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Road casualties in the UK (data.gov.uk) 

Task 
Tell a data story of British traffic accidents ending with death or serious injury (“road 
casualties”) in the past five years, based on the authentic data from the British 
government’s website data.gov.uk. 

Introduction 

In this exercise, you are going to work with authentic data “in the wild”. Fortunately, these 
data sets are quite neat. Also, the site provides a metadata file at this URL: 
https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-road-
safety-open-dataset-data-guide-2023.xlsx. This file seems to have been created for traffic 
data safety data sets produced by the Department of Transport, but it is not clear how well 
it corresponds to the casualty data sets. It may be outdated or just incomplete. This is very 
often the case in open data provided by public administration. 

This real-world exercise will: 

• make you familiar with the RNotebook format - RMarkdown. You can 
comfortably write a long text in it as well as embed code chunks. With RNotebooks 
you can generate nice reports that you can directly export to html, pdf, or even MS 
Word. For a quick reference to Markdown formatting, go to RStudio Help > 
Markdown Quick Reference (which opens in the RStudio Help pane) or to 
https://raw.githubusercontent.com/rstudio/cheatsheets/main/rmarkdown.pdf. 

• show you how to read csv and MS Excel files from the web 

• show you how to inspect and make sense of such files 

Load the relevant libraries 
library(readr, warn.conflicts = FALSE, quietly = TRUE) # to read csv files 
library(dplyr, warn.conflicts = FALSE, quietly = TRUE) # to use pipe and to 
manipulate data frames 
library(readxl, warn.conflicts = FALSE, quietly = TRUE) # to read MS Excel 
files 

## Warning: package 'readxl' was built under R version 4.4.2 

library(ggplot2, warn.conflicts = FALSE, quietly = TRUE) # to draw plots 

Road Safety Data (Department of Transport) 

This is the website that contains the casualty datasets. Have a look at it. 

https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx
https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx
https://raw.githubusercontent.com/rstudio/cheatsheets/main/rmarkdown.pdf


2 
 

https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-
data 

One could spend hours following all the hyperlinks. Let us decide that we want to get all csv 
files that explicitly refer to road casualties from the Data Links section (Fig. 
#SectionDataLinks). Please also hit the See more button to get files from earlier years, 
starting with 2019). We will look for guidance in the file that we will name guide.xlsx (see 
Fig. #guide). 

 

Road Casualties csv files 

 

Metadata file to the Road casualties datasets 

Read the files 
Use readr::read_csv to read the csv files with casualties for the years available ( Fig. 
#guide) . By this, you will directly create data frame objects in your workspace. Note that 
this will not download the original csv files to your computer (but in this case we believe 
this is just fine). 

rc_2019 <- read_csv("https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-casualty-2019.csv", show_col_types = FALSE) 

https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
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rc_2020 <- read_csv("https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-casualty-2020.csv", show_col_types = FALSE) 

rc_2021 <- read_csv("https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-casualty-2021.csv", show_col_types = FALSE) 

rc_2022 <- read_csv("https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-casualty-2022.csv", show_col_types = FALSE) 

rc_2023 <- read_csv("https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-casualty-2023.csv", show_col_types = FALSE) 

All casualties 

This is how you combine all years into one single data frame. You could only do it correctly 
because all these data frames had the same columns. If the data frames had had different 
sets of columns, you would have obtained a data frame containing all these columns and NA 
values in columns that were not present in all data frames. 

If you were working on your own, you should have better double-checked that 
you could combine the data frames. The easiest way would be checking this for 
column names of r_2019 paired with each other year’s data frame and delve 
deeper where you spot a problem. 

all.equal(colnames(rc_2019), colnames(rc_2020)) 

## [1] TRUE 

Nevertheless, you can rely on the annual data sets to be safe to be combined. 
all_rc <- dplyr::bind_rows(rc_2019, rc_2020, rc_2021, rc_2022, rc_2023) 

If you add the data frames as named elements like below, you can generate an additional 
column that will contain the names. If you do not name the elements and just add a .id 
column, it will contain integers: 1 for the first data frame, 2 for the second, and so on. 

all_rc <- dplyr::bind_rows(rc_2019 = rc_2019, rc_2020 = rc_2020, rc_2021 = 
rc_2021, rc_2022 = rc_2022, rc_2023 = rc_2023, .id = "ID") 

Inspect the big file 

File structure 

The most common ways to inspect a data frame are str() , summary(), and glimpse() . 

slice_sample(all_rc, n = 10) %>% str()  

## spc_tbl_ [10 × 22] (S3: spec_tbl_df/tbl_df/tbl/data.frame) 
##  $ ID                                : chr [1:10] "rc_2022" "rc_2022" 
"rc_2023" "rc_2022" ... 
##  $ accident_index                    : chr [1:10] "2022522300128" 



4 
 

"2022010358596" "2023052300534" "2022141239098" ... 
##  $ accident_year                     : num [1:10] 2022 2022 2023 2022 2019 
... 
##  $ accident_reference                : chr [1:10] "522300128" "010358596" 
"052300534" "141239098" ... 
##  $ vehicle_reference                 : num [1:10] 2 1 1 2 1 1 1 1 1 2 
##  $ casualty_reference                : num [1:10] 1 2 1 1 1 1 2 1 1 1 
##  $ casualty_class                    : num [1:10] 1 3 1 2 1 1 2 3 1 1 
##  $ sex_of_casualty                   : num [1:10] 1 1 2 2 1 1 2 1 1 2 
##  $ age_of_casualty                   : num [1:10] 38 73 62 35 25 25 47 31 
14 60 
##  $ age_band_of_casualty              : num [1:10] 7 10 9 6 5 5 8 6 3 9 
##  $ casualty_severity                 : num [1:10] 3 3 3 3 3 3 3 3 3 3 
##  $ pedestrian_location               : num [1:10] 0 1 0 0 0 0 0 10 0 0 
##  $ pedestrian_movement               : num [1:10] 0 3 0 0 0 0 0 9 0 0 
##  $ car_passenger                     : num [1:10] 0 0 0 1 0 0 1 0 0 0 
##  $ bus_or_coach_passenger            : num [1:10] 0 0 0 0 0 0 0 0 0 0 
##  $ pedestrian_road_maintenance_worker: num [1:10] 0 0 0 0 0 0 0 0 0 0 
##  $ casualty_type                     : num [1:10] 3 0 9 9 9 9 9 0 1 1 
##  $ casualty_home_area_type           : num [1:10] 1 1 1 -1 1 -1 1 1 1 1 
##  $ casualty_imd_decile               : num [1:10] 2 3 4 -1 1 -1 3 1 2 1 
##  $ lsoa_of_casualty                  : chr [1:10] "E01014685" "E01002550" 
"E01007000" "-1" ... 
##  $ enhanced_casualty_severity        : num [1:10] -1 -1 -1 3 -1 3 -1 3 -1 
3 
##  $ casualty_distance_banding         : num [1:10] 1 1 1 -1 1 -1 5 1 1 2 
##  - attr(*, "spec")= 
##   .. cols( 
##   ..   accident_index = col_character(), 
##   ..   accident_year = col_double(), 
##   ..   accident_reference = col_character(), 
##   ..   vehicle_reference = col_double(), 
##   ..   casualty_reference = col_double(), 
##   ..   casualty_class = col_double(), 
##   ..   sex_of_casualty = col_double(), 
##   ..   age_of_casualty = col_double(), 
##   ..   age_band_of_casualty = col_double(), 
##   ..   casualty_severity = col_double(), 
##   ..   pedestrian_location = col_double(), 
##   ..   pedestrian_movement = col_double(), 
##   ..   car_passenger = col_double(), 
##   ..   bus_or_coach_passenger = col_double(), 
##   ..   pedestrian_road_maintenance_worker = col_double(), 
##   ..   casualty_type = col_double(), 
##   ..   casualty_home_area_type = col_double(), 
##   ..   casualty_imd_decile = col_double(), 
##   ..   lsoa_of_casualty = col_character(), 
##   ..   enhanced_casualty_severity = col_double(), 
##   ..   casualty_distance_banding = col_double() 
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##   .. ) 
##  - attr(*, "problems")=<externalptr> 

Whichever way you inspect the data frame, it turns out that most columns are numeric, 
although their names suggests categorical variables (e.g. pedestrian_location). You need 
to decode these digits. Therefore you manually inspect the source website to find a such a 
metadata file (see Fig. #guide). 

Make labels comprehensible 

They call the metadata file a Road Safety Open Data Guide and it is obviously an Excel () 
spreadsheet (more precisely .xlsx): https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx . To inspect it, you 
need the read_xlsx() function from the readxl library (you have already loaded it with 
the other libraries). 

Now, this function cannot read files from urls but requires a local file. Therefore you first 
must use the base R function download.file(). 

Here comes a caveat for Windows users: you have to use this additional parameter: mode = 
"wb" . This is because Excel files behave like zipped files and to download these you have to 
explicitly tell Windows to store them as so-called binary files (with this parameter). 
Otherwise, the file will download corrupted. 

download.file(url = "https://data.dft.gov.uk/road-accidents-safety-data/dft-
road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx",  
                destfile = "guide.xlsx",  
                mode="wb",  
                cacheOK = FALSE) 

This ought to work. If you still experience problems with reading the file with the next code 
snippet, you will have to download and save the file manually through the Windows 
Explorer. 

The read_xlsx() function can only read one worksheet at a time. It will read the first 
worksheet by default, but there is a parameter with which you could override the choice 
(sheet). 

guide <- read_excel(path = "guide.xlsx", sheet = 1) # this function reads 
only local files, no urls 
 glimpse(guide) 

## Rows: 1,784 
## Columns: 5 
## $ table         <chr> "accident", "accident", "accident", "accident", 
"acciden… 
## $ `field name`  <chr> "collision_index", "collision_year", 
"collision_referenc… 
## $ `code/format` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "1", "3", 
"4", "… 

https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx
https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-road-safety-open-dataset-data-guide-2023.xlsx
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## $ label         <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
"Metropolitan Po… 
## $ note          <chr> "unique value for each accident. The accident_index 
comb… 

It seems that the most interesting columns are field name and label. The former will, 
hopefully, at least partially overlap with the column names of the annual casualty data. 
Only those that occur in the casualty data are relevant, so let us get rid of those that are 
irrelevant. 

To find out, you have to compare the column names of all_rc with the de-duplicated field 
name column. 

deduplicated <- guide %>%  
  dplyr::distinct(`field name`) %>%  
  pull() # outputs a character vector 

colnames(all_rc) # also a character vector 

##  [1] "ID"                                 "accident_index"                     
##  [3] "accident_year"                      "accident_reference"                 
##  [5] "vehicle_reference"                  "casualty_reference"                 
##  [7] "casualty_class"                     "sex_of_casualty"                    
##  [9] "age_of_casualty"                    "age_band_of_casualty"               
## [11] "casualty_severity"                  "pedestrian_location"                
## [13] "pedestrian_movement"                "car_passenger"                      
## [15] "bus_or_coach_passenger"             
"pedestrian_road_maintenance_worker" 
## [17] "casualty_type"                      "casualty_home_area_type"            
## [19] "casualty_imd_decile"                "lsoa_of_casualty"                   
## [21] "enhanced_casualty_severity"         "casualty_distance_banding" 

You need to find all elements that occur both in colnames(all_rc) and in field name 
column in guide. If you made sure you have both as character vectors, you can use the 
intersect() function from base R. If you have loaded the dplyr library (you must have had 
to make this code work all the way down to here), you are going to get error messages. This 
is because dplyr also has a function with that name, and R is going to think you mean that 
one. Whenever you get error messages saying that a function is masked by another 
function, tell R explicitly the name of the library where your function belongs. Here it says 
base:: for base R. 

overlap <- base::intersect(colnames(all_rc), deduplicated)  
overlap 

##  [1] "accident_index"                     "accident_year"                      
##  [3] "accident_reference"                 "vehicle_reference"                  
##  [5] "casualty_reference"                 "casualty_class"                     
##  [7] "sex_of_casualty"                    "age_of_casualty"                    
##  [9] "age_band_of_casualty"               "casualty_severity"                  
## [11] "pedestrian_location"                "pedestrian_movement"                
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## [13] "car_passenger"                      "bus_or_coach_passenger"             
## [15] "pedestrian_road_maintenance_worker" "casualty_type"                      
## [17] "casualty_home_area_type"            "casualty_imd_decile"                
## [19] "lsoa_of_casualty"                   "enhanced_casualty_severity"         
## [21] "casualty_distance_banding" 

Get rid of all guide rows that capture labels that are not in the casualties data by filtering 
out all rows that contain these values in the field_name columns. 

guide2 <- guide %>% dplyr::filter(`field name` %in% overlap )  

That was a considerable reduction! 

nrow(guide) 

## [1] 1784 

nrow(guide2) 

## [1] 147 

The guide lists to each field name a code/format and a label value. The code/format 
column displays the values that occur in the all_rc data and the label column displays 
their verbal explanations,which are short enough to make good labels in the all_rc data 
and replace the numeric codes. 

We will pick these three variables in all_rc and decode their labels using dplyr::mutate: 

• sex_of_casualty 

• age_of_casualty 

• casualty_class 

You will need to look at their values and manually encode the mutation across the 
corresponding column, with the correct conditions. To break down this task, first make 
small data frames from guide2 containing just these format/codes and their labels. 

sex_of_casualty_df <- guide2 %>% filter(`field name` == "sex_of_casualty") 
%>%  
  select(`code/format`, label) 
sex_of_casualty_df # add this "df" at the end so you can always tell it apart 
from the like-namedcolumn  

## # A tibble: 4 × 2 
##   `code/format` label                        
##   <chr>         <chr>                        
## 1 1             Male                         
## 2 2             Female                       
## 3 9             unknown (self reported)      
## 4 -1            Data missing or out of range 
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Create a new variable for experimentation so you don’t have to croll up to re-run the code 
to re-create all_rc if something goes wrong. 

all_rc2 <- all_rc %>%  
  mutate(across(sex_of_casualty,  
                ~ case_when(.x == "1" ~ "Male",  
                            .x == "2" ~ "Female",  
                            .x == "9" ~ "unknown (self reported)", 
                            .x == "-1" ~ "Data missing or out of range",  
                            .default = as.character(.x) 
                            ) 
                )) 

The added parameter .default was set to .x. This means that, if other values appear in the 
data, they will remain unchanged, but if they are numbers, they will become strings. We 
have said that R coerces the data classes, but in this context you could receive an error 
message on data class mismatch. 

Check the result by displaying the de-duplicated values of all_rc’s sex_of_casualty 
column. 

all_rc2 %>% dplyr::distinct(sex_of_casualty) 

## # A tibble: 4 × 1 
##   sex_of_casualty              
##   <chr>                        
## 1 Male                         
## 2 Female                       
## 3 Data missing or out of range 
## 4 unknown (self reported) 

So this has worked fine, and the data is consistent with the guide, since no unexpected 
values have occurred. 

The sex values are just a few, but imagine the chore to manually encode all values if they 
were many. To avoid retyping values by hand, you could look them up in the small data 
frame you created and use a loop like so: 

all_rc2 <- all_rc # start with all_rc2 identical with all_rc 
for (i in 1:nrow(sex_of_casualty_df)) { 
  all_rc2 <- all_rc2 %>%  
    mutate(across(sex_of_casualty,  
                  ~ case_when(.x == sex_of_casualty_df$`code/format`[i] ~ 
sex_of_casualty_df$label[i],  
                              .default = as.character(.x)))) 
} 

Breaking down what is happening in the loop: 

The number of iterations is the number of rows in the small data frame 
(nrow(sex_of_casualty_df)). 
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You mutate the all_rc2’s sex_of_casualty column with the following formula: “if the 
value of the sex_of_casualty column in all_rc2 equals the value in the ith row of 
sex_of_casualty_df’s column code/format, replace that value with the value in the ith 
row of sex_of_casualty_df’s label column. Very important: you have to set the .default 
parameter to keep other values unchanged. Otherwise each step would only replace that 
one ith value and overwrite all others with NA. 

Also, when you glimpse back at the structure of all_rc, it its sex_of_casualty column is 
numeric, while you are replacing numbers with strings. In a loop, this would throw errors 
even more likely than in the previous case. Therefore you have to convert the numeric 
value to character in .default. To live through what exactly would happen, you can modify 
the code and run it without the as_character trick. You are going to see class mismatch 
messages over and over when you code, so remember to make sure that you replace values 
by values of the same class - not only when running a loop but in many other contexts. 

Here check the result again: 

all_rc2 %>% dplyr::distinct(sex_of_casualty) 

## # A tibble: 4 × 1 
##   sex_of_casualty              
##   <chr>                        
## 1 Male                         
## 2 Female                       
## 3 Data missing or out of range 
## 4 unknown (self reported) 

This has worked well again! You can run this code on the original all_rc. 

for (i in 1:nrow(sex_of_casualty_df)) { 
  all_rc <- all_rc %>%  
    mutate(across(sex_of_casualty,  
                  ~ case_when(.x == sex_of_casualty_df$`code/format`[i] ~ 
sex_of_casualty_df$label[i],  
                              .default = as.character(.x)))) 
} 

Now, for your training, you can try and replace values in the other columns 
age_of_casualty and casualty_class, either by retyping their values by hand or by 
creating small look-up data frame and glide over them with a loop. Feel free to experiment 
with other columns! 

First insights from the data 

Now that you have decoded the categories of all categorical variables you are interested in, 
you can start asking questions. Here come a few. 
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Count of casualties per accident 

It seems that each row of the all_rc represents a person who got severely injured or killed 
in an accident. There is no column that would mark each such casualty person with a 
unique ID. There is a column called casualty_reference, but according to the str() call, 
the values repeat. A quick check here: 

all_rc$casualty_reference %>% summary() 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    1.00    1.00    1.00    1.36    1.00  999.00 

table(all_rc$casualty_reference) 

##  
##      1      2      3      4      5      6      7      8      9     10     
11  
## 514864 102232  30651  10818   3917   1396    604    266    144    104     
78  
##     12     13     14     15     16     17     18     19     20     21     
22  
##     57     37     31     22     17     15     11     11      7      6      
7  
##     23     24     25     26     27     28     29     30     31     32     
33  
##      4      4      6      3      3      3      3      3      3      3      
4  
##     34     35     36     37     38     39     40     41     42     43     
44  
##      3      3      3      3      3      3      4      4      2      2      
2  
##     45     46     47     48     49     50     51     52     53     54     
55  
##      2      2      2      2      2      2      2      2      1      1      
1  
##     56     57     58     59     60     61     62     63     64     65     
66  
##      1      1      1      1      1      1      1      1      1      1      
1  
##     67     68     69     70    101    111    256    902    991    992    
999  
##      1      1      1      1      1      1      1      1      1      2      
1 

Perhaps these reference indices can become unique IDs when combined with the unique 
IDs of accidents, which are in columns accident index and accident reference. The 
former seems to contain the latter and add encoded accident date, like here: 

all_rc %>%  
  select(c(`accident_index`, `accident_reference`, `casualty_reference`)) %>% 
  slice_max(casualty_reference,n = 10, with_ties = FALSE) 
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## # A tibble: 10 × 3 
##    accident_index accident_reference casualty_reference 
##    <chr>          <chr>                           <dbl> 
##  1 2022141207146  141207146                         999 
##  2 2020501008741  501008741                         992 
##  3 2023201458669  201458669                         992 
##  4 2019410902098  410902098                         991 
##  5 2020500986881  500986881                         902 
##  6 2019470882287  470882287                         256 
##  7 2019470879747  470879747                         111 
##  8 2022052201813  052201813                         101 
##  9 2023520300610  520300610                          70 
## 10 2023520300610  520300610                          69 

So, the idea is, that each accident listed in this table has at least one casualty referred to as 
1. The highest value is 999, so you should get 999 rows of the same accident, shouldn’t you? 
But that does not work, since an accident with a casualty referred to as 999 ought to 
produce rows with casualty 998, 997, 996 etc., all the way to 1. A possible explanation is 
that all accident participants get this index, and the casualties tables filter just the severely 
and deadly injured and rename the filtered participants (or so) column to 
casualty_reference. Anyway, let’s look at the distribution of casualties in accidents to 
make a sanity check of this guess. 

How to do that: group the data by accident_index and display counts. 

all_rc %>% group_by(accident_index) %>%  
  count(name = "casualties") %>%  
  ungroup() %>%  
  slice_max(casualties, with_ties = FALSE, n = 10) 

## # A tibble: 10 × 2 
##    accident_index casualties 
##    <chr>               <int> 
##  1 2023520300610          70 
##  2 2019500885809          52 
##  3 2020440349165          41 
##  4 2019220855375          25 
##  5 202163CF00721          22 
##  6 2019350900122          20 
##  7 2019410889448          19 
##  8 2019440129002          19 
##  9 2020990939366          19 
## 10 2023991309739          19 

Mind to ungroup before slicing!!! Otherwise you will get the entire data frame, because it is 
going to look for the top ten values for each accident index, but will obviously find just one 
for each because each accident occurs only once now that we have counted the rows where 
it occurred in the original data containing individual observations. 

So this table says that the worst accident had 70 casualties. 
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Look at the accident with the highest index of casualty. First find out the accident index of 
that accident. 

all_rc %>% slice_max(order_by = casualty_reference, n = 1, with_ties = TRUE) 

## # A tibble: 1 × 22 
##   ID      accident_index accident_year accident_reference 
vehicle_reference 
##   <chr>   <chr>                  <dbl> <chr>                          
<dbl> 
## 1 rc_2022 2022141207146           2022 141207146                          
1 
## # ℹ 17 more variables: casualty_reference <dbl>, casualty_class <dbl>, 
## #   sex_of_casualty <chr>, age_of_casualty <dbl>, age_band_of_casualty 
<dbl>, 
## #   casualty_severity <dbl>, pedestrian_location <dbl>, 
## #   pedestrian_movement <dbl>, car_passenger <dbl>, 
## #   bus_or_coach_passenger <dbl>, pedestrian_road_maintenance_worker 
<dbl>, 
## #   casualty_type <dbl>, casualty_home_area_type <dbl>, 
## #   casualty_imd_decile <dbl>, lsoa_of_casualty <chr>, … 

all_rc %>% filter(accident_index == "2022141207146") 

## # A tibble: 1 × 22 
##   ID      accident_index accident_year accident_reference 
vehicle_reference 
##   <chr>   <chr>                  <dbl> <chr>                          
<dbl> 
## 1 rc_2022 2022141207146           2022 141207146                          
1 
## # ℹ 17 more variables: casualty_reference <dbl>, casualty_class <dbl>, 
## #   sex_of_casualty <chr>, age_of_casualty <dbl>, age_band_of_casualty 
<dbl>, 
## #   casualty_severity <dbl>, pedestrian_location <dbl>, 
## #   pedestrian_movement <dbl>, car_passenger <dbl>, 
## #   bus_or_coach_passenger <dbl>, pedestrian_road_maintenance_worker 
<dbl>, 
## #   casualty_type <dbl>, casualty_home_area_type <dbl>, 
## #   casualty_imd_decile <dbl>, lsoa_of_casualty <chr>, … 

So, accident with this index seems to have just one casualty. How about accidents with 
highest casualty references? 

all_rc %>% slice_max(order_by = casualty_reference, n = 5, with_ties = TRUE)  

## # A tibble: 5 × 22 
##   ID      accident_index accident_year accident_reference 
vehicle_reference 
##   <chr>   <chr>                  <dbl> <chr>                          
<dbl> 
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## 1 rc_2022 2022141207146           2022 141207146                          
1 
## 2 rc_2020 2020501008741           2020 501008741                          
1 
## 3 rc_2023 2023201458669           2023 201458669                          
2 
## 4 rc_2019 2019410902098           2019 410902098                          
1 
## 5 rc_2020 2020500986881           2020 500986881                          
2 
## # ℹ 17 more variables: casualty_reference <dbl>, casualty_class <dbl>, 
## #   sex_of_casualty <chr>, age_of_casualty <dbl>, age_band_of_casualty 
<dbl>, 
## #   casualty_severity <dbl>, pedestrian_location <dbl>, 
## #   pedestrian_movement <dbl>, car_passenger <dbl>, 
## #   bus_or_coach_passenger <dbl>, pedestrian_road_maintenance_worker 
<dbl>, 
## #   casualty_type <dbl>, casualty_home_area_type <dbl>, 
## #   casualty_imd_decile <dbl>, lsoa_of_casualty <chr>, … 

all_rc %>%  
  filter(accident_index %in% c("2022141207146", "2020501008741",  
                               "2023201458669", "2019410902098",  
                               "2020500986881")) %>%  
  select(c("accident_index", "casualty_reference")) %>% 
arrange(accident_index) 

## # A tibble: 10 × 2 
##    accident_index casualty_reference 
##    <chr>                       <dbl> 
##  1 2019410902098                 991 
##  2 2019410902098                   2 
##  3 2020500986881                   1 
##  4 2020500986881                 902 
##  5 2020501008741                   1 
##  6 2020501008741                   3 
##  7 2020501008741                 992 
##  8 2022141207146                 999 
##  9 2023201458669                   1 
## 10 2023201458669                 992 

This shows that, for instance, there were two casualties in Accident 2019410902098 (the 
first one), referenced as 991 and 2. Other two casualties (referenced as 1 and 902) 
occurred in Accident 2020500986881. Three casualties occurred in Accident 
2020501008741 under references 1, 3, and 992. And so on. 

It is a plausible explanation that the casualty index is identical to what probably is an 
accident participant index in other data sets describing these accidents. 



14 
 

This data do not indicate how many persons were involved in the individual accidents, but 
it shows the number of casualties in each accident resulting in at least one casualty. 

Visualizations of casualties counts 

Plot the numbers of accidents broken by years in a scatterplot or a line plot. 

all_rc %>%  
  group_by(accident_year) %>%  
  count(name = "number_of_accidents") %>%  
  ungroup() %>%  
  ggplot(mapping = aes(x = accident_year, y = number_of_accidents)) + 
  geom_point() +  
  geom_line(color = "seagreen") 

 

Draw a plot that would show for each year the distribution of numbers of casualties by 
years. For instance, you can draw a boxplot for each year (x-axis) with numbers of 
casualties per accident (y-axis). You will again have to aggregate the table accordingly 
before drawing the plot. Mind to ungroup the data frame to keep the code clean. 

all_rc %>%  
  group_by(accident_year, accident_index) %>% 
  count(name = "number of casualties per accident") %>% 
 ggplot(mapping = aes(x = factor(accident_year),  
                      y = `number of casualties per accident`,  
                      #group = accident_year 
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                      )) + 
  geom_boxplot() 

 

Another way would be to make facets with histograms 

all_rc %>%  
  group_by(accident_index, accident_year) %>% 
  count(name = "number of casualties per accident") %>%  
  ggplot(mapping = aes(x = `number of casualties per accident`)) + 
  geom_histogram(binwidth = 1) +  
  facet_wrap(~ accident_year)  
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Zoom in at the small numbers 

all_rc %>%  
  group_by(accident_index, accident_year) %>% 
  count(name = "number of casualties per accident") %>%  
  ggplot(mapping = aes(x = `number of casualties per accident`)) + 
  geom_histogram(binwidth = 1) +  
  facet_wrap(~ accident_year) + 
  coord_cartesian(ylim = c(0,10)) +  
  scale_y_continuous(name = "detail of small counts",  
                     breaks = seq(0,10, 1) 
                     ) 
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