,  the  basic  one  and  the 

advanced one:

• Basic task (A)

In this task you will process all 6 verbs and will use the default feature set 

(see below). You have right to reduce the defined default feature set (and 

use some its subset instead), but you must not extend it.  You should 

experiment  and  then  choose  one  model  (i.e.  one  machine-learning 

method)  that  will  be  then  used  for  all  6  verbs.  However,  the  best 

parameters of the model can and will be learned for each verb separately. 

So you will  get 6 different classifiers, all  based on the same machine-

learning method.

Only this task will be reported in your short report.

• Advanced task (B)

In  the  advanced  task  (B),  setting  a  suitable  set  of  features  used  for 

classification will be a part of the project. After you have developed your 



best model using the default feature set, you will choose 3 of the 6 verbs 

(it will be your choice), and then you will try to develop a better feature 

set for each of the 3 selected verbs to improve the classifier performance. 

Of course, you can develop a model totally different from the one used in 

the task (A). However, your new model should be still the same for all 3 

verbs that you chosen (although feature sets can be different for each of 

the 3 verbs). You should compare the results obtained in the task (A) with 

the  new  results.  Everything  about  both  tasks  (A)  and  (B)  should  be 

exactly documented in your final report.

Competition

Your work will be viewed as a competition. All you students will get the same 

annotated  data.  Then  you  will  choose  (some of)  standard  machine  learning 

methods and make your experiments.  You will  tune the parameters of  your 

classifiers and analyse and compare their performance. Finally you will choose 

the classifier that you consider to be the best for the given task.

When you finish all your work and your program codes, you will submit your 

final solution in the form of a detailed report. The report should contain both the 

description of the methods used (including the description of parameters tuning) 

and the analysis of the results. Conclusion of your final report will include your 

choice of the best model you have developed. You should compare at least three 

machine learning methods and choose the best one regarding the quality of their 

output measured on your development test data.

Your best classifiers will be evaluated on our test sets (that will be hidden from 

you until you submit your final classifiers). The student with best results on our 

test  data will  be the winner (one winner of  the task (A), and one (possibly 

different) winner of the task (B)).



Evaluation

The task (A) will be evaluated using the weighted average of the accuracy of 

your 6 classifiers. The weights correspond to the relative frequencies of the 6 

verbs in the BNC50 corpus (cf. Cinková et al. (2010)). The coverage of all verb 

occurrences in the BNC50 by the selected verbs is 0.0083% (ally), 0.1307% 

(arrive), 0.0257% (cry), 0.0183% (halt), 0.0076% (plough), 0.0483% (submit).

You should optimize the average accuracy calculated as 

Σv pv*Av / 0.2389%,

where pv are the verbs' relative frequencies, Av are the accuracies of your 6 

classifiers, and 0.2389% is the sum of the relative frequencies.

The task (B) will be evaluated using the proportion of the number of people who 

you have beated and the number of people who have beated you. When you 

submit your classifiers for 3 verbs, for each of those verbs we will count the 

people  who  submitted  their  classifiers  for  the  same  verb  and  had  a  better 

accuracy, and the same for submitted classifiers with a worse accuracy. Then 

the counts will be summed up and the proportion of the two sums will be your 

score. The best score wins.



3 Data description

Primary data

All annotated sentences have been (randomly) selected from the BNC corpus. 

You will get the data only for internal purposes of our course. Please, use the 

provided data only for your study or academic purposes. You are not allowed to 

distribute it.

The manually annotated data sets are stored in 6 text files (one file with 250 

sentences per verb) in the directory data/development-instances. Each instance 

consists of 6 lines/items:

• sentence ID – you do not need it;

• pattern tag – which is, in fact, the manually annotated class label;

• tokenized sentence with marked  target verb – tokens are separated by 

spaces;

• morphologically analysed sentence – tokens are separated by tabs; each 

token  includes  1)  original  word  form,  2)  its  lemma,  and  3)  its 

morphological  tag;   both  lemmas  and  morphological  tags  have  been 

determined automatically (thus, some errors can occur); the description 

of morphological tags is available in the Appendix A;

• list of syntactic dependencies – obtained automatically using the Stanford 

dependency parser (the format ''collapsed dependencies with propagation 

of conjunct dependencies); an example sentence is given in the Appendix 

B; a detailed description of the Stanford dependency types is provided in 

the attached manual (the file stanford-dep-manual.pdf);

• output of a Named Entity Recognizer (probably you will not use it, even 

though you can).



Pattern tags

Note that some of the annotated sentences are marked with only a  pattern 

number (they  show  normal  patterns,  i.e.  represent  ''perfect  matches''  with 

pattern definitions), while some other were assigned a pattern number followed 

by  a  character  (so  called  exploitations,  i.e.  deviations  from the  prototypical 

patterns of several different types: ''.a'' or ''.s'' or ''.c'' or ''.f''). Moreover, some 

of the sentences are marked with ''u'' (unclassifiables) or ''x'' (noise, not verbs 

to be tagged). For the very details you can see the attached annotation manual 

(in the file CPA_valiman.pdf).

IMPORTANT: In this  project,  ignore both a) the difference between normal 

patterns and exploitations, and  b) the difference between ''u'' and ''x''. You will 

simply always assign either a pattern number or ''ux'' (standing for ''u or x'').

Development set and test set

You  will  get  1,500  manually  classified  instances  (250  per  verb).  There  are 

another 300 instances that make test sets, which you cannot see until you finish 

your "best classifiers" and submit your final report. Then your classifiers will be 

evaluated using the test sets.

Our  recommendation is  to  split  your  data  (for  each verb)  in  two parts,  a 

development working set and a development test set. When you develop your 

classifiers,  you  will  use  the  development  test  sets  both  to  evaluate  your 

classifiers  and  to  tune  their  parameters.  Once  you  have  finished  your 

parameters tuning, you will choose the best model and use all the annotated 

training data (i.e. all 250 instances per verb you have got) to train your final, 

"best" classifiers. Those final classifiers will be submitted and then evaluated on 

the unseen test sets (the unseen 50 instances per verb).



4. Default feature set

Each data instance to be classified consists of the  target verb (TV) and some 

context (context words). Therefore the values of the features that describe data 

instances will be based on the observed characteristics of both the TV and the 

context words.

You will  use  two kinds of  features,  the  morpho-syntactic  features and the 

semantic  features.  All  features  in  the  default  set  will  be  either  binary  (T/F 

values) or categorical (listed, discrete, non-numerical values).

I. Morpho-syntactic features

There are 83 morpho-syntactic features in the default feature set. 79 of them 

are  binary,  while  the  other  4  are  categorical.  Categorical  features  can be 

transformed into a set of binary ones.

• 1) Characteristics of the TV

TV itself wil be described by the following 10 binary features:

◦ passive voice – presence of auxpass(TV, *)

◦ modality1 – presence of aux(TV, would | should)

◦ modality2 – presence of aux(TV, can | could | may | must | 

    ought | might)

◦ negation – presence of neg(TV, *)

◦ tense

▪ presence of the VBN tag assigned to the TV

▪ presence of the VBD tag assigned to the TV

▪ presence of the VBG tag assigned to the TV

▪ presence of the VBP tag assigned to the TV

▪ presence of the VB tag assigned to the TV

◦ use in an infinite phrase (outside subject) – presence of xcomp(*, TV)



• 2) Characteristics of the words that immediately precede or follow 

the TV (simply by word order)

9 binary features will  be established for each of  the 6 closest  context 

words: 1, 2, and 3 positions before and after the TV; so in total it will be 

54 binary features; their values will depend on the presence of one of the 

listed morphological tags assigned to the 6 context words:

◦ nominal-like (NN, NNS, NNP, NNPS, DT, PDT, PRP, PRP$, POS, CD)

◦ adjective (JJ, JJR, JJS)

◦ verbs (VB, VBD, VBG, VBN, VBP, VBZ)

◦ modal (MD)

◦ adverbial (RB, RBR, RBS, RP, IN)

◦ ''to'' (TO)

◦ wh-pronoun (WDT, WP, WP$)

◦ wh-adverb (WRB)

◦ to_be (lemma = ''be'')

• 3) Characteristics of the words that syntactically directly depend 

on the TV (according to the output of the Stanford dependency 

parser)

◦ 3A) Logical subjects
3 binary features:
▪ nsubj(TV, *) - presence of a nominal subject
▪ csubj(TV, *) - presence of a clausal subject

Note that IF you find xsubj(TV, arg) (= a controlling subject) OR 
agent(TV, arg) (a logical subject introduced by the preposition 
"by"), THEN you should take the arg as a subject:

IF the arg is a noun or number or pronoun (= marked as NN* | 
CD | WDT | WP )

THEN take it the same way as nsubj,
ELSE take it the same way as csubj.



▪ plural_sb - presence of any subject in the plural form 
  (see the morphological tag of the subject (if 
  any is found) and test if it is NNS or NNPS)

◦ 3B) Objects
8 binary features:
▪ dobj(TV, *) - presence of a direct object
▪ iobj(TV, *) - presence of an indirect object
▪ nsubjpass(TV, *) - presence of a passive nominal subject;

  (in fact, it is an object)
▪ csubjpass(TV, *) - presence of a passive clausal subject;

  (in fact, it is an object)
▪ ccomp(TV, *) - presence of a clausal complement 

  (functions like an object of the verb)
▪ complm(TV, *) - presence of a complementizer (typically the 

  subordinating conjunction "that" or 
  whether")

▪ object - presence of any object (any of the above)
▪ plural_obj - presence of any object in the plural form

  (see the morphological tag of the object (if 
  any is found) and test if it is NNS or NNPS)

◦ 3C) Particles
If you find prt(TV, p), save the phrasal verb particle p as a categorical 
value. All possible values of this categorical feature will be the values 
found in the development working data + two special values: NONE 
and OTHER. (Beware of the fact that in the test data a new word can 
occur that you have not met in the development data!)

◦ 3D) Advebials
4 binary features:
▪ advmod(TV, *) - presence of an adverbial modifier
▪ advcl(TV, *) - presence of an adverbial clause modifier
▪ purpcl(TV, *) - presence of a purpose clause modifier
▪ tmod(TV, *) - presence of a temporal modifier

And 3 categorical features – take the preposition p as a categorical 
value:
▪ prep(TV, p) - presence of a prepositional modifier
▪ prepc_p(TV, *) - presence of a prepositional clausal modifier



▪ mark(TV, p) - presence of a marker (= a subordinating 
  conjunction different from "that" or 
  "whether")

II. Semantic features

We will observe if a subject or an object of the target verb is a member of some 

of  the  50  defined  semantic  classes,  which  have  been  derived  from  the 

EuroWordNet (for details see the Appendix C). The members (nouns) of  the 

semantic classes are listed in the attached file data/semantic-classes.wn.txt. You 

will simply test whether some of the context words found in the sentence are 

listed under semantic classes or not.

The total number of the default (binary) semantic features is 200:

• presence of a nominal subject that belongs to a semantic class (50) 

• presence of a nominal object that belongs to a semantic class (50)

• presence of a noun left of the TV that belongs to a semantic class (50)

• presence of a noun right of the TV that belongs to a semantic class (50).



5. Two steps and two deadlines

You will be given the data on November 23rd. In the first step, each student will be 

assigned one of three standard methods, namely Decision Trees or Naive Bayes or 

k-th Nearest Neighbour classifier. So you will have no choice of the method. Your 

task will be to apply the given method and to tune its parameters. Then you need 

to prepare a short report in the form of a written one-page description and an oral 

presentation.

Before the presentation, which will take place at the lab session on Friday, 

December 16th, you will send us your short report by the first deadline, which is 

Wednesday, December 14th,  12pm.  You will need to  turn in electronically to 

holub@ufal.mff.cuni.cz:

• Your short report (.pdf) describing methods, results and comments. The 

short report should be 1 page (A4) in length, excluding figures. 

• Your programming (R codes).

• Your slides (.pdf) prepared for short oral presentation (6-8 minutes at 

maximum). 

In the second step, you will solve both the basic task (A) and the advanced task 

(B). However, the choice of the methods is up to you. You must apply at least three 

machine learning algorithms from those you met during the lecture. All methods 

should be trained ONLY on the training data that you get. Reliable results should 

consist  of  information  on  the  error  rates  expressed  by  the  suitable  measures 

(accuracy, confusion matrix) on your development test data. Comparison of the 

results on training and test data is welcome. Do not forget to compare results of 

different methods.

You do not have to present your final report publicly. Instead, you will defend 

your work individually. You should be able to explain all details and discuss the 



choice of your solution in personal conversation with the teacher. The deadline for 

your final  report is Friday,  February 17th,  12pm.  You will  need to turn in 

electronically to holub@ufal.mff.cuni.cz:

• Your  final report (.pdf) written according to the guidelines specified at 

http://ufal.mff.cuni.cz/~hladka/ML.html -> Projects.

• Your final programming (R code).

Filename convention

Everytime when you submit your work, please send always just ONE zip file, and 

follow the filename convention: 

Whole package: "YourLastName.ml-project.2011-12.zip" 

Your R-scripts inside the package: "YourLastName.ScriptNameofYourChoice.R" 

Your report inside the package: "YourLastName.report.[short|final].pdf"

Remember well, that

your work MUST be done by February 17-th.  After that  deadline you 

cannot get “a signature”. You can take the exam before you finish the 

final project. However, to get a final grade and the credit, you need to 

finish the project (i.e. to get “a signature”).

Before you submit your final report you will have opportunity to consult Martin 

Holub  about  the  problems  you  meet  while  working  on  the  project.  Do  not 

hesitate to e-mail him to make appointment. 

http://ufal.mff.cuni.cz/~hladka/ML.html


Appendix A

The Penn Treebank Tag Set
The tagset used in automatic morphological tagging is the Penn Treebank Tag set, 
described for example in Marcus et al. (1993). The following part-of-speech tags 
are used: 

        1.      CC      Coordinating conjunction
        2.      CD      Cardinal number
        3.      DT      Determiner
        4.      EX      Existential there
        5.      FW      Foreign word
        6.      IN      Preposition or subordinating conjunction
        7.      JJ      Adjective
        8.      JJR     Adjective, comparative
        9.      JJS     Adjective, superlative
        10.     LS      List item marker
        11.     MD      Modal
        12.     NN      Noun, singular or mass
        13.     NNS     Noun, plural
        14.     NNP     Proper noun, singular
        15.     NNPS    Proper noun, plural
        16.     PDT     Predeterminer
        17.     POS     Possessive ending
        18.     PRP     Personal pronoun
        19.     PRP$    Possessive pronoun
        20.     RB      Adverb
        21.     RBR     Adverb, comparative
        22.     RBS     Adverb, superlative
        23.     RP      Particle
        24.     SYM     Symbol
        25.     TO      to
        26.     UH      Interjection
        27.     VB      Verb, base form
        28.     VBD     Verb, past tense
        29.     VBG     Verb, gerund or present participle
        30.     VBN     Verb, past participle
        31.     VBP     Verb, non-3rd person singular present
        32.     VBZ     Verb, 3rd person singular present
        33.     WDT     Wh-determiner
        34.     WP      Wh-pronoun
        35.     WP$     Possessive wh-pronoun
        36.     WRB     Wh-adverb

Moreover, there are used the punctuation tags: [ -LRB- | -RRB- | `` | '' | . | : | , ].



Appendix B

Stanford dependencies  –  example sentence

Savanna animals <cool> off with a kind of organic radiator by evaporating 
water from the moist linings of the nasal chambers . 

nn(animals-2, Savanna-1);
nsubj(cool-3, animals-2);
prt(cool-3, off-4);
det(kind-7, a-6);
prep_with(cool-3, kind-7);
amod(radiator-10, organic-9);
prep_of(kind-7, radiator-10);
prepc_by(cool-3, evaporating-12);
dobj(evaporating-12, water-13);
det(linings-17, the-15);
amod(linings-17, moist-16);
prep_from(evaporating-12, linings-17);
det(chambers-21, the-19);
amod(chambers-21, nasal-20);
prep_of(linings-17, chambers-21)



Appendix C

Semantic classes derived from EuroWordNet Top Ontology

The top ontology classification defined by Vossen et al. (1998) has been used to 

classify all words from WordNet into 50 semantic categories. For each word, we 

extract its hyperonymial hierarchy, which consists of a set of synsets. These 

synsets have been matched with categories of Vossen's top ontology. In most 

cases, the categories in Vossen's top ontology have the same names as synsets 

used in the WordNet, so we are able to match words with these categories 

immediately. However, there are also categories that do not match any WordNet 

synset directly. In these cases we use a few rules to map the synsets to the 

categories. The set of our rules has been proposed heuristically so that each word 

belongs at least to one of the categories.

The list of the rules used:

1. Synset "Abstraction" is mapped to category "3rdOrderEntity".

2. Synset "Phenomenon" is mapped to category "Phenomenal".

3. Synsets "Body of water" and "Matter" are mapped to category "Natural".

4. Synset "Process" is mapped to category "Dynamic".

These four rules are enough to get a list of words, where each word is mapped at 

least to one category. The list is given in the file data/semantic-classes.wn.txt.
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