
The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 87–96

Fast and Extensible Phrase Scoring for Statistical Machine
Translation

Christian Hardmeier
Fondazione Bruno Kessler, Trento, Italy

Abstract
Existing tools for generating phrase tables for phrase-based Statistical Machine Translation

(SMT) are generally optimised towards low memory use to allow processing of large corpora
with limited memory. Whilst being a reasonable design choice, this approach does not make
optimal use of resources when the sufficient memory is available. We present memscore, a new
open-source tool to score phrases in memory. Besides acting as a faster drop-in replacement
for existing software, it implements a number of standard smoothing techniques and provides
a platform for easy experimentation with new scoring methods.

1. Motivation

Phrase tables for Statistical Machine Translation (SMT) systems are commonly built
from very large parallel corpora in order to obtain ample vocabulary coverage and suf-
ficient quality of the translation probability estimates. On usual desktop computers,
the size of the phrase tables extracted from a large corpus will often exceed the size
of the physical memory available on the machine. Software tools used to estimate
phrase tables from parallel corpora are designed to take this constraint into account.
They do not try to load the complete data into memory at once. Instead, they process
their inputs as data streams, relying on local information only, and make extensive
use of temporary disk files and intermediate disk-bound sorting passes to access the
right information at the right moment.

This approach ensures that the size of the parallel corpus that can be processed
is limited only by the potentially very large amount of disk space available; the use
of working memory is kept to a minimum. The result is almost unlimited scalability

© 2010 PBML. All rights reserved. Corresponding author: hardmeier@fbk.eu
Cite as: Christian Hardmeier. Fast and Extensible Phrase Scoring for Statistical Machine Translation. The
Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 87–96. ISBN 978-80-904175-4-0.
doi: 10.2478v10108-010-0007-5.

PBML 93 JANUARY 2010

to very large corpora given sufficient disk space, but it seems wasteful not to exploit
the available memory resources as fully as possible. Moreover, the stream-based ap-
proach to data processing makes it very expensive to access data that is not locally
available, so the scoring functions that can be implemented are essentially limited to
those that require only a small number of straight passes through the data. In recent
years, random-access memory has become much cheaper, and the general availability
of 64-bit computers has lifted another important restriction on memory size, such that
academic sites now have access to computing equipment which can handle data sets
in memory that were beyond reach even a few years ago. It is reasonable to use soft-
ware that takes advantage of these new capabilities, not only to speed up SMT system
training, but also to make it feasible to implement new phrase scoring algorithms that
require more than just a few passes through the data.

Phrase-based Statistical Machine Translation (SMT) uses translation models in the
form of phrase tables, in which phrase pairs consisting of a source language (SL) and
a target language (TL) word sequence, s and t, are associated with a number of scores
corresponding to different models of translation probabilities between s and t. Fol-
lowing Koehn et al. (2003), candidate phrase pairs are usually extracted from a parallel
corpus with automatically generated word alignments. The forward and reverse con-
ditional phrase translation probabilities p(s|t) and p(t|s) are then estimated by the
relative frequency of a SL phrase in alignment with a given TL phrase and vice versa.
To overcome the unreliability of these estimates for low-frequency phrases, phrase ta-
bles usually include maximum likelihood scores for both p(s|t) and p(t|s) as well as
two additional lexical weight scores based on the word alignment probabilities of the
individual component words of the source and the target phrases (Koehn et al., 2003).

The widely used moses toolkit for Statistical Machine Translation (Koehn et al.,
2007) includes a tool called phrase-extract to extract phrase pairs from a word-aligned
corpus and compute phrase translation probabilities and lexical weights. It is de-
signed to process large amounts of corpus data on computers with relatively little
random-access memory (RAM). To achieve this, the file system is used extensively
to store temporary data. Phrases pairs are extracted from the parallel corpus and
stored to disk. Scoring is done individually for the two forms of the conditional prob-
ability, p(s|t) and p(t|s), and for each scoring pass, the extracted phrases have to be
sorted by target or source phrase, respectively. After scoring, the output of one of
the two scoring runs is sorted again to match the order of the other run for merging.
Another open-source implementation of SMT phrase scoring, Thot (Ortiz-Martínez
et al., 2005), also works with temporary disk files to cut down on RAM usage.

In this paper, we present memscore, an open-source phrase scoring tool replicating
and extending the functionality of the score component of the phrase-extract software
bundled with moses. Like score, it takes as input a list of phrase pairs produced by the
extract tool of phrase-extract and calculates phrase translation scores. Unlike score, it
performs all the computations in RAM and does not require the input to be sorted in
any way. As a result, scoring is much faster for data sets that fit completely in memory.

88

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

p(s|t) p(t|s)

-s ml -r ml maximum likelihood score
-s wittenbell -r wittenbell Witten-Bell smoothing
-s absdiscount -r absdiscount absolute discounting
-s lexweights <file> -r lexweights <file> lexical weights

-s const <constant> constant phrase penalty

Table 1. memscore command line options

Its implementation as a C++ program designed with modularity in mind makes it
easy to experiment with different scoring techniques. A small number of smoothing
techniques are already implemented, and other methods can easily be added. The
framework has also been used successfully for an experimental implementation of
an iterative scoring algorithm. In the rest of the paper, we are going to describe the
typical usage of memscore, some implementation details useful to those who want to
implement their own scoring algorithms in the framework provided by the tool and a
comparison of memscore with the phrase-extract scorer in terms of runtime performance
on two common SMT tasks.

2. Usage
2.1. Invocation

The memscore tool takes as input a list of phrases extracted from a parallel corpus in
the format used by the phrase-extract tool bundled with the moses decoder. The phrase
list is read from standard input and does not need to be sorted. It prints to standard
output a phrase table in the format used by moses.

The scores to be included in the phrase table are specified on the command line
with the switches listed in table 1. Each score is selected by one of the command
line options -s or -r followed by the identifier of the scorer. Additional arguments
may follow if the scorer requires this. When the option -s is used to specify a scorer
producing a conditional probability, the probability p(s|t) is generated. Using the
scoring option -r requests that the inverse probability p(t|s) be output instead. Thus,
to produce a phrase table with maximum likelihood probabilities and lexical weights
in both directions and a constant phrase penalty, as typically created by the moses
training scripts, you would use the following command line:

gzip -cd model/extract.gz |
memscore -s ml -s lexweights model/lex.e2f \

-r ml -r lexweights model/lex.f2e \
-s const 2.718 |

gzip >model/phrase-table.gz

89

PBML 93 JANUARY 2010

Here, the files lex.e2f and lex.f2e contain the lexical translation tables generated
by the moses training script in training step 4, and extract.gz is the phrase extraction
file produced in step 5. The memscore command itself replaces the scoring step 6. We
plan to integrate this step smoothly into the standard moses training script, but at the
time of writing, this has not been done yet.

In the configuration mentioned in the previous paragraph, the output of memscore
is essentially identical to that of the reference implementation, phrase-extract. The es-
timates of the maximum-likelihood scores are exactly the same as those produced by
phrase-extract. The lexical weights can be different if a certain phrase pair occurs in
the input with more than one set of alignments. According to Koehn et al. (2003),
the maximum score generated by any of the alignments should be used in this case.
However, the reference implementation does not conform to this recommendation.
Instead, it computes the lexical weight based on the alignment with the highest count
in the input. If there are several alignments with equal counts, the one occurring
earliest in the input stream is selected. Thus, the actual choice depends on the sort-
ing order of the input. In our implementation, two different modes of operation are
available: By default, memscore outputs the maximum lexical weight as suggested by
Koehn et al. (2003). If the command line switch of the lexical weight scorer is given as
-s lexweights -AlignmentCount model/lex.e2f, the lexical weight is based on the
most frequent alignment instead. If there is a tie for the maximal count, the greatest
score generated by any of the competing alignments is chosen. This mode of calcula-
tion matches the phrase-extract scoring more closely, but differences are still possible
in a small number of cases.

2.2. File formats

The file formats processed by memscore are the same as those produced and used
by the moses toolkit. They are illustrated in table 2. As input, a list of phrase pairs
extracted from a parallel corpus is read. The three fields in each line, separated by the
characters ‘␣|||␣’, are the source phrase, the target phrase and the word alignment.
The alignment is specified as a list of alignment links between word numbers, where,
e. g., a link 0-1 indicates that the first source word is aligned to the second target
word. Each phrase pair should occur in the input as often as it can be extracted from
the corpus. Sorting is not required. A suitable file is produced by the moses training
procedure under the name extract.gz. The inverse extraction file extract.inv.gz is
not needed when memscore is used.

The phrase table produced by memscore uses the same field delimiters. After the
source and target phrases, the word alignment is given in a different format. For each
source word, the third field contains a pair of parentheses with a comma-separated list
of word indices in the target phrase aligned to this word. In the fourth field, there is a
similar list for each target word. When a phrase pair occurs with different alignments
in the input, the most frequent alignment is output. Ties are broken arbitrarily. The

90

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

Phrase extraction file (input):
gemäß ||| in accordance with ||| 0-0 0-1 0-2

Phrase table (output):
gemäß ||| in accordance with ||| (0,1,2) ||| (0) (0) (0) ||| s1 s2 . . .

Lexical translation table:
gemäß accordance 0.0445155

Table 2. File record formats used by memscore

fifth field of the phrase table record contains the scores s1, s2, . . . as floating point
numbers in the order in which the scorers were specified on the command line.

The lexical weight scorer additionally requires a list of lexical translation table as
input. This table has records with three blank-separated fields giving the source word,
the target word and the lexical translation score, which is estimated as the number of
alignments between the source word and the target word in the corpus, divided by
the number of occurrences of the target word. When the lexical weight scorer is used
in reverse mode, the word translation probabilities must also be reversed. These are
the files lex.e2f and lex.f2e provided by the moses training scripts.

3. Implementation

3.1. Architecture

The architecture of memscore has been designed to favour extensibility. Develop-
ers should be able to implement quickly new scoring mechanisms without having
to spend time on parsing input files, designing compact data structures and dealing
with memory management. The scoring code is cleanly separated from these ancillary
functions. Also, computing the forward and reverse conditional probabilities p(s|t)
and p(t|s) is handled transparently by memscore. The programmer only has to provide
one implementation for the form p(s|t); reverse scoring is available automatically.

The main components of memscore are outlined in table 3. The classes PhraseTable,
PhraseInfo and PhrasePairInfoprovide access the data structures in which informa-
tion about the phrase table is stored. The algorithmic components are encapsulated
in the subclasses of PhraseStatistic, which can be used to compute statistics about
individual source language and target language phrases, and those of PhraseScorer,
which represent the actual scoring algorithms, respectively.

The class MemoryPhraseTable takes care of parsing the input data and storing it
in memory using a hash table provided by the C++ standard template library. The
source and target phrases are stored in hash tables of their own and represented in-
ternally by numeric identifiers. For each phrase pair, a PhrasePairInfo data struc-
ture encapsulates the joint counts. For each SL or TL phrase, a PhraseInfo structure

91

PBML 93 JANUARY 2010

Parent class Derived classes Description

PhraseTable MemoryPhraseTable
ReversePhraseTable

provide access to the phrase table

PhraseInfo stores data about single phrases
PhrasePairInfo stores data about phrase pairs

PhraseStatistic PhraseLanguageModel
ClosedPhraseLanguageModel

compute phrase-level statistics

PhraseScorer MLPhraseScorer
WittenBellPhraseScorer
AbsoluteDiscountPhraseScorer
ConstantPhraseScorer

implement phrase scoring algorithms

Table 3. Principal components of memscore

contains the marginal counts and the number of distinct phrases of the other lan-
guage it is aligned with. Both the PhraseInfo and the PhrasePairInfo classes also
have a mechanism by which more sophisticated scoring algorithms can request addi-
tional storage to be associated with phrases or phrase pairs. If, e. g., a phrase language
model is used, it will ask for space to be reserved to cache the language model scores
for each phrase. To avoid excessive memory consumption by features that are not ac-
tually used, the extra information for phrase pairs is stored in a variable-sized data
structure that only includes the information actually used by the scoring algorithms
selected by the user in a particular run. For the implementor of a scoring algorithm,
this is handled transparently.

The class ReversePhraseTable is an adapter that provides access to the phrase
table with the source and the target side exchanged. This makes it possible to use
exactly the same implementations of any scorer for computing both p(s|t) and p(t|s).

Subclasses of PhraseStatistic calculate statistics of single SL or TL phrases, which
can then be used by the actual scoring algorithm. This feature is not used by the stan-
dard scorers, all of which estimate scores based on phrase counts alone. However, an
experimental scorer might also take into account other characteristics of the phrases.
We provide two implementations of this interface: The PhraseLanguageModel class
scores the phrases with an IRSTLM language model (Federico et al., 2008). The Closed-
LanguageModel does the same, but normalises the language model scores over the
phrases encountered in the phrase table, assuming a closed world of phrases enu-
merated by the input.

Finally, the subclasses of PhraseScorer do the actual scoring. At the moment,
three algorithms with very simple implementations are available (table 4). The ML-
PhraseScorer computes the standard maximum likelihood estimate for a multino-
mial distribution based on relative frequencies. The WittenBellPhraseScorer uses

92

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

p(s|t) =
c(s, t)

c(t)
p(s|t) =

c(s, t)

c(t) + Ns(t)
p(s|t) =

c(s, t) − β

c(t)

maximum likelihood Witten-Bell absolute discounting

c(·): (joint or marginal) counts β: discounting constant (see text)
Ns(t): number of distinct s occurring with t

Table 4. Scoring methods implemented in memscore

the Witten-Bell estimate known from language modelling (Witten and Bell, 1991).
Another estimate borrowed from language modelling (Ney et al., 1994) is calculated
by the AbsoluteDiscountPhraseScorer, which reduces the joint count of each event
by a discounting constant β = n1/(n1 + 2n2), where n1 and n2 are the number of
phrase pairs occurring exactly once or twice in the parallel corpus, respectively. In
both cases, the probability mass is not redistributed to any backoff distributions, so
the probabilities will not sum to 1 over the closed world of the phrase table. This
type of smoothing avoids the typical overconfident estimates for phrase pairs with
low counts that maximum likelihood estimation is subject to.

3.2. Memory management

The operation of memscore can be divided in three phases. First, the input data
is loaded and the internal data structures are constructed. Next, the PhraseScorer
classes have the opportunity to collect any statistics they require by accessing the data
in an arbitrary way. The maximum likelihood and Witten-Bell scorers do nothing
in this stage; the absolute discounting scorer computes its discounting constant β.
Finally, the scorers are requested to emit their score estimates in a final, ordered pass
through all the phrase pairs.

In terms of memory consumption, the first stage is characterised by the alloca-
tion of a very large amount of memory for a multitude of small objects representing
phrase or phrase pair properties. In the next two phases, memory usage remains
essentially constant; all the memory is freed at once on program termination. The de-
fault memory allocators do not cope well with this usage pattern. Memory and execu-
tion time profiling revealed that the excessive allocation of small objects leads to over-
head memory consumption of up to one third of the total amount of space requested
because the memory allocator associates a certain amount of accounting information
with each memory block allocated, and the time wasted on memory allocation and
deallocation far exceeds the time spent on scoring. To overcome these problems, con-
siderable effort went into the optimisation of memory allocation patterns. In some
important cases, allocation and freeing of large numbers of small objects was made
considerably more efficient by judicious use of the memory pools provided by the

93

PBML 93 JANUARY 2010

Europarl NIST
DE-EN AR-EN

Corpus size (sentences) 1,252,747 4,654,686
Corpus size (English tokens) 34,731,010 147,135,694
Phrase pairs (types) 28,251,755 115,474,492
Phrase pairs (instances) 64,271,574 318,961,124

score memscore score memscore
Time (h : mm) 1 : 05 0 : 26 5 : 46 2 : 14
Peak memory usage 12.3 GB 15.7 GB 5 GB 62.2 GB

Single iteration 13.2 s 38.6 s

Table 5. Scorer performance on Europarl and NIST tasks

Boost library, which allocate single large pools of memory to hold many small objects
of equal size. In this way, the memory management overhead could be significantly
reduced both in terms of time and space, so that under normal conditions most of the
delays now stem from input/output operations, not from memory management.

4. Performance

To evaluate the performance of memscore relative to phrase-extract, we tested it on
two tasks of different sizes. As a medium size task, we trained a phrase table on the
German-English portion of the Europarl corpus (Koehn, 2005). The large task uses
all parallel data of the Arabic-English constrained data set of the 2009 NIST Machine
Translation evaluation campaign. The experiments were performed on the comput-
ing cluster of Fondazione Bruno Kessler (FBK-irst), Trento, on Linux computers with
2.5 GHz Intel Xeon CPUs. The cluster setup at FBK also defined the constraints for the
practical usability of the scoring tool and for the comparison with phrase-extract. The
maximum amount of random-access memory on a single machine is 70 GB. The local
disks of the computing nodes are relatively small, so that all data must be read from
and written to a network-mounted drive, which has a significant negative impact on
the performance of both memscore and phrase-extract. Temporary files created during
the initial and intermediate sorting steps of the phrase-extract procedure were kept on
the local disk. The memscore procedure did not require any sorting steps.

The results of the experiments can be found in table 5. On the cluster hardware at
FBK, it is possible to train even a NIST system in memory using memscore, even though
this is clearly pushing it to the limit. The memory usage of memscore is approximately
proportional to the size of the phrase table, which in turn depends on the corpus size.
In this way, the maximum corpus size that can be handled on a machine with a given

94

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

amount of memory can be estimated. The memory consumption of the scoring pro-
cedure with phrase-extract, on the other hand, is clearly not correlated with the corpus
size; indeed, in our example runs it was greater for the smaller corpus. The score
program itself consumes hardly any memory except for storing the lexical translation
table. It is likely that the peak values reported in table 5 are due to the GNU sort utility
which for some reason settled on a different trade-off between using temporary disk
files and increased resident memory usage in the two conditions.

The time required to estimate a phrase table is roughly halved by the use of mem-
score. This time is largely dominated by network input/output operations, and the
difference roughly reflects the fact that phrase-extract scores the two phrase table halves
separately, whereas memscore can do it in one step. It should also be noted that, as a
result of being I/O-dominated, the timing is very sensitive to the overall load on the
machines and the network, a factor not controlled in the experiments, so the indica-
tions should be taken with a grain of salt. Experience shows that the actual scoring is
very fast compared to loading and saving the data, so it is possible to apply iterative
scoring methods even for large data sets without incurring a noticeable performance
penalty.

To illustrate this effect, we ran another experiment to determine the cost of a sin-
gle iteration through the complete phrase table excluding the time to load and save
the table. We simulated a simple iterative scoring algorithm performing 200 passes
through the whole data. In each pass, an operation identical in cost to a relative fre-
quency computation, composed of looking up the marginal count in the phrase infor-
mation structure and a division, was executed for every phrase pair. The last row in
table 5 reports the average time per iteration, which gives an estimate of the marginal
cost of an additional pass through the data in an iterative algorithm once the loading
and saving times are accounted for.

5. Future work

In its current state, memscore can be a useful tool to speed up the training pipeline
of an SMT system when computers with large amounts of random-access memory are
available. Its extensible design also makes it easy to implement and test new scoring
methods. We hope that the public availability of an extensible scoring framework will
reduces the work involved in publishing new scoring methods in the form of ready-
to-use implementations.

So far, we have been concentrating on implementing the phrase scoring algorithm,
relying on the moses training scripts to extract phrases from the word-aligned parallel
corpus and to estimate the word-to-word translation probabilities used in calculating
lexical weights. It should be relatively straightforward, however, to integrate these
steps directly into memscore. The scoring tool would build its internal representations
directly from the parallel corpus. Phrase extraction files and word-to-word dictionar-
ies would be saved to disk only on request. In addition to making memscore more

95

PBML 93 JANUARY 2010

self-contained, this could also lead to a considerable reduction in the total amount of
disk space required, on the one hand, and of disk input/output activity, on the other
hand. In a networked environment, where data resides on remote disks, loading only
the aligned parallel corpus rather than loading and storing large phrase extraction
files could speed up the training process even further.

Another sorting step in the training pipeline could be avoided by making memscore
output the phrase table in the order required by processPhraseTable, which creates bi-
nary phrase tables to be used with moses. Since memscore internally stores the phrase
pairs in a hash table, which naturally iterates over its elements in a well-defined order,
this only requires defining suitable comparison operators for the phrase representa-
tion based on numerical identifiers used internally.

Finally, memscore could be extended to estimate lexical reordering tables, so that
it would cover the complete training of a phrase-based SMT system given the word
alignments.

Acknowledgements

This work was supported by the EuroMatrixPlus project (IST-231720), which is
funded by the European Commission under the Seventh Framework Programme for
Research and Technological Development. I am indebted to Gabriele Musillo and
Marcello Federico for their valuable comments on this paper.

Bibliography

Federico, Marcello, Nicola Bertoldi, and Mauro Cettolo. Irstlm: an open source toolkit for
handling large scale language models. In Proceedings of Interspeech, Brisbane, 2008.

Koehn, Philipp. Europarl: a corpus for statistical machine translation. In Proceedings of MT
Summit X, pages 79–86, Phuket, Thailand, 2005. AAMT.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In Pro-
ceedings of the 2003 conference of the North American chapter of the Association for Computational
Linguistics on Human Language Technology, pages 48–54, Edmonton, 2003.

Koehn, Philipp et al. Moses: open source toolkit for statistical machine translation. In Annual
meeting of the Association for Computational Linguistics: Demonstration session, pages 177–180,
Prague, 2007.

Ney, Hermann, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences in
stochastic language modelling. Computer Speech and Language, 8:1–38, 1994.

Ortiz-Martínez, D., I. García-Varea, and F. Casacuberta. Thot: a toolkit to train phrase-based
statistical translation models. In Proceedings of MT Summit X, pages 141–148, Phuket, Thai-
land, 2005. AAMT.

Witten, Ian H. and Timothy C. Bell. The zero-frequency problem: Estimating the probabilities
of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37(4):
1085–1094, 1991.

96

	Motivation
	Usage
	Invocation
	File formats

	Implementation
	Architecture
	Memory management

	Performance
	Future work

