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Abstract
This paper describes an open-source implementation of the so-called continuous space lan-

guage model and its application to statistical machine translation. The underlying idea of this
approach is to attack the data sparseness problem by performing the language model probabil-
ity estimation in a continuous space. The projection of the words and the probability estimation
are both performed by a multi-layer neural network. This paper describes the theoretical back-
ground of the approach, efficient algorithms to handle the computational complexity, and gives
implementation details and reports experimental results on a variety of tasks.

1. Introduction

Language models play an important role in statistical machine translation (SMT),
i.e. phrase-based systems like Moses (Koehn et al., 2007) or hierarchical phrase-based
systems like Joshua (Li et al., 2009). The classical equation of SMT shows this explic-
itly. Let us assume that we translate a French sentence f into English e:

e∗ = arg max
e

P(e|f) = arg max
e

P(f|e)P(e) (1)

the term P(e|f) was explicitly rewritten with the Bayes rule in order to decompose the
overall task into two components:

1. P(f|e) gives the probability that f is a translation of e without necessarily paying
much attention to the fact whether the generated sentence is well-formed or not;

2. P(e) expresses the probability that the produced sentence is grammatically and
semantically correct without looking at the source sentence.
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The language model (LM) is responsible for the second task. It is clear that the im-
portance of the LM increases when translating into morphologically rich languages.
Despite this importance there seems to be only a limited amount of research in im-
proved language modeling for SMT, and most of the state-of-the-art systems use the
well-known n-gram back-off LMs, introduced more than 20 years ago. There is a
large body of research on smoothing techniques, i.e. how to obtain probabilities for
n-grams that were not observed in the training data, see for instance (Chen and Good-
man, 1999) for an extensive comparison. In practice, modified Kneser-Ney smoothing
is used in most of the cases. Today, there is a clear tendency to train those models on
ever larger amounts of data, up to hundreds of billions of words. Several authors
propose variants of the back-off n-gram approach to tackle the enormous computa-
tional and storage complexity during training and decoding, for instance (Federico
and Cettolo, 2007; Brants et al., 2007; Talbot and Osborne, 2007).

In standard back-off n-gram language models words are represented in a discrete
space, the vocabulary. This prevents “true interpolation” of the probabilities of un-
seen n-grams since a change in this word space can result in an arbitrary change of the
n-gram probability. An alternative approach is based on a continuous representation of
the words (Bengio et al., 2003; Schwenk, 2007). The basic idea is to convert the word
indices to a continuous representation and to use a probability estimator operating in
this space. Since the resulting distributions are smooth functions of the word repre-
sentation, better generalization to unknown n-grams can be expected. This is still an
n-gram approach, but an LM probability is available for any possible n-gram without
the need to back-off to shorter contexts.

This continuous space LM was very successfully applied in large vocabulary con-
tinuous speech recognition (Schwenk, 2007) and references therein, and more recently
in statistical machine translation (Schwenk et al., 2006a, 2007; Schwenk and Estève,
2008). In this paper we present an open-source implementation of this approach.

The paper is organized as follows. In the next section we first summarize the the-
oretical background of the CSLM. Section 3 presents implementation details of the
toolkit and section 4 gives an overview on the performance of this approach.

2. Architecture of the continuous space language model

The architecture of the continuous space LM is shown in Figure 1. A standard
fully-connected multi-layer perceptron is used. The inputs to the neural network are
the indices of the n−1 previous words in the vocabulary hj=wj−n+1, . . . , wj−2, wj−1

and the outputs are the posterior probabilities of all words of the vocabulary:

P(wj = i|hj) ∀i ∈ [1,N] (2)

where N is the size of the vocabulary. The input uses the so-called 1-of-n coding, i.e.
the ith word of the vocabulary is coded by setting the ith element of the vector to
1 and all the other elements to 0. The ith line of the N × P dimensional projection
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Figure 1. Architecture of the continuous space LM. hj denotes the context
wj−n+1, . . . , wj−1. P is the size of one projection and H,N is the size of the hidden

and output layer respectively. When short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

matrix corresponds to the continuous representation of the ith word. Let us denote
cl these projections, dj the hidden layer activities, oi the outputs, pi their softmax
normalization, and mjl, bj, vij and ki the hidden and output layer weights and the
corresponding biases. Using these notations, the neural network performs the follow-
ing operations:

dj = tanh
(∑

l

mjl cl + bj

)
j ∈ [1,H] (3)

oi =
∑

j

vij dj + ki i ∈ [1,N] (4)

pi = eoi /

N∑
r=1

eor (5)

The value of the output neuron pi corresponds directly to the probability P(wj = i|hj).
Training is performed with the standard back-propagation algorithm minimizing the

139



PBML 93 JANUARY 2010

following error function:

E =

N∑
i=1

ti log pi + β

∑
jl

m2
jl +

∑
ij

v2
ij

 (6)

where ti denotes the desired output, i.e. the probability should be 1.0 for the next
word in the training sentence and 0.0 for all the other ones. The first part of this equa-
tion is the cross-entropy between the output and the target probability distributions,
and the second part is a regularization term that aims to prevent the neural network
from over-fitting the training data (weight decay). This is a well known technique
when training neural networks by the back-propagation algorithm The parameter β

has to be determined experimentally – in our experiments a value of 3−5 was used.
Training is done using a resampling algorithm to weight multiple corpora.

It is well known that the outputs of a neural network trained by back-propagation
converge to the posterior probabilities. Therefore, the neural network directly mini-
mizes the perplexity on the training data. Note also that the gradient is back-propagated
through the projection-layer, which means that the neural network learns the projec-
tion of the words onto the continuous space that is best for the probability estimation
task.

The complexity to calculate one probability with this basic version of the continu-
ous space LM is quite high due to the large output layer. To speed up the processing
several improvements are implemented:

1. Short-lists: the neural network is only used to predict the LM probabilities of a
subset of the whole vocabulary.

2. Bunch mode: several examples are propagated at once through the network. In-
stead of performing matrix/vector operations we have now matrix/matrix op-
erations which can be heavily optimized on current CPU architectures.

3. Grouping: LM probabilities are not requested in a arbitrary order, but requests
with the same context hj are grouped together. By these means, only one for-
ward pass through the neural network is needed.

The idea behind short-lists is to use the neural network to only predict the s most
frequent words, s being much smaller than the size of the vocabulary. All words
in the vocabulary are still considered at the input of the neural network. The LM
probabilities of words in the short-list (P̂N) are calculated by the neural network and
the LM probabilities of the remaining words (P̂B) are obtained from a standard 4-gram
back-off LM:

P̂(wt|ht) =

{
P̂N(wt|ht)PS(ht) if wt ∈ short-list
P̂B(wt|ht) else

(7)

PS(ht) =
∑

w∈short-list(ht)

P̂B(w|ht) (8)
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It can be considered that the neural network redistributes the probability mass of
all the words in the short-list.1 This probability mass is precalculated and stored with
the models. A back-off technique is used if the probability mass for an input context
is not directly available. In practice the short-list have a size of 8192 or 12288. This
allows to cover about 90% of the LM requests.

It would be relatively straightforward to integrate the CSLM into the Moses de-
coder. This would however lead to very slow decoding time since the complexity
to calculate an arbitrary n-gram probability is much higher for the CSLM than for a
standard back-off LM (which in principle just does a table look-up). Several speed-up
techniques are possible, but they are not yet implemented. It would be in particular
necessary to group requests with the same context.

Instead we use the Moses decoder to create n-best lists which are then processed
by a separate tool. This tool supports recalculation of the LM score using a CSLM or
a higher-order back-off LM. Several CSLMs can be interpolated on the fly (it is not
possible to merge multiple CSLMs into an bigger one like this is done for back-off
n-gram models). This tool collects all the LM requests of an n-best lists and groups
together requests with the same context hj. By these means the number of forward
passes through the neural network are drastically reduced. In addition, bunch mode
is used.

3. Implementation details

The tool is written in C++ and all the routines are contained in the library libc-
slm. The current version is closely interfaced with the SRILM toolkit (Stolcke, 2002).
We use in particular classes to load the vocabulary or back-off LMs for the short-list.
Therefore, the SRILM toolkit must be installed. It is planed to also support IRSTLM
and randomized language models in future versions. In addition, BLAS libraries2 and
the numerical optimization tool CONDOR are needed (see below). The CSLM toolkit
provides the following executables:

• cslm_train: main tool to train CSLMs.
• nbest_tool: tool to process n-best lists (rescoring with a CSLM, recalculation

of global scores, solution extraction, . . .)
• text2bin: convert text files to a binary representation for faster loading
The tool kit can be downloaded from the following web-page: http://liumtools.

univ-lemans.fr. Detailed documentation on the available options of the executables
and examples are provided with the software.

The neural network routines of the library are generic and can be used for other
applications of neural networks. Arbitrary multi-layer networks can be created, either

1Note that the sum of the probabilities of the words in the short-list for a given context is normalized∑
w∈short-list P̂N(w|ht) =1.
2Basic Linear Algebra Subprograms, a commonly used library for matrix operations.
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by composing them sequentially, i.e. the output of one layer is fed to the input of the
following layer; or in parallel, i.e. the outputs of several layers are concatenated and
build up a larger layer (this is used to compose the projection layer of the CSLM).
Currently, only fully connected layers are implemented, i.e. each neuron in the input
layer is connected with each neuron in the output layer. Training is performed with
the standard back-propagation algorithm. Weight decay regularization is available
(see equation 6). The neural network functions are implemented with the goal to
achieve very fast training and recognition. For this high performance BLAS libraries
are needed which take advantage of specifics of the processor to achieve fast matrix
operations, e.g. SSE and multi-threading on Intel processors. We use the libraries
MKL which are available from Intel for a very small fee,3 but there are also freely
available libraries, like ATLAS.4 Speed comparison between different BLAS libraries
were not performed.

The program nbest_tool is used to process Moses-style n-best list. Its main func-
tion is to calculate LM probabilities with the CSLM for all the hypotheses. In addition,
it can be used to recalculate the global scores for a given set of parameters λ, sort the
scores and extract the best hypotheses. This is used to reoptimize the system (see
figure 2). It is planed to extend this tool with other operations on n-best lists, in par-
ticular MBR decoding.

The CSLM toolkit provides the program text2bin to convert the training texts into
a binary representation. Basically, each word is replaced with its integer index in the
word-list. It is more efficient to process this representation when using the resampling
algorithm.

4. Experimental evaluation

The CSLM was initially applied to large vocabulary continuous speech recognition
systems. It achieved significant reductions in the word error rate of up to 1% absolute
for a large variety of languages and domains (Schwenk, 2007). Based on this success,
the application to SMT was investigated, first in the framework of a system to translate
texts from the European parliament proceedings (Schwenk et al., 2006b). The good
results were then confirmed on a variety tasks, ranging from the resource-poor IWSLT
evaluations (Schwenk et al., 2006a, 2007) to large NIST systems (Schwenk and Estève,
2008). These experiments are summarized in the following.

In all cases a two-pass approach was applied: first Moses was run using a 4-gram
back-off LM and distinct 1000-best lists were created. Those 1000-best lists were then
rescored with the program nbest_tool. The LM probabilities calculated by the CSLM
can be used to replace those of the standard back-off LM or added as an additional
feature function. In both cases we performed a minimum error training of the coeffi-

3Math Kernel Library, http://software.intel.com/en-us/intel-mkl/
4http://math-atlas.sourceforge.net/
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Figure 2. Two pass decoding architecture. First distinct n-best lists are created with
Moses using a 4-gram back-off LM. These n-best lists are rescored with the CSLM. The
resulting n-best lists are then used to retune the coefficients of the feature functions
(2nd pass tuning). For this the freely numerical optimization tool Condor is used. It
iteratively provides a set of parameters λ which are used to recalculate the global
score and to extract the current best hypotheses. This is done with the program

nbest-tool. Those hypotheses are evaluated against the reference translations. The
BLEU score is used by the Condor tool to propose a new set of parameters λ, until

convergence.

cients of the feature functions, using the freely available numerical optimization tool
CONDOR (Berghen and Bersini, 2005). CONDOR performs a Powell-style numeri-
cal optimization. The two-pass architecture is summarized in figure 2. Examples of
tuning with CONDOR and supporting scripts are provided with the CSLM toolkit.

The goal of the IWSLT BTEC5 task is to translate typical expressions from the travel
domain, mainly between Asian languages and English. There are about 200 to 400
thousand words of bitexts available to train the translation models, in function of the
source language. The LM is trained on the English side of those texts. Given the par-
ticular domain of this task, adding texts from other sources, e.g. newspaper texts from
LDC’s Gigaword corpora, has only a small impact. Therefore, it should be promising
to apply the CSLM to this task since it is expected to take better advantage of the
limited amount of in-domain LM training data. This could be confirmed by the ex-

5Basic Travel Expression Corpus
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perimental results using standard phrase-based as well as n-gram based SMT systems
(Schwenk et al., 2006a). Those results are summarized in Table 1.

Phrase-based N-gram-based
Ref. CSLM Ref. CSLM

Zh/En 19.74 21.01 20.34 21.16
Ja/En 15.11 15.73 16.14 16.35

Ar/En 23.72 24.86 23.83 23.70
It/En 35.55 37.41 35.95 37.65

Table 1. BLEU scores on the IWSLT 2006 test data, 4-gram back-off versus CSLM for
phrase-based and n-gram-based translation systems.

It is also interesting to use the CSLM in conjunction with an n-gram based SMT sys-
tem to improve the translation model. This approach basically uses a language model
on bilingual tuples (Mariño et al., 2006), resulting in the same data sparseness prob-
lems as for the model on the target language. Practically, we just need to apply the
CSLM to change the corresponding feature function in the n-best list. Table 2 presents
those results for the Italian/English language pair (Schwenk et al., 2007). The contin-
uous space language model achieved a gain of 1 point BLEU while the continuous
space translation model only brought a little more than 0.2 BLEU points. However,
both models together achieved a gain of 1.5 points BLEU.

Back-off neural neural neural
TM+LM TM LM TM+LM

It/En 36.97 37.21 38.04 38.50

Table 2. BLEU scores on IWSLT 2006 test data for the combination of a neural
translation model (TM) and a neural language model (LM).

Finally, the method was applied to a task for which very large amounts of LM
training data are available, namely the NIST evaluation tasks. The goal of this evalu-
ations is to translate newspaper and web texts from Chinese and Arabic into English.
In addition to the English side of about 200 million words of bitexts, the LDC collec-
tion of newspaper texts can be considered to be close to in-domain. Those texts are
known as the Gigaword corpus and they amount to more than 3 billion words. It is of
course impossible to train a neural network on so many examples and this would be
even a bad idea: large collections like the AFP texts would dominate the smaller but
important text sources. It is well known that it is better to build separate back-off LMs
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on each text source, to determine a coefficient for each one and to interpolate them
together. Loosely inspired by this technique, a resampling method was used to train
the neural network. At each epoch of back-propagation training, we resample ran-
domly a subset of each corpus. The resampling coefficient is chosen to take all of the
small and important corpora, and smaller subsets of the other “background corpora”.
More details of this procedure are given in (Schwenk, 2007) and references therein.

The Arabic English system was optimized on the NIST’06 test set and tested on the
NIST’08 data. The reference systems achieves a BLEU score of 47.02 using a very large
back-off LM that was trained by keeping all the 4-grams that appear in more than 3.3
million words of texts. Applying the CSLM, again by rescoring distinct 1000-best lists,
improves the BLEU score to 47.90. The final system achieved a very good ranking in
the 2009 NIST evaluation.6

5. Conclusion

This paper described an open-source implementation of a continuous space lan-
guage model for SMT. The integration of the CSLM into the translation process is
performed by a two-pass approach: first n-best lists are generated which are then
rescored using a provided tool. This approach can be used with different types of
machine translation systems, as long as they are able to produce n-best lists that con-
tain the scores of all the feature functions. During the last years, continuous space
LMs were successfully applied to a variety of SMT systems. Improvements of the
BLEU scores of more than 1 point BLEU were observed and, in general, this also lead
to better human judgments.

The CSLM toolkit is meant to be a starting point for ongoing research in the field
of estimating probabilities in the continuous domain. Future versions may include
factored representations of the words, support for lattices instead of n-best lists and
an application of the approach to the translation model.
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