
The Prague Bulletin of Mathematical Linguistics
NUMBER 111 OCTOBER 2018 97–112

A Probabilistic Approach to Error Detection&Correction
for Tree-Mapping Grammars

Tim vor der Brück
School of Information Technology, Lucerne University of Applied Sciences and Arts, Switzerland

Abstract
Rule-based natural language generation denotes the process of converting a semantic input

structure into a surface representation by means of a grammar. In the following, we assume
that this grammar is handcrafted and not automatically created for instance by a deep neural
network. Such a grammar might comprise of a large set of rules. A single error in these rules
can already have a large impact on the quality of the generated sentences, potentially causing
even a complete failure of the entire generation process. Searching for errors in these rules can
be quite tedious and time-consuming due to potentially complex and recursive dependencies.
This work proposes a statistical approach to recognizing errors and providing suggestions for
correcting certain kinds of errors by cross-checking the grammar with the semantic input struc-
ture. The basic assumption is the correctness of the latter, which is usually a valid hypothesis
due to the fact that these input structures are often automatically created.

Our evaluation reveals that in many cases an automatic error detection and correction is
indeed possible.

1. Introduction

In NLG, one common task is to transform a set of nested feature-value pairs into
a constituency tree structure by means of a set of grammar rules. These grammatical
rules are often context free production rules enriched by context-sensitive constraints.
Figure 1 illustrates the assumed generation model.

While implementing the grammar, a grammar developer will probably commit
errors. On the one hand, such an error can be conceptual, i.e., the developer did
not take something into account that is crucial for the functioning of the generation
process. Such errors can easily require a major redesign of the grammar. On the

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: tim.vorderbrueck@hslu.ch
Cite as: Tim vor der Brück. A Probabilistic Approach to Error Detection&Correction for Tree-Mapping Grammars.
The Prague Bulletin of Mathematical Linguistics No. 111, 2018, pp. 97–112. doi: 10.2478/pralin-2018-0009.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 111 OCTOBER 2018

Generator erroneouserroneouscorrect
Grammar

Input structure

Constitu-
ency tree

Surface text

a

b

c: d
e: f

g: h
j: k

Figure 1: Generation Model.

other hand, an error can be a simple oversight, for instance, the grammar developer
misspelled a path expression or a category name. The latter type of errors are the
ones we will focus here.

The effect of a grammar error can be manifold. In case the grammar developer
accidentally omitted an RHS (right hand side) of a rule, the generated text will prob-
ably be incomplete. If he instead switched two RHS, then the output will most likely
be scrambled. In both of these cases, the developer will usually get a good hunch re-
garding the nature and location of the error already by looking at the generated text.
However, if the grammar developer accidentally selected the incorrect category or
path expression, then in many cases the generation process will fail completely. Such
errors are particularly hard to trace. A further source of difficulty for error analysis is
the use of recursion, which can result in a deeply nested constituency tree.

In this work, we propose a statistical approach to automatically detecting incorrect
path expression and category selections and to providing suggestions for correcting
these kinds of errors. It is based on the static grammar verification method introduced
by vor der Brück and Busemann (2006) and contains comprehensive and considerable
extensions, such as a more detailed evaluation, an in-depth description of a statistical
disambiguation method, and discussions of false alarms. The term “path expression” is
coined to access parts of the input structure. This is quite similar to the term “relative
XPath expression” in XML. The hypothesis stated in this work is that the semantics
contained in the available input structures contains sufficient information to detect
those errors.

Our method is intended to be used together with template based text generation
systems, in which the grammar rules access an externally defined input structure.
Examples of such systems are TG/2 (Busemann, 1996), XtraGen (Stenzhorn, 2003)

98

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

and D2S (Theune et al., 2001). It is implemented as plugin for the eGram grammar
workbench (Busemann, 2004). eGram supports the comfortable development of text
generation grammars for the formalisms TG/2 and XtraGen. Furthermore, eGram is
seamlessly integrated with the TG/2/XtraGen generation component, which makes
it possible to view the result of the generation process directly inside the environment.
The most part of a grammatical rule definition using eGram is acomplished by select-
ing the appropriate path variables (path variables, see page 104), access functions and
categories from several comboboxes.

While errors concerning the rule syntax are practically impossible, there are ad-
ditional types of errors that cannot occur when writing the grammar with a simple
text editor. For instance, it is easily possible that the grammar developer clicks on the
category or path expression that is displayed below or above the category / path ex-
pression that was actually intended. A typical error that can occur when either using
eGram or a text editor is that the grammar developer copies a rule, modifies it after-
ward to build a new one and the modification is incomplete. This type of error is also
possible with eGram since this editor provides a similar functionality.

2. Related Work

Gardent and Narayan (2012) as well as vor der Brück and Stenzhorn (2008) de-
scribe a dynamic method that identifies errors in generation grammars by running a
generator on semantic input structures. A static approach, however, as proposed here
is usually much faster. For instance, our system can do several grammar verification
iterations in a few seconds. Furthermore, a static approach does not suffer from po-
tential endless recursion preventing a termination of a dynamic error analysis. For a
distinction between static and dynamic approaches see Daich et al. (1994).

There is also some prior work conducted on automated error detection for parsing
(the opposite operation to generation). Kok et al. (2009) and van Noord (2004) present
an approach, where a large corpus is parsed by an analyzer and n-grams leading to a
parsing failure are marked as suspicious. These suspicious n-grams can then be used
to track down errors in the tokenizer, lexicon and grammatical rules.

Checking linguistic grammars is closely related to program code analysis since
a generator is nothing else than a certain type of software. Zeller (2005) proposed a
dynamic testing algorithm to determine the causes of program crashes (segmentation
faults). This algorithm isolates the error by subsequently executing different parts of
the computer program with varying program states, which is called delta debugging.

3. Input Structure and Grammar Formalism

An input structure is a semantic representation of a certain domain. We assume
that it can be structured as nested name-value pairs. The primitive value can either be
a string or a number. The concatenation of two input structures forms a new input; the

99

PBML 111 OCTOBER 2018

value part of an input structure can again be an input structure. Formally, we define
an input structure as follows.
Definition 1. An input structure InStruc defines the semantics of a domain, assigns names
to components within the domain, and records values of these components, where components
at the same granularity shall be named differently.

InStruc ::= string|number (1)
InStruc ::= (name, InStruc) (2)
InStruc ::= InStruc; InStruc (3)

An input structure is a labeled tree structure. Its edges are labeled with names; its
nodes are input structures; its leaves can either be strings or numbers. Children of the
same node are labeled with different names.

For example, the following input structure describes the semantics of a temporal
duration. The corresponding labeled tree structure is illustrated in Formula 4. Each
leaf node in the tree is uniquely identified by the sequence of labels starting from the
root node. For example, the sequence “from, hour” uniquely identifies the leaf node
10. Generally, given a start node, a label sequence defines a travel from this start node.
A travel is a selection of nodes among the descendant nodes.

from

 hour : 10

min : 20

sec : 30

to

 hour : 12

min : 30

sec : 10

 (4)

Definition 2. Given an input structure InStruc, a sequence of strings a1, . . . , an is a
path expression of InStruc, if and only if, for any i there is an input structure InStruci,
such that (ai, InStruci) is within InStruc. A path expression a1, . . . , an is written as
[a1/ . . . /an]. The selection process is defined as follows.

[a1/ . . . /an] ◦ InStruc = [a2/ . . . /an] ◦ InStruca1
, (a1, InStruc,

InStruca1
)

∅ otherwise

(5)

where (a1, InStruc, InStruca1
) means that there is an edge labeled with a1 between

InStruc and InStruca1
.

The uniqueness of the selection process is guaranteed by the structure of the in-
put. For the convenience of computation, we define the empty path expression [ϵ] as
follow.

[ϵ] ◦ InStruc = InStruc (6)

100

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

[from]

START

TIME
TIME

[to]

tofrom

Figure 2: Tree representation of a grammar rule that generates a time interval.

Our task is to transform a given input structure into a linguistic surface structure.
In the former example, we need to transform the semantic representation of the tem-
poral duration into the phrase “from 10:20:30 to 12:30:10”. To this end, we employ
grammatical rules.

The grammar considered here follows the TG/2 formalism (Busemann, 1996, 2005),
which is also used by the XtraGen generator (Stenzhorn, 2003). TG/2 is basically
a context-free grammar formalism consisting of production rules. Each production
rule consists of one LHS (left hand side) category and several RHS (right hand side)
categories or functions or simple surface text strings. The RHS categories and func-
tions are associated to path expressions that specify the part of the input structure
accessible for such categories / functions.

R1 : START → from TIME[from] to TIME[to]
R2 : TIME → toString([hour]) : toString([min]) : toString([sec])

(7)

START is the top-level category the generation process kicks off with. “toString” is a
function that generates the part of the input structure that is referenced by the associ-
ated path expression. These rules are used to display a time expression in a formatted
way. A tree representation of rule R1 is given in Figure 2.

After applying rule R1 on the category START with the input structure depicted
in formula 4, an incomplete constituency tree is created with two preliminary leaf
nodes labeled with TIME. Rule R2 is then applied afterward on the TIME nodes and
can only access the part of the input structure selected by the path expression [from]
(or [to] respectively). If converted into an absolute path expression, the path expres-
sion “hour”, located on the right side of rule R2, would evaluate to [/from/hour] (or
[/to/hour] respectively). The generated surface string for the given input structure is:
“from 10:20:30 to 12:30:10”.

4. Error Identification with Left and Right Attributes

We define parent-child relationship for labels.
Definition 3. A label a is defined to be a parent label of label b, if a is the label of an input
structure InStruc, such that b is a label within InStruc.

101

PBML 111 OCTOBER 2018

Next, we define left and right grammar attributes of categories. If an RHS of a
rule with LHS category C is labeled with the path expression [a1, . . . , an], the path
component a1 is added to the set of right attributes of category C. If a path is empty,
then the right grammar attributes of the associated RHS category are inherited by the
LHS category C. Similarly, left grammar attributes of a category are defined as the
last path components belonging to a rule transition edge leading to this category. If
the path is empty, then the left grammar attributes of the LHS category are inherited.
The right attributes give a characterization of a category. Consider, for example, the
categories START and TIME and the two rules from the last section:

R1 : START → from TIME[from] to TIME[to].
R2 : TIME → toString([hour]) : toString([min]) : toString([sec])

The right grammar attributes of START are “from” and “to”, the right grammar at-
tributes of TIME are “hour”, “min”, “sec”.

In addition, we define the right and left validation attributes of categories. Vali-
dation attributes build a superset of all allowed grammar attributes and are extracted
from both the input structure and the grammar. Consider the case that there exists
an RHS labeled with a path “pe” leading to category C. Let “e” be the last component
of path “pe”. Then all possible child elements in the input structures of “e” belong to
the right validation attributes of C. This is the case for all RHS of rules leading to cate-
gory C. If “pe” is the empty path expression, then the right validation attributes of the
LHS category are added to C. If C is the START (top-level) category, then all top-level
input structure attributes are the right validation attributes of C. Formally, the right
validation attributes can be specified as follows (vor der Brück and Busemann, 2006):

rC :=

{d|∃R ∈ Rules,
pe ∈ PE, D ∈ Cat :
R : D → C[pe]∧
((parent(pe[|pe|], d)∨
(pe = ε∧ d ∈ rD)}, C ̸= START

top, otherwise

(8)

where
• Rules: set of all rules
• Cat: set of all categories
• PE: set of all path expressions
• parent(a, b): a relation that is fulfilled if and only if a occurs as parent of b in any

of the input structures
• top: all elements occurring at the top-level of any input structure
The left validation attributes of C are defined similarly. Let C be the LHS category

of a rule with one RHS labeled with path “pe”. Let us consider the first element of

102

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

TIME: sec, min, hour

min

sec

hour

hour

min

sec

from

to

1
R : TIME [from] TIME [to] from to

Figure 3: Construction of right validation attributes.

this path called “f”. Then all possible parents of “f” in the input structures belong
to the left validation attributes of C. If “pe” is the empty path, then all left validation
attributes of the RHS category are added to the LHS category. This is the case for any
such RHS. The process of extracting right and left validation attributes is illustrated
in Figures 3, 4, and in Table 2. Formally, the left validation attributes of C are given
as:

lC :={d|∃pe ∈ PE, R ∈ Rules :
R : C → D[pe]∧
(parent(c, pe[1])∨
pe = ε∧ d ∈ lD)

(9)

where D is either a category, a string-valued function or a string.
In order for a rule to be applicable with the current input structures, the right

grammar attributes of its LHS (RHS) category must be contained in the right valida-
tion attributes of its LHS (RHS) category. Similarly, the left grammar attributes must
be contained in the left validation attributes. To handle multiple errors, right grammar
attribute mismatches are identified top-down (beginning with the START category).
In this way, the right validation attributes that were introduced due to incorrect RHS
paths can be removed. Analogously, left grammar mismatches are identified bottom
up.

Now let us consider an example error of the grammar developer. We assume that
he wanted to enter rules R1 and R2 but made a mistake at rule R2.

R2,error :TIME → toString([to]) : toString([min]) : toString([sec])

The right validation attributes of TIME do not change, but the right grammar at-
tributes of TIME now contain the attribute “to”, which is not contained in the right
validation attributes of TIME and, therefore indicate an error in this RHS. The cor-
rect path must begin with one of the right validation attributes of TIME, i.e., “hour”,

103

PBML 111 OCTOBER 2018

hour

min

sec

hour

min

sec

from

to

TIME: from, to

: :R : TIME toString [hour] toString[min] toString[sec]
2

Figure 4: Construction of left validation attributes.

Cat Left Right
TIME from,to to,min,sec
START - from,to

Table 1: Grammar attributes derived
by the rules R1 and R2,error.

Cat Left Right
TIME from,to hour,min,sec
START - from,to

Table 2: Validation attributes derived
by the rules R1 and R2,error.

“min” or “sec”. Table 1 shows the grammar and Table 2 the validation attributes of the
categories. Since the selection of min or sec would lead to the same word generated
multiple times (called double generation in short), which is quite unlikely in practice,
hour can be correctly selected. Now consider a different error. Let us assume that the
grammar developer wrote

R1,error : START → from TIME[min] to TIME[to] (10)

instead of the correct rule R1. The right validation attributes of the START category
are not affected by this error and are the top-level input structure attributes “to” and
“from”. Thus, the attribute “min” is not contained in the right validation attributes of
category START and is therefore detected as erroneous. The correct path expression
must be either [to] or [from]. Again, the path [to] would lead to a double generation.
Therefore, the correct path expression must be [from]. Note that in general an ar-
bitrary number of path expressions can be created by combining attributes by path
separators. In practice, these expressions are reduced to a finite set by the fact that the
grammar editor requires all used path expressions to be associated to path variables.
So only all existing path variable values have to be checked. In the example above, we
employed a disambiguation heuristic to find a unique solution. In practice, there are
many cases where the correct solution cannot so easily be found. Thus, in addition to

104

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

the heuristic “double generation”, a statistical heuristic, which is explained in Section 6
in more detail, was used.

5. False Alarms

The errors detected by the method described here are only guaranteed to be ac-
tual errors (under the precondition that the input structures are always correct) if the
empty path expression is never used in a grammar rule. It is actually possible that a
false alarm is produced if a category can be reached from two different parent cate-
gories and one of the transitions is connected to the empty path expression. Consider
for example the following grammar and input structure, which might not follow good
design principles, but still leads to a successful generation of “Text2 Text1”.

Q1 : START → B[ϵ]

Q2 : START → C[ϵ]

Q3 : B → D[ϵ]

Q4 : C → D[a]

Q4 : D → toString([c])
Q5 : D → toString([d])

Input :

[
a [d ‘‘Text1‘‘]
c ‘‘Text2‘‘

]
START

B

[ϵ]

C

[ϵ]

D

[ϵ] [a]

Figure 5: Graph that visualizes
the rules where a false alarm is
produced by the error-recognition
algorithm.

B inherits among others the right
grammar attribute d from category D,
which is not contained in B’s right vali-
dation attributes (a and c). One solution
for this problem is to add all right valida-
tion attributes ofC to categoryB or more
generally: If a category C1 is connected
by the empty path expression with its
child category C2, all right validation at-
tributes of all other categories leading to
C2 are added to C1

1. A similar approach
can be employed for left attributes. The
possible rule applications are visualized
in Figure 5.

1Note that this feature is not yet implemented in our current system.

105

PBML 111 OCTOBER 2018

6. Statistical approach to automatic error correction

Suppose that the error could be successfully spotted, but several path expressions
are possible for correcting the erroneous RHS and the disambiguation methods men-
tioned above still leave several potential candidates. Now the statistical disambigua-
tion method comes into play.

This method estimates, how probably a certain rule candidate is given all existing
rules (the input structures are disregarded) and suggests the most probable one(s).
Actually, the path expression ‘pe’ is chosen that maximizes the posterior probability
that the path expression ‘pe’ occurs, given a transition from category LHS C1 to RHS
C2, which can be formalized as follows:

• pa : E → P: a function that assigns an edge e ∈ E to a path expression pe ∈ P

(for the definition of a rule edge see Figure 2)
• s : E → Cat: source category of an edge
• d : E → Cat: destination category of an edge
• Cat: set of categories, E: set of edges

pe ′ = argmax
pe

P ′ with

P ′ = P(pa(e) = pe|s(e) = C1 ∧ d(e) = C2)

(Theorem of Bayes)
= P(pa(e) = pe) ·

P(s(e) = C1 ∧ d(e) = C2|pa(e) = pe)
P(s(e) = C1 ∧ d(e) = C2)

(P(s(e) = C1 ∧ d(e) = C2) is independent of pe)
pe ′ = argmax

pe
P ′′

P ′′ = P(pa(e) = pe) ·
P(s(e) = C1 ∧ d(e) = C2|pa(e) = pe)
(Now we make the assumption that
s(e) = C1 and d(e) = C2

are approximately conditionally independent
given pa(e) = pe.
This assumption is made
to handle the sparse data problem
that usually shows up in
hand-written grammars.)

106

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

≈ P(pa(e) = pe)P(s(e) = C1|pa(e) = pe) ·
P(d(e) = C2|pa(e) = pe)
(applying Theorem of Bayes again)

= P(pa(e) = pe) ·
P(pa(e) = pe|s(e) = C1) ·
P(pa(e) = pe|d(e) = C2) ·
P(s(e) = C1)P(d(e) = C2)

P2(pa(e) = pe)
= P(pa(e) = pe|s(e) = C1) ·

P(pa(e) = pe|d(e) = C2) ·
P(s(e) = C1)P(d(e) = C2)

P(pa(e) = pe)
(P(s(e) = C1) and P(d(e) = C2

are independent of pe)
pe ′ ≈ argmax

pe
P ′′′

P ′′′ = P(pa(e) = pe|s(e) = C1) ·
P(pa(e) = pe|d(e) = C2)

P(pa(e) = pe)

If there exists no RHS category due to the fact that the RHS is a function, then we
instead determine the path expression pe with

argmax
pe

P(pa(e) = pe|s(e) = C1). (11)

The most probably path expression(s) as obtained above are then suggested as
correction. As usual, the probabilities are estimated by relative frequencies.

Let us now consider an example for this procedure. We extend the original gram-
mar (rules R1 and R2, see page 102) by the following rules:

R3 : TIME → toString([hour]) : toString([min])
R4 : TIME → toString([hour])
R5 : START → from toString([from/loc]) to

toString([from/loc])

(12)

and add a second input structure:[
from : [loc : Bonn]
to : [loc : Cologne]

]
(13)

107

PBML 111 OCTOBER 2018

Let us now consider the case that rule R2 was entered erroneously in the following
way. Instead of the correct rule

R2 : TIME →toString[hour] :
toString[min] : toString[sec]

(14)

the grammar developer accidentally entered the incorrect rule:

R2,err : TIME →toString[from] :

toString[min] : toString[sec]
(15)

The analysis with validation and grammar attributes results in the fact that the incor-
rect path expression [from] has to be replaced by either [loc], [hour], [min], or [sec].
[min] and [sec] can be ruled out by the double generation rule so the alternatives [from]
and [loc] remain possible. Now the probabilistic rule comes into play. The probability
for [loc] is given by:

P(pa(e) = [loc]| source(e) = TIME) = 0.0 (16)

and the probability for [hour] is given by:

P(pa(e) = [hour]| source(e) = TIME) = 1/3 (17)

since there are 6 rule RHS with LHS TIME and 2 of them are associated to the path ex-
pression [hour]. Thus, the path expression [hour] is selected. Another heuristic is name
comparison. Often, the paths and associated RHS categories have similar names.
Therefore, we prefer paths that contain common substrings with the LHS/RHS cat-
egories. Finally, we use a heuristic that the empty path should not be suggested for
LHS category, for which the set of right validation attributes is not empty, since pre-
sumably such a category matches a non-leaf node in the input structure.

Note that in some cases the generation fails because the path might be correct but
the LHS (or RHS) category of some rule might be incorrectly chosen. In this case,
instead of looking for the correct path we have to look for the category that best fulfills
the validation attribute constraints of the erroneous rule.

7. Evaluation

For the evaluation, we used a grammar generating natural language descriptions
of houses comprising of 267 rules, 96 categories and 104 different path variables. This
grammar is assumed to be correct (errors displayed already for the unmodified gram-
mar are ignored in the evaluation).

In general, there are two possibilities how to conduct the evaluation. The intrinsic
approach is to look directly at the grammar and determine how many of the incor-
rect categories or path expression can be corrected. In contrast, we could evaluate

108

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Detection of incorrect
path expressions.

Number of errors

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Correction of incorrect
path expressions.

Number of errors

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Detection of incorrect
LHS categories

.....
10
.

20
.

40
.

60
.

80
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.

Correction of incorrect
LHS categories

..

. ..Recall . ..Precision

Figure 6: Recall and precision of detection (left) and correction (right) of incorrect
path expressions (top) and LHS categories (bottom).

Detection Correction
Errors Prec. Recall Prec. Recall

10 0.545 0.858 0.423 0.708
20 0.533 0.845 0.401 0.658
30 0.553 0.823 0.377 0.599
40 0.561 0.806 0.359 0.554
50 0.574 0.786 0.334 0.511
60 0.583 0.768 0.319 0.469
70 0.597 0.747 0.304 0.436
80 0.608 0.733 0.291 0.404
90 0.623 0.713 0.276 0.375

100 0.637 0.699 0.266 0.348

Table 3: Precision and recall for the
correction of invalid path expressions.

Detection Correction
Errors Prec. Recall Prec. Recall

10 0.450 0.623 0.183 0.528
20 0.480 0.583 0.181 0.473
30 0.500 0.550 0.181 0.421
40 0.532 0.524 0.188 0.389
50 0.553 0.501 0.184 0.355
60 0.569 0.482 0.176 0.327
70 0.581 0.468 0.174 0.302
80 0.588 0.449 0.170 0.276
90 0.612 0.435 0.173 0.261

100 0.618 0.419 0.162 0.237

Table 4: Precision and recall for the
correction of invalid LHS categories.

109

PBML 111 OCTOBER 2018

our approach also extrinsically by comparing the actually generated text with the
expected output and calculate some typical performance score like BLUE/METEOR
or ROGUE. However, the extrinsic evaluation is not really adequate in this scenario,
since most of the errors covered here would result not in a scrambled output but in
no output at all. Thus, by employing an extrinsic evaluation, it would usually not be
possible to discern for example, whether one or two errors were resolved. Likewise,
it could normally not be decided, whether our method failed completely or was at
least able to spot the error but then suggested the wrong correction. Hence, we opted
to evaluate our approach intrinsically only. In particular, we insert errors randomly
assuming a uniform error distribution by either choosing an RHS and modifying the
path expression (path errors) or by selecting an LHS and changing its category (LHS
category errors). In practice, a uniform distribution of the errors is rather unlikely. For
instance, we would expect path expressions that are located nearby the correct one in
the GUI list box to be chosen more often than path expressions that are far away. Un-
fortunately, it is very hard to obtain real error data. The number of inserted errors
are varied from 10 to 100 in steps of 10. For each number of errors, this procedure is
repeated one thousand times. See Figure 6 and Tables 3 and 4, for recall and precision
of detection and correction of incorrect path expressions and LHS categories.

The precision of the error detection approach is defined by the quotient of the
number of correctly determined errors and the number of total errors displayed. The
percentual number of errors, which were detected correctly is called the recall of the
error detection. An error is considered as detected if the incorrect rule and RHS (LHS
in case of category errors) are recognized correctly.

The precision of the error correction is defined by the quotient of the number of the
correct error-correction suggestions divided by the number of all suggestions. The
percentual number of cases where the correct suggestions were found is called the
recall of the error correction. For the evaluation of the error correction, we only re-
gard the cases where the error was correctly detected. Note that there usually exist
a lot of possible modifications that would make the grammar correct. However, for
practical reasons, we only considered such a modification correct if it is exactly the
inverse operation of the conducted modification. The evaluation showed that the er-
roneous RHS could be identified with an average precision of 54.5% (for 10 randomly
inserted errors), which is far above the random baseline of <1/267 (analogously for
the correction of rules), which means that our hypothesis that the input structures
contain enough information to detect errors automatically cannot be rejected (signif-
icance level: 1%). The most difficult to detect are errors involving the empty path
expressions, which can introduce a lot of ambiguities. Moreover, the recall degrades
with an increasing number of errors, which is caused by the fact that left and right
validation attributes become less reliable for error detection if the grammar contains
a lot of errors. In contrast, the precision of our error detection approach is increasing
with the number of errors since the proportion of erroneous rules become larger and
therefore the a priori probability that a selected rule is erroneous increases.

110

vor der Brück Probabilistic Error Correction in Tree-Mapping Grammars (97–112)

For comparison, we converted the grammar into the XtraGen format and applied
the method of (vor der Brück and Stenzhorn, 2008). Unfortunately, we did not get any
result after several hours, which might be caused by an endless recursion in the gener-
ator, and aborted the run. A comparison with the approach of Gardent and Narayan
(Gardent and Narayan, 2012) is not directly possible, since the authors focus espe-
cially on inputs in form of dependency trees and employ a generator based on tree
adjoining grammars. However, in our method we assume a context free generation
process, while tree adjoining grammars are actually context sensitive. Additionally,
we do not make any assumption about the nature of our input despite being hier-
archically ordered. In particular, the input structure of the grammar used for this
evaluation constitutes no dependency tree.

8. Conclusion

A generation grammar might contain errors that result in an empty output for a
given input structure. An empty output gives, in contrast to an ill-formed output, al-
most no clues about the reason for the generation failure. We presented and evaluated
a method to detect and propose possible corrections for such errors automatically.
The evaluation showed that in many cases a detection and correction was indeed pos-
sible.

For future work, we plan to investigate how to decide if a path expression or a
category is actually incorrect. Also, we plan to recognize errors in RHS categories as
well.

Currently, our approach is only used for checking text generation grammars. How-
ever, it could also be used to verify arbitrary XSLT stylesheets containing XPath ex-
pressions. Instead for categories we would then extract right and left attributes for
stylesheet rules. The contents of the match attribute of an XML template would con-
tribute both to the left grammar attributes as well as to the right validation attributes.

A completely self-correcting XSLT stylesheet or text generation grammar is still
out of reach, but nevertheless, some ideas and concepts are shown how this goal can
become a reality.

Acknowledgments

Hereby I thank the DFKI for its support of this work, especially for granting me
free access to the eGram grammar workbench. Special thanks go to the associate head
of their natural language processing group, Prof. Dr. Stephan Busemann.

Bibliography

Busemann, S. Best-first surface realization. In Eight International Natural Language Generation
Workshop, pages 101–110, Brighton, England, 1996.

111

PBML 111 OCTOBER 2018

Busemann, S. eGram - A Grammar Development Environment and Its Usage for Lan-
guage Generation. In Proceedings of the Fourth International Conference on Language Re-
sources and Evaluation (LREC), Lisbon, Portugal, 2004. URL http://www.dfki.de/dfkibib/
publications/docs/busemann-LREC04.pdf.

Busemann, S. Ten Years After: An Update on TG/2 (and Friends). In Wilcock, Graham, Kristi-
ina Jokinen, Chris Mellish, and Ehud Reiter, editors, Proceedings of the Tenth European Natural
Language Generation Workshop (ENLG 2005), pages 32–39, Aberdeen, UK, 2005.

Daich, G., G. Price, B. Raglund, and M. Dawood. Software Test Technologies Report, 1994. URL
http://citeseer.ist.psu.edu/daich94software.html.

Gardent, Claire and Shashi Narayan. Error Mining in Dependency Trees. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, South Korea,
2012.

Kok, Daniël, Jianqiang Ma, and Gertjan van Noord. A generalized method for iterative error
mining in parsing results. In Proceedings of the 2009 Workshop on Grammar Engineering Across
Frameworks (GEAF), Suntec, Singapore, 2009.

Stenzhorn, H. XtraGen. A natural language generation system using Java and XML technolo-
gies. Master’s thesis, Saarland University, Department for Computational Linguistics, 2003.

Theune, M., Esther Klabbers, Jan Odijk, J.R. De Pijper, and Emiel Krahmer. From Data to
Speech: A General Approach. Natural Language Engineering, 7(1), 2001.

van Noord, Gertjan. Error Mining for Wide-Coverage Grammar Engineering. In Proceedings of
the 42nd Annual Meeting on Association for Computational Linguistics (ACL), Barcelona, Spain,
2004.

vor der Brück, Tim and Stephan Busemann. Automatic Error Correction for Tree-Mapping
Grammars. In Proceedings of KONVENS 2006, pages 1–8, Konstanz, Germany, 2006. ISBN
3-89318-050-8.

vor der Brück, Tim and Holger Stenzhorn. A Dynamic Approach for Automatic Error De-
tection in Generation Grammars. In Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI), Patras, Greece, 2008.

Zeller, A. Locating Causes of Program Failures. In 27th International Conference on Software
Engineering (ICSE), Saint Louis, Missouri, USA, 2005.

Address for correspondence:
Tim vor der Brück
tim.vorderbrueck@hslu.ch
Suurstoffi 41b, CH 6343 Rotkreuz

112

http://www.dfki.de/dfkibib/publications/docs/busemann-LREC04.pdf
http://www.dfki.de/dfkibib/publications/docs/busemann-LREC04.pdf
http://citeseer.ist.psu.edu/daich94software.html

	Introduction
	Related Work
	Input Structure and Grammar Formalism
	Error Identification with Left and Right Attributes
	False Alarms
	Statistical approach to automatic error correction
	Evaluation
	Conclusion

