

Text Summarization of Meeting Dialogues

Erion Çano

UFAL - MFF - UK

Definition and Applications of SA

Sentiment Analysis

Computational examination of sentiments, opinions, and attitudes expressed in text from an opinion holder towards an entity.

Sentiment Classification

Determining the polarity of an opinion in a text unit about an entity. It can be document-level, sentence-level or aspect-level.

Applications

Market surveys and predicitons, brand/product popularity analysis, client/product profiling, political surveys, counter-terrorism, etc.

Erion Çano

Word Representations: Bag of Words

I love this movie! It's sweet. fairy but with satirical humor. The alwavs whimsical dialogue is great and the and seen adventure scenes are fun... friend It manages to be whimsical adventure and romantic while laughing whosweet at the conventions of the but to fairy tale genre. I would several recommend it to just about again the seen anyone. I've seen it several to scenes times, and I'm always happy the fun and to see it again whenever I whenever have a friend who hasn't seen it yet!

5 the 3 to loveto 3 and 2 seen are anvone vet happy dialogue would recommend whimsical of satirical it movie times romantic sweet the humor satirical adventure would the manages genre times and fairy about humor while have have conventions great

Severe sparsity and dimensionality issues on large V...

Erion Çano

Word Representations: Word Embeddings

"You shall know a word by the company it keeps."

– J. R. Firth, 1957

Word Embeddings

- © Dense and low-dimensional
- \bigcirc Complexity scales linearly w.t.r V
- © Preserve word order in phrases
- © Capture semantic and syntactic similarities
- 😕 Require big text corpora to train
- © Computationally expensive to train

Representation of Words

Matrix representaton of "your shirt looks nice":

	d = 5							
your	0.23	0.18	0.34	0.76	0.62			
shirt	0.64	0.23	0.21	0.03	0.83			
looks	0.98	0.59	0.76	0.65	0.45			
nice	0.11	0.43	0.30	0.22	0.92			

Embeddings sourced from pretrained GoogleNews collection.

Erion Çano

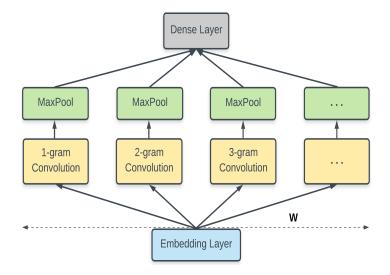
Experimental Datasets

Dataset	Docs	\mathbf{MinL}	\mathbf{AvgL}	MaxL	UsedL
Mlpn (song lyrics)	5K	23	227	2733	450
Sent (Sentences)	10K	1	17	46	30
Imdb (movie reviews)	50K	5	204	2174	400
Phon (phone reviews)	232K	3	47	4607	100
Yelp (yelp reviews)	598K	1	122	963	270

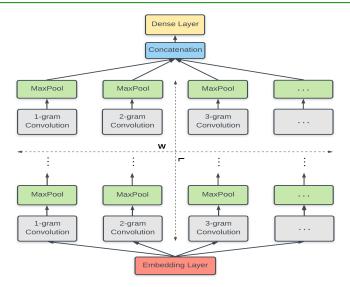
- Different domain tasks and data types
- Both small (Mlpn) and big (Yelp) datasets
- Both long (Imdb) and short (Phon) documents

Erion Çano

Multi-Channel Network Structures

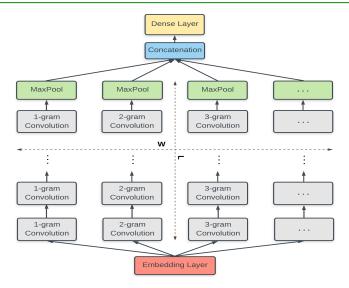


NgramCNN Basic Architecture

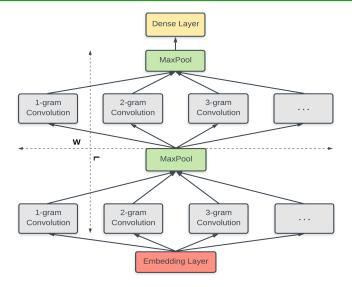


Erion Çano

NgramCNN Pyramid Architecture



NgramCNN Fluctuating Architecture



Erion Çano

Baseline Models

- Single LSTM
- Single Convolution-Pooling
- Bidirectional LSTM with max-pooling
- Bidirectional LSTM with Convolution-Pooling
- Logistic Regression with tf-idf
- Support Vector Machine with tf-idf

Comparative Accuracy Scores

Network	Sent	Imdb	Phon	Yelp
NgCNN Basic	79.87	90.77	95.92	94.88
NgCNN Pyramid	79.52	91.21	95.70	94.83
NgCNN Fluctuate	77.41	89.32	93.45	92.27
Optimized LR	81.63	89.48	92.46	91.75
Optimized SVM	82.06	88.53	92.67	92.36
SingleCNN	81.79	89.84	94.25	93.86
SingleLSTM	80.33	84.93	93.71	90.22
BLSTM-POOL	80.96	85.54	94.33	91.19
BLSTM-2DCNN	<u>82.32</u>	85.70	95.52	91.48

Definition of Text Summarization

Text Summarization (TS)

Distilling the most important information in a text to produce an abridged version.

Types of TS

- Single-document vs Multi-document
- Extractive vs Abstractive
- Generic vs Query-driven
- Informative vs Indicative

- Simplify and abbreviate text (Abstracts)
- Summary of email threads (Subjects)
- Action or decisions from a meeting (Discussions)
- Generating news about an event (Stories)
- General opinions about an item (Reviews)
- Answering user questions (Queries)

Extractive vs Abstractive

Extractive TS

The generated summary is a selection of relevant sentences from the source text in a copy-paste fashion.

- Simpler and highly explored
- Statistical, Feature-based, Machine Learning, Graph-based

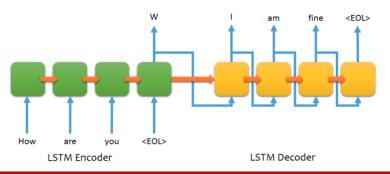
Abstractive TS

The generated summary is a new cohesive text not necessarily present in the original source.

- Hard and challenging
- TS as a neural MT problem; encoder-decoder paradigm

Erion Çano

Abstractive TS Problems



Problems

- Generated summary not always meaningful
- Hard to distinguish rare and unknown words
- Grammar errors in the generated summaries

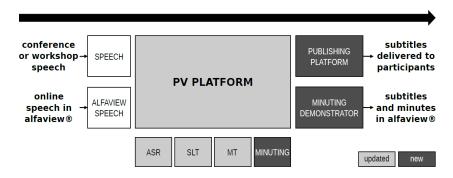
Erion Çano

Remote conferencing/meeting

- Important for reducing business expenses
- Market growth: from 5 % (2015) to 60 % (2021)
- Leaders: Cisco WebEx, Microsoft Skype and Zoom

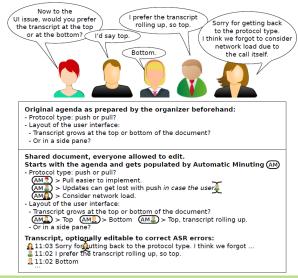
Erion Çano

Proposed Workflow of ELITER Project



- Automatic Speech Recognition
- Spoken Language Translation
- Machine Translation

Meeting Dialogues



- Dialog segments instead of text sentences
- Breaking transcript into segments
- Order and classify each segment
- Using neural networks on labeled texts
- Exploring unsupervised or semi-supervised methods

- Speech has disfluencies and redundancy
- Remove redundant words keeping important content
- Extractive supervised: Deep RNNs
- Extractive unsupervised: TextRank
- Abstractive Supervised: Bidirectional LSTMs

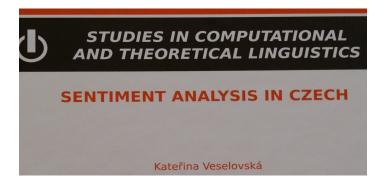
S3: Summarizing Documents/Discussions

- Rank segments based on position and topic
- Sentence embedding for merging redundant segments
- Trying Encoder-decoder or seq2seq networks
- Identifying speaker's attitude on the topic
- Infusing external knowledge to eliminate grammatical errors

- Matching segments with agenda points
- Static or dynamic agenda...?
- Computing similarity of segments with agenda points
- Using embeddings of words and segments

- ICSI meeting corpus (Janin et al., 2003)
- AMI meeting corpus (Carletta, J., 2006)
- Gigaword dataset (Graff et al., 2003)
- Google sentence compression (Filippova and Altun, 2013)
- CNN Daily Mail corpus (Hermann et al., 2015)

Sentiment Analysis: A new context



- ③ Rigorous dataset creation and assessment
- © Careful linguistic feature processing
- 🙁 Old and maybe not optimal classifiers

Erion Çano

- Comparing many existing off-the-shelf classifiers
- Trying ensemble learners
- Word embeddings on bigrams
- Neural networks with convolutions

Questions or Suggestions...?

Thank You...🕲

Erion Çano

Text Summarization of Meeting Dialogues

Oct 1, 2018 27 / 27