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EDITORIAL

The Editorial Board of the Prague Bulletin of Mathematical Linguistics deeply re-
grets to announce that we have lost a most respectful member of the Board, Professor
Aravind Joshi.

Aravind K. Joshi (born August 5, 1929, died December 31, 2017), the Henry Sal-
vatori Professor Emeritus of Computer and Cognitive Science, a founding co-director
of the former Institute for Research in Cognitive Science (IRCS) at the University of
Pennsylvania and a recipient of numerous honors and awards (such as Honorary Doc-
torate of Charles University in Prague – 2013, Benjamin Franklin Medal in Computer
and Cognitive Science of the Franklin Institute – 2005, Cognitive Science Society David
Rumelhart Prize – 2003, ACL Lifetime Achievement Award – 2002, NAE Member –
1999, ACM Fellow – 1998, Founding Fellow AAAI – 1990, IEEE Fellow – 1976), has
been a distinguished member of the whole research community, highly appreciated
for his intellectual curiosity and his enthusiasm. He has been an inspiration for dozens
of his PhD students and colleagues working all over the world.

The scope of his own research interests was very wide, covering the field of Com-
putational Linguistics, Cognitive Science and Artificial Intelligence, paying due atten-
tion to the issues at the intersection of these fields and with extensions beyond these
fields (cf. e.g. his long-time interest in macromolecular structures).

Our first face-to-face meeting with Professor Joshi was at COLING in 1969 in Swe-
den and we have been in contact since then, as much as the political restrictions in
our country allowed. After the positive political changes in Central and Eastern Eu-
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rope in 1989, the contacts intensified and we have been meting regularly in Prague,
Philadelphia and at conferences all over the world. Since the time he joined the Edi-
torial Board of the Prague Bulletin, our professional contacts have become even more
intensive and we have always appreciated his advice, suggestions and initiative.

There are at least three particular points of intersection of professional interests
between his scholarly work and research carried out at Charles University, Prague,
Czech Republic, some of which go as back as to the late sixties.

In those times Petr Sgall and his collaborators in Prague formulated an original
type of generative description of language, the Functional Generative Description.
One of the important issues was the discussion of the generative power of such a
description. For us, Aravind’s work on the so-called mildly context-sensitive grammar
formalism was most inspirational and supportive because the formalism developed
in our group was very close to such a concept.

Later on, when Professor Joshi formulated his Tree Adjoining Grammar formal-
ism, we have profited much from his insights into the relation between his formalism
and the dependency grammar we subscribe to.

Last but not least, and most important especially for the young team working on
discourse, was his elucidation and application of Centering Theory and the build-up
and development of the Penn Discourse Treebank. The content of this work laid the
foundations for the Czech-American collaborative project on discourse analysis and
annotation and offered an unforgettable opportunity for us to put our hands, so to
say, on the Penn Discourse Treebank during our trips to Philadelphia, and to enjoy
his and his colleagues’ visits to Prague.

Professor Aravind Joshi was a great scientist, a wonderful teacher and a remark-
able personality. His passing away is a great loss for the whole community. Com-
putational linguists will miss him terribly as a respectful scientist, innovator in many
areas, a mentor of young colleagues and students, and most of us also as a very mod-
est, kind, calm and charming friend.

While we all will miss him, his everlasting kind smile will stay in our memories
forever.

The PBML
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Modelling Morphographemic Alternations in Derivation of Czech

Magda Ševčíková
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Prague, Czechia

Abstract
The present paper deals with morphographemic alternations in Czech derivation with re-

gard to the build-up of a large-coverage lexical resource specialized in derivational morphol-
ogy of contemporary Czech (DeriNet database). After a summary of available descriptions in
the Czech linguistic literature and Natural Language Processing, an extensive list of alterna-
tions is provided in the first part of the paper with a focus on their manifestation in writing.
Due to the significant frequency and limited predictability of alternations in Czech derivation,
several bottom-up methods were used in order to adequately model the alternations in Der-
iNet. Suffix-substitution rules proved to be efficient for alternations in the final position of the
stem, whereas a specialized approach of extracting alternations from inflectional paradigms
was used for modelling alternations within the roots. Alternations connected with derivation
of verbs were handled as a separate task. DeriNet data are expected to be helpful in develop-
ing a tool for morphemic segmentation and, once the segmentation is available, to become a
reliable resource for data-based description of word formation including alternations in Czech.

1. Introduction

Concerning the internal structure of complex words in the Czech lexicon, deriva-
tion is the dominant process of word formation, highly prevailing over compounding
in Czech (Dokulil, 1962; Dokulil et al., 1986). All types of derivation (esp. prefixation
and suffixation) in Czech may be accompanied by vowel or consonant alternations
in the root and/or in affixes.1 Morphographemic alternations are the major source

1In the paper, the term “root” refers to a morpheme that cannot be further analysed while “stem” is used,
less specifically, for the part of a word without inflectional affixes (Haspelmath and Sims, 2010; Aronoff,
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of allomorphy in Czech. They diversify the formal shape of a base word and the
particular derived word; cf. palatalization of the final consonant of the root mor-
pheme by adding a diminutive suffix in ex. (1) and an analogous alternation of the
final consonant in the first diminutive suffix during the subsequent formation of a
double diminutive in (2). Several alternations in a single derivational step are docu-
mented in ex. (3), namely a vowel alternation in the prefix and a consonant alternation
in the final position of the root, or in (4) with a vowel alternation, a vowel insertion,
and a consonant alternation in the root.

(1) hrochN ‘hippo’ ch>š
−−→ hroš-íkN (dimin.)2

(2) hroš-íkN ‘hippo’ (dimin.) k>č
−−→ hroš-íč-ekN (double dimin.)

(3) vy-skoč-i-tV ‘to leap’ y>ý, č>k
−−−−→ vý-skokN ‘leap’

(4) vejc-eN ‘egg’ e>a, 0>e, c>č
−−−−−−−→ vaječ-nýA ‘made from eggs’

The paper is organized as follows. Starting with a note on terminology, Section 2
provides an overview of linguistic descriptions of morphographemic alternations and
available approaches in Natural Language Processing (NLP) of Czech, including the
derivational database DeriNet which is in focus of the paper. A detailed classification
of alternations in the contemporary Czech lexicon follows in Section 3. Attached to
the section, we provide a complete list of alternations supported with examples.

Due to the size of the DeriNet database (exceeding 1 million words), derivational
relations, including all types of alternations, have been identified semi-automatically
(Sect. 4). Suffix-substitution rules proved to be efficient for alternations in the final
position of the stem, whereas a specialized approach of extracting alternations from
inflectional paradigms was used for modelling alternations within the roots. Alter-
nations connected with derivation of verbs were handled as a separate task.

Section 5 concludes with an analysis of main types of alternations not yet covered
in DeriNet and provides a perspective of using the DeriNet data in the development
of a tool for morphemic segmentation as well as in the linguistic research into word
formation in general and into morphographemic alternations in particular.

1994). Roots and stems are not together referred to as “bases” (cf. Bauer, 1983, pp. 20f) since we reserve the
term “base” for the opposition of a base word vs. a derived word (target word, or derivative). These pairs
are referred to as “pairs of base-target words” or “base-target pairs”, too.

2In the examples, the base word is written first followed by the derivative, the derivational relation is
represented by an arrow. The alternations that accompany the derivation are listed above the arrow. The
grapheme in the base is written first followed by “>” and the corresponding grapheme in the derivative.
Boundaries between morphemes are indicated with the hyphens (the morphemic structure is not marked
in Sect. 4 since the data are not segmented in the DeriNet network).
In examples on diminutive derivation, we use “dimin.” (diminutive) and “double dimin.” (double diminu-
tive) instead of the full English translation (e.g. ‘small hippo’ and ‘very small hippo’, respectively).
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2. Related work

2.1. Note on terminology

Unlike the (mainstream) phonemic and phonological approach of alternations (e.g.
Haspelmath and Sims, 2010), the present paper deals with this issue in relation to
written Standard Czech.3 The term “morphographemic alternations” is thus pre-
ferred to that of “morphophonemic alternations” or similar terms used in the linguis-
tic literature (cf. morphonological alternations / morphophonological alternations in
Matthews, 2007, p. 253; Štekauer et al., 2012; Osolsobě, 2014, pp. 198ff; Ziková, 2015,
2016a,b; Šefčík, 2016b, or phoneme alternations / phonemic alternations / phono-
logical alternations / alternations of phonemes in Dokulil, 1962; Daneš et al., 1967;
Dokulil et al., 1986; Osolsobě, 2002; Aronoff, 1976). We neither use the term “ablaut”
nor “apophony” (e.g. Lieber and Štekauer, 2014, pp. 125f, Baerman, 2015), since the
former term is delimited inconsistently in the description of Czech and the latter term
is not anchored in the Czech terminology; see Šefčík (2016a) for details.

Our approach is rooted in Dokulil’s onomasiological theory (Dokulil, 1962) and
uses common terminology on general aspects of word formation. Lexemes that share
the root are called a derivational family; if members of a derivational family are or-
ganized according to the direct derivational relations, we speak about derivational
trees with regard to the derivational data, rather than using Dokulil’s term “word-
formation nest”.4 A comment is required on the term “word-formation type” which
is defined as a set of words that share a certain word-formation meaning and were de-
rived from bases of the same part-of-speech category by using the same affix (Dokulil,
1962, pp. 68ff); cf. the word-formation type of agentive nouns derived from verbs with
the suffix -tel in Czech (učitel ‘teacher’, pozorovatel ‘observer’).5

2.2. Descriptions of alternations in linguistic literature on Czech derivation

Morphographemic alternations in Czech originate in systemic as well as acciden-
tal diachronic changes that emerged during differentiation of Czech from other Slavic
languages and are thus subject to historical grammars of the Czech language (Gebauer,
1984–1929; Lamprecht et al., 1986). Consonant alternations were described as changes
of non-palatal consonants into palatalized ones (i.e. palatalization; or vice versa as

3Alternations that are not mirrored in writing are omitted in the paper; esp. palatalization of consonants
is often recorded by the letters i or ě following the consonant instead of changing the grapheme itself (cf.
t–t(i) in bota ‘shoe’ → botička (dimin.) instead of t>ť according to the pronounciation).

4The term “word-formation nest” was substituted for the term “derivational paradigm” by Dokulil et al.
(1986, p. 207); the latter term has recently established as the core concept of the paradigmatical approach
to word formation (Lieber and Štekauer, 2014, pp. 354ff; Booij, 2008; Pounder, 2000; Bauer, 1997 etc.).

5Dokulil’s definition of the word-formation type (“slovotvorný typ”) is thus different from that by
Hansen (1985, pp. 28ff) (“Wortbildungstyp”).
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depalatalization), mostly due to the contact with a front or iotified vowel in order to
allow for a more comfortable pronunciation. Three rounds of palatalization of velar
consonants in Proto-Slavic were reconstructed, for each round several irregularities
and exceptions were stated (Lamprecht et al., 1986; Večerka, 2016). The source of a part
of vowel-zero alternations in contemporary Czech are both systematic and acciden-
tal changes of the yer-vowels in Proto-Slavic (Lamprecht et al., 1986; Ziková, 2016b).
However, due to different counter-tendencies, such as the trend to preserve the vowel
quantity of the base word; cf. the e>é alternation in ex. (5) vs. its lack in (6), and o>ů
in (7) vs. (8) (Dokulil, 1962, p. 170), the resulting synchronic picture of alternations
in the Czech derivation seems to be highly irregular (similarly to other languages; cf.
Bybee and Brewer, 1980).

(5) oheňN ‘fire’ e>é, ň>n
−−−−→ ohén-ekN (dimin.)

(6) účesN ‘hairstyle’ → účes-ekN (dimin.)

(7) krokN ‘step’ o>ů, k>č
−−−−→ krůč-ekN (dimin.)

(8) blokN ‘block’ k>č
−−→ bloč-ekN (dimin.)

Diachronic changes and the synchronic distribution of vowel-zero alternations in
Czech were treated within the framework of generative phonology (Scheer et al., 2011;
Scheer and Ziková, 2010). The diachronic perspective is also taken by Pognan and
Panevová (2013) who examine common Slavic roots as a basis for research into Slavic
intercomprehension. Less recent studies (Stankiewicz, 1986, 1960; Rubenstein, 1950)
placed alternations in Czech in the cross-linguistic context of other Slavic languages.

A synchronic description of alternations in derivation was included in Dokulil’s
fundamental study on Czech derivation (Dokulil, 1962, esp. pp. 159–178), which has
become a widely respected and, in fact, the only common ground of word-formation
descriptions in Czech grammars and specialized studies since then (Daneš et al., 1967;
Dokulil et al., 1986; Čermák, 2012; Štícha, 2013 etc.).6 However, description of alterna-
tions is usually spread over the chapters on word formation and inflectional morphol-
ogy with only sporadic mutual links. The most complex and elaborate description so
far is by Ziková (2015), which is still a pilot study for an intended grammar of Czech
and is limited to quantitative alternations and vowel-zero alternations.

Two existing morphemic dictionaries might be relevant for the topic of alternations
in Czech. In Šiška’s dictionary (Šiška, 2005), root morphemes of a part of the Czech
lexicon are grouped together according to their lexical meaning; each n-tuple of the
root allomorphs is supplemented with a selective list of lexemes. In the dictionary by

6Dokulil’s approach, based on differentiation of four onomasiological categories, has influenced ap-
proaches to derivation in Czech as well as in other, particularly (but not exclusively) Slavic languages; cf.
works on Slovak (e.g. Buzássyová, 1974; Horecký et al., 1989; Furdík, 2004), Polish (Grzegorczykowa et al.,
1998), Russian (Švedova, 1980), or Štekauer’s application to English (Štekauer, 1998).
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Slavíčková (1975), lexemes are analysed into morphemes and listed retrogradely with-
out mutual connections. None of the dictionaries is machine tractable, their usability
for our task was very limited.

A formalized description of selected types of alternations in Czech inflection was
a part of the inflectional dictionary by Osolsobě (1996); it focused on alternations of
consonants in the final position of the stem. The dictionary was used in automatic
morphological analysis by the Ajka (later on, Majka) analyser and in other tasks in
NLP of Czech (Osolsobě, 2015); see Sect. 2.3.

2.3. Alternations in Natural Language Processing and language resources for Czech

In NLP of Czech, alternations were handled in both large-coverage inflectional
analysers used for Czech, namely in the Ajka analyser (Sedláček and Smrž, 2001;
Sedláček, 2004; Šmerk, 2007) and in the analyser developed by Hajič (2004).

The dictionary of the analyser Ajka can be searched for derivationally related pairs
(or n-tuples) by the tool Deriv (Osolsobě et al., 2009) using regular expressions. When
searching for pairs of words with alternations, each alternation must be specified with
a separate regular expression. A similar tool, Morfio (Cvrček and Vondřička, 2013),
searches for pairs with a common base and different affixes in the Czech National
Corpus; the words need not to be in a derivational relation. The tool makes it possible
to include several tens of pairs of alternations into the queries (44 pairs without respect
to which of the graphemes is in the base and in the derivative). However, both tools
suffer from massive overgeneration.

In a close relation to Ajka, a derivational analyser for Czech called Derivancze was
developed (Pala and Šmerk, 2015). The data of Derivancze are not available for a free
download, but can be queried by a web tool. For a word filled in into the web form,
the tool gives a base word and a direct derivative if found in the underlying dictionary
data. It was not explicitly addressed by Pala and Šmerk (2015) whether and to which
extent alternations were handled in Derivancze. Nevertheless, a random search for
several examples containing alternations showed a rather unsystematic approach to
this phenomenon. For instance, the diminutive domek is correctly linked with the base
noun dům ‘house’ in Derivancze whereas the diminutive stolek is connected incorrectly
with a non-existing string stol (instead of stůl ‘table’), hrošík ‘hippo’ (dimin.) was not
found by the tool, no parent was found for chiruržka ‘woman surgeon’.

The morphological analyser by Hajič is connected with the inflectional dictionary
MorfFlex CZ (Hajič and Hlaváčová, 2013). From MorfFlex CZ, the set of lexemes for
the DeriNet database was extracted and, moreover, the dictionary has turned out to be
an important source of information on morphographemic alternations in derivation;
see Sect. 4.7

7MorfFlex CZ (and thus DeriNet) covers the entire lexicon of contemporary Czech including proper
nouns, archaic words, low-frequency words and regular, automatically generated coinages without respect
to whether they are attested in a corpus.
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Derivational relations are included in other language resources, too, though rather
marginally. In Czech WordNet a set of 14 relations was implemented (Pala and Smrž,
2004; Pala and Hlaváčková, 2007). In the Prague Dependency Treebank (Hajič et al.,
2006), selected types of derivatives were represented by the lemma of their base word
within the deep-syntactic annotation (Razímová and Žabokrtský, 2006).

2.4. DeriNet database as a resource specialized in Czech derivation

A decision that we had to make at the start of the DeriNet project was whether
pairs of base and target words with alternating graphemes will be linked together in
the database, or whether they stay unconnected. The insufficient attention paid to
alternations in Czech linguistics and in NLP of Czech in combination with the com-
plicated nature of alternations were strong arguments against the inclusion of this
issue into the semi-automatically constructed resource. On the other side, massive
presence of alternations was the main argument in favour of including them into the
database.

DeriNet is a large-coverage lexical resource specialized in derivational morphol-
ogy of Czech; neither composition nor combined word-formation processes have been
included so far. It is the only one freely available derivational resource for Czech and,
in a broader context of European linguistics, it is in line with recent research in word
formation; e.g. word-formation database for Latin (Litta et al., 2016), Démonette for
French (Hathout and Namer, 2014), the language-independent approach by (Baranes
and Sagot, 2014), DerivBase.Hr for Croatian (Šnajder, 2014), DerivBase for German
(Zeller et al., 2013), or CELEX for English, German and Dutch (Baayen et al., 1995).8

The design of DeriNet was based on Dokulil’s understanding of word-formation
nests as internally structured groups of all words based both formally and semanti-
cally9 on the same base in contemporary language without regard to their real etymol-
ogy (Dokulil, 1962, p. 14, Dokulil et al., 1986, p. 207). Words (represented as nodes in
DeriNet) are connected with a link (edge) if they are derivationally related; the edge
is oriented from the base to the derivative. At most one base word may be identified
for a derived word. Words that are directly and indirectly derived from a particular
base word thus form an oriented graph (called derivational tree in the paper).

8Approach to alternations was mostly not addressed in the respective publications. Alternations are
explicitly referred to by Šnajder (2014), whereas they were not included e.g. by Baranes and Sagot (2014).

9The formal and semantic relations of a derived word to its base are discussed as foundation and mo-
tivation, respectively, in the onomasiological theory of word-formation (Dokulil, 1962; Dokulil, 1994, pp.
131ff; Štekauer, 1998). If foundation is not in accordance with motivation, priority is given to formal rela-
tions (foundation).

12
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The current version of the database, DeriNet 1.4,10, contains nearly 1,012 thousand
lexemes which were extracted from the MorfFlex CZ dictionary. The lexemes are
interconnected with more than 774 thousand derivational links.11 All types of alter-
nations described in Sect. 3 have been included into DeriNet; the methods used are
described in Sect. 4.

3. Morphographemic alternations in derivation of Czech

3.1. Delimitation of alternations, basic classification

An alternation is understood as a substitution of a grapheme by another one that
occurred during derivation in addition to the proper affixation; the term is used both
for the process of replacing a grapheme with another one in a particular morphosyn-
tactic context and for the pair of graphemes occurring in a particular position of the
base word and the target word, i.e. for the result of this process. The alternations
are identified in a morpheme that is shared by the base and the derivative; cf. ex. (1)
to (8) above. On the contrary, examples in (9) and (10) are not considered to contain
alternations, the difference í vs. i in (9) being interpreted as a result of replacing the
masculine suffix by the feminine one (resuffixation; Šimandl, 2016), and a vs. á in (10)
as resulting from the substitution of the inflectional ending for a suffix.

(9) tanečn-íkN ‘dancer’ → tanečn-iceN ‘female dancer’
(10) brank-aN ‘goal’ → brank-ářN ‘goalkeeper’

A grapheme alternates with another grapheme or with one of a closed set of gra-
phemes; e.g. c changes into k in (11) or into č in (12). Due to this feature, Osolsobě
(2002) describes alternations as a “regular” substitution. It is stressed, however, that
the alternations are regular neither in the sense that a given grapheme is always af-
fected by alternation in the given morphographemic context (see (5) vs. (6), and (7)
vs. (8)), nor that they are related to a particular type of derivation (e.g. defined by the
part-of-speech categories of the base and target word) or even to a particular word-
formation type. For instance, the c>č alternation occurs in derivation of deverbal
nouns (12) and in derivation of adjectives from nouns (13). In (14) the a>á alternation
must be applied, otherwise the adjective vratný ‘returnable’ might be connected in-
correctly with the noun vrata ‘gate’ (but it belongs to vrátit ‘to return’ with the reverse
alternation á>a in (15)). In (16), the alternation is not present – if applied, the adjective
slávistický ‘belonging to supporters of Slávie’ in (17) would be derived incorrectly.

10http://ufal.mff.cuni.cz/derinet
DeriNet 1.0 and 1.2 were published in the Lindat/Clarin repository (Vidra et al., 2015, 2016). The data are
freely available for non-commercial purposes under the Creative Commons (CC-BY-NC-SA) licence.

11For 238 thousand (23.5 % out of all nodes) no base word has been identified so far. However, more
than a half of the parentless nodes is capitalized nouns (more than 124 thousand). Capitalization concerns
proper nouns only, which have a limited derivational potential.

13
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(11) péc-tV ‘to bake’ é>e, c>k
−−−−→ pek-ařN ‘baker’

(12) péc-tV ‘to bake’ é>e, c>č
−−−−→ peč-en-íN ‘baking’

(13) ovc-eN ‘sheep’ c>č
−−→ ovč-íN ‘belonging to/got from sheep’

(14) vrat-aN ‘gate’ a>á
−−→ vrát-nýN ‘porter’

(15) vrát-i-tV ‘to return’ á>a
−−→ vrat-nýA ‘returnable’

(16) slav-ist-aN ‘Slavist’ → slav-is-tickýA ‘Slavic’
(17) sláv-ist-aN ‘supporter of the sport club Slávie’ → sláv-ist-ickýA ‘belonging to

the supporters of Slávie’

There are nearly 90 pairs of alternating graphemes in Czech. Since we model
derivational relations as oriented from the base word to the derived one, the pairs
of alternating graphemes are described as being oriented, too. The “base grapheme”
(in the base) vs. the “target grapheme” (in the derivative) are discerned. Pairs of
alternating graphemes differ in whether one of the them is always to be found as
the base grapheme while the other one as the target grapheme across the lexicon, or
if they are found in reverse order in other pairs of lexemes as well (so-called one-
directional vs. bidirectional alternations, respectively, according to Osolsobě, 2002;
Ziková, 2015, does not take orientation of the alternating graphemes into considera-
tion). The h>z alternation in (18) is an example of the one-directional alternation in
Czech. The graphemes ch and š enter the alternation ch>š on the one hand, and š>ch
on the other ((19) vs. (20)).

(18) drah-ýA ‘expensive’ h>z
−−→ draz-eD ‘at a high price’

(19) tich-ýA ‘silent’ ch>š
−−→ tiš-eD ‘silently’

(20) po-těš-i-tV ‘to please’ š>ch
−−→ po-těch-aN ‘pleasure’

The following classification differentiates five types of vowel alternations (A to E),
three types of consonant alternations (F to H), and a type of mixed alternations (I;
Dokulil, 1962, pp. 162ff, Osolsobě, 2002). The vowel (i.e. vowel-to-vowel) alternations
are classified according to the quantity and quality of the base and target graphemes:

A) in quantitative alternations, a vowel is substituted for the same vowel with op-
posite quantity (short vowels are lengthened (21), long vowels shortened (22)):

(21) vy-jetV ‘to leave’ y>ý
−−→ vý-jezdN ‘leaving’

(22) tráv-aN ‘grass’ á>a
−−→ trav-natýA ‘grassy’

B) in qualitative alternations, a vowel is replaced by a different vowel with the same
quantity:
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(23) hrab-a-tV ‘to dig’ a>o
−−→ hrobN ‘grave’

C) in quantitative-qualitative alternations, a vowel in the base word is replaced by
a qualitatively different vowel with opposite quantity in the target word:

(24) říd-i-tV ‘to direct’ í>e
−→ řed-i-telN ‘director’

(25) ostrovN ‘island’ o>ů
−−→ ostrův-ekN (dimin.)

D) vowel deletion can be described as a type of vowel alternations, too; a vowel
(mostly e in Czech derivation) is substituted by a zero (vowel-zero alternation):

(26) pesN ‘dog’ e>0
−−→ ps-íA ‘belonging to dog’

(27) such-ýA ‘dry’ u>0
−−→ sch-nou-tV ‘to become dry’

E) vowel insertion is described as a replacement of a zero by a vowel (zero-vowel
alternation):

(28) hr-á-tV ‘to play’ 0>e
−−→ her-n-aN ‘playroom’

The following types of consonant-to-consonant alternations are applied in Czech:
F) individual alternations when a single consonant is substituted by another one:

(29) čern-ýA ‘black’ n>ň
−−→ čerňN ‘black (colour)’

(30) čern-ochN ‘black man’ ch>š
−−→ čern-oš-kaN ‘black woman’

G) consonant deletion and insertion is peripheral in contemporary Czech, cf. dele-
tions in verb-to-verb derivation (31) and in derivation from proper nouns of for-
eign origin (32), and insertion of the initial j (which is not a prefix) in (33) :

(31) top-i-tV ‘to drawn’’ p>0
−−→ to-nou-tV ‘to be drawning’

(32) HamburkN ‘Hamburg’ k>0
−−→ hambur-skýA ‘from Hamburg’

(33) mí-tV ‘to have’ 0>j
−→ jmě-níN ‘property’

H) a substitution of a pair of consonants by a particular pair of consonants is called
a group alternation:

(34) měst-skýA ‘urban’ st>šť
−−→ měšť-anN ‘burgher’

(35) čes-kýA ‘Czech’ sk>št
−−−→ češ-tinaN ‘Czech language’

I) In addition, in so-called mixed alternations, a vowel is replaced by a combination
of a vowel and constant; this type is mostly found in deverbal derivation:

(36) stá-tV ‘to stand’ á>oj
−−→ stoj-ícíA ‘standing’
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(37) stá-tV ‘to stand’ á>av
−−→ po-stav-i-tV ‘to set up’

(38) bí-t V ‘to beat’ í>ij
−→ bij-ícíA ‘beating’

An alternative classification (into vowel-zero alternations, quantitative alternations,
and palatalization alternations) was proposed by Ziková (2015).

3.2. Distribution of morphographemic alternations

In Czech derivation, alternations affect almost the entire repertory of graphemes
and all types of morphemes (and, assumably, a considerable part of the Czech lexi-
con).12 Considering the repertory of graphemes in Czech, all vowels and consonants,
except for p, b, f, v, m, and l, enter alternations. Both vowel and consonant alternations
can occur at any position in a word, even at the first one ((39) to (41)).

(39) úz-kýA ‘narrow’ ú>u
−−→ uz-oučkýA ‘very narrow’

(40) hn-á-tV ‘to drive’ h>ž, 0>e
−−−−→ žen-oucíA ‘driving’

(41) hr-á-tV ‘to play’ r>ř
−→ hř-ištěN ‘playground’

Individual alternating pairs differ in frequency.13 According to an overall esti-
mate provided by Osolsobě (2002), a and á out of the vowels enter alternations most
frequently (a changes into á, e, ě, and o, the long á into a, e, i, and í). The pairs s>š, k>c,
and c>č are the most frequent consonant alternations. The vowel o and the consonant
g alternate least frequently. Nevertheless, neither the quality nor the frequency of al-
ternating graphemes allow for estimating the productivity of particular alternations
(cf. Ziková, 2016a).

Alternations affect all types of morphemes, namely prefixes, roots, and suffixes
during derivation (and roots and suffixes during inflection, see the next subsection).
Vowel lengthening (plus the alternations o>ů) occurs in prefixes, roots as well as
suffixes, whereas other vowel alternations (shortening, qualitative alternations, and

12The amount of words affected by alternations was preliminarily estimated in our study including 500
nouns, adjectives, verbs, and adverbs (consisting of at least two characters, only the first of which was al-
lowed to be uppercased) with the highest token frequency in the representative corpus of Czech (SYN2015,
120 million tokens; Křen et al., 2015). 100 (20 %) out of the examined lemmas involved alternations with
respect to their particular base words. For 271 (54.2 %) out of 500 lemmas, it was possible to find at least
one derived word that was affected by alternations.
The aim of the study was not to estimate the alternation frequency in the overall data collection. As “pho-
netic change often progresses often more quickly in items with high token frequency” (Bybee, 2001, p. 11;
cf. also Bybee, 2007, p. 270), less alternations are expected in words with lower frequency. We believe
that a more precise picture of how alternations are distributed over the lexicon could be inferred from the
DeriNet data.

13Here and elsewhere in the paper, type frequency in the Czech lexicon is meant if we do not refer to a
particular corpus or another data resource.
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quantitative-qualitative alternations) are limited to roots and suffixes. Mixed alter-
nations are limited to derivation from verbs and affect final vowels of the root mor-
pheme (these alternations originate in inflection; see Sect. 4.3). Alternations with zero
(in both directions) are prototypically found in roots, or less frequently, in suffixes.
Consonants alternate mostly in the final position of the stem, forced by the added
suffix. Group alternations affect either two final consonants of the stem, or the final
consonant of the stem and the first one of the suffix.

In Appendix, we provide an exhaustive list of alternations as observed in the lex-
icon of contemporary Czech, specifically as manifested in writing. Neither the origin
of the alternation,14 nor the frequency or productivity in the lexicon were taken into
consideration. Nearly 90 alternation pairs are listed in alphabetical order according to
the form of the alternating grapheme in the base word. Each pair is given in a separate
line, the direction of the alternation is of significance. If a pair of graphemes alternates
in both directions, it is listed twice in the list (indicated with the note “bidir.” with
each of the directions). Each pair of alternating graphemes is followed by a set of ex-
amples with the particular alternation in prefix, root and suffix (if available). In the
rightmost column, we tried to find counter-examples, documenting that a particular
grapheme even in a close morphosyntactic context does not necessarily undergo the
same change.

3.3. Alternations in derivation vs. in inflection

Most of the morphographemic alternations are found in both derivation and in-
flection.15 There are only few pairs limited either to the former, or to the latter area;
e.g. the é>í and é>ý alternations are found in derivation only (42), the g>z alternation
exclusively in inflection (43). Apart from the distribution (alternations in inflection
do not occur in prefixes), the alternations exhibit the same features in inflection as in
derivation, esp. massive presence and irregularity.

(42) polévkaN ‘soup’ é>í
−→ polívkaN ‘soup’

(43) filologN ‘philologist’, filoloz-íchloc.sg.masc.anim

Dokulil (1962, p. 112) pointed out the complicated relations between alternations
in a particular word and in a word derived from it. He examined the inflectional

14We thus omit the difference (pointed out by Dokulil, 1962, pp. 11f) between alternations that are re-
quired by a certain word-formation type (they depend on the graphemic structure of the affix and are
obligatory, or accompany a certain word-formation type) and alternations that are not – from the syn-
chronic point of view – related to the particular word-formation type “and are thus not considered word-
formation alternations” [translated by the author of the paper] (in spite of being systematic in diachrony;
e.g. a>ě in svatý ‘holy’ → světec ‘holy man’).

15The question to which linguistic subdiscipline alternations belong to has been discussed across different
approaches (see Bybee and Brewer, 1980, or Bermúdez-Otero and McMahon, 2006, for summaries).
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paradigms of both the base and the derivative whether they share an alternation. Here
is a simplified list of types based on Dokulil’s findings:

1. the derivative (its lemma and all inflected forms) exhibits an alternation with
respect to the lemma and all inflected forms of the base word (the particular
alternation is not present in the inflectional paradigm of the base word):

(44) inflection of the base word: čápN ‘stork’, čáp-agen.sg, čáp-ovidat.sg etc.
derivation: čápN ‘stork’ á>a

−−→ čap-íA ‘belonging to stork’ (inflection of the
derived word: čap-íhogen.sg, čap-ímudat.sg etc.)

(45) infl. of the base word: sprav-ova-tV ‘administrate’, sprav-uj-i1.sg.pres.act
etc.
derivation: sprav-ova-tV ‘administrate’ a>á

−−→ správ-aN ‘administration’ (in-
flection of the derived word: správ-ygen.sg, správ-ědat.sg etc.)

2. the derived word exhibits an alternation in its entire inflectional paradigm with
respect to the lemma of the base word; however, the alternation is involved in
some inflectional forms of the base word:

(46) inflection of the base word: důmN ‘house’, dom-ugen.sg, dom-udat.sg,
důmacc.sg etc.
derivation: důmN ‘house’ ů>o

−−→ dom-ekN (dimin.) (inflection of the derived
word: dom-k-ugen.sg, dom-k-udat.sg, dom-ekacc.sg etc.)

(47) inflection of the base word: bůhN ‘god’, boh-agen.sg, boh-udat.sg, boh-
aacc.sg, boževoc.sg, boz-inom.pl etc.
derivation: bůhN ‘god’ h>ž

−−→ bůž-ekN (dimin.) (inflection of the derived
word: bůž-k-agen.sg, bůž-k-ovidat.sg etc.)
derivation: bůhN ‘god’ ů>o, h>ž

−−−−−→ bož-íA ‘god’s’ (inflection of the derived
word: bož-íhogen.sg, bož-ímudat.sg etc.)

3. the alternation that exhibits the lemma of the derivative with respect to the
lemma of the base occurs in the inflected forms of the base (cf. type 1) but, more-
over, inflectional forms of the derivative include an alternation with respect to
the lemma of the derivative but not to the lemma of the base:

(48) inflection of the base word: star-ýA ‘old’, star-éhogen.sg.masc.anim, stař-
ínom.pl.masc.anim etc.
derivation: starýA ‘old’ r>ř

−→ stař-ecN ‘old man’ (inflection of the derived
word: star-c-egen.sg, star-c-idat.sg etc.)

The fact that the alternation observed between a base lemma and the lemma of
the derivative can be found in inflectional forms of the base (as in the type 2 and 3)
were employed in order to find base words for words with alternations in the root
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morpheme in DeriNet (see Sect. 4.4). The type 1 above and the relations between the
inflectional forms of the derived word and of the base in 3 were not relevant for our
purpose.

4. Alternations in the DeriNet database of derivational relations

In this section, the methods used for the establishment of derivational links in
DeriNet are described; the main focus is on which type of morphographemic alter-
nations was modelled by the individual method (for general aspects of the build-up
of the database see Ševčíková and Žabokrtský, 2014b; Žabokrtský et al., 2016). String-
substitution rules, which constitute the methodological core of our approach (Sect. 4.1
and 4.2), were efficient for modelling frequent alternations in the final grapheme of
the stem. A significant portion of derivational relations, often with multiple alterna-
tions connected with deverbal derivation, was extracted from the inflectional dictio-
nary MorfFlex CZ (Sect. 4.3). In order to cover alternations in roots that emerged for
small groups of words or even for individual words only, inflectional paradigms were
exploited for alternations and used for the search of the base-target pairs in DeriNet
(Sect. 4.4). Alternations connected with prefixation of verbs were handled separately
(Sect. 4.5).

4.1. Searching base adjectives for selected groups of derived words

The DeriNet database was initialised in 2013 to underpin the linguistic research
project on deadjectival derivation in Czech with a solid data resource. In a set of
lexemes extracted from a large corpus of Czech (Bojar et al., 2012), base adjectives
were searched for selected groups of derived words. Deadjectival nouns and adverbs
were linked to the base adjectives using heuristics that were manually compiled as
regular expressions substituting the final string of the derived word for an adjectival
string.16 For instance, the derivational rule in (49), based on the respective regular
expression, was used to identify pairs of an adjective (A) ending in -ý and a noun (N)
consisting of the same grapheme string except for the final -ost instead of the adjectival
-ý. Only few analogous rules were sufficient to cover all nouns in -ost (cf. (50)) and to
link most of the adverbs with their base adjectives (51).

(49) A-ý>N-ost: závislýA ‘dependent’ → závislostN ‘dependency’
(50) A-í>N-ost: revolučníA ‘revolutionary’ → revolučnostN ‘revolutionarity’

A-í>N-nost: budoucíA ‘future’ → budoucnostN ‘future’
(51) A-ý>D-e: bílýA ‘white’ → bíleD ‘white(ly)’

A-ý>D-ě: krutýA ‘cruel’ → krutěD ‘cruelly’

16The strings corresponded either to suffixes, or to inflectional endings, or were longer (and included
one or even more characters of the root morpheme). In the paper, rules based on these strings are therefore
generally called “string-substitution rules”.
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A-í>D-ě: revolučníA ‘revolutionary’ → revolučněD ‘revolutionary’
A-ý>D-y: přátelskýA ‘friendly’ → přátelskyD ‘in a friendly way’

At this phase, alternations did not seem to be a significant issue since they were
not frequent in our sample of deadjectival derivation or, more precisely, many of the
alternations were not mirrored in writing. For instance, in the most frequent group
of deadjectival adverbs (with the suffix -ě), or in adjectives in -ičký and -inký, the fi-
nal consonant of the root is palatalized in pronunciation but stays unpalatalized in
writing as the palatalization is represented by the initial vowel of the suffix (52), (53).

(52) pěknýA ‘nice’ → pěkněD ‘nicely’

(53) chudýA ‘poor’ → chudičkýA ‘dirt-poor’

There were only several hundreds of derived words with alternations in the data
set in total. Alternations in the final graphemes of the stem were encoded in specific
derivational rules such as (54) and (55). The entire word-formation type of deadjec-
tival names of languages in -ina which includes a group alternation (sk>št or ck>čt)
was possible to be covered only by two rules in (56).

(54) A-cký>N-čnost: praktickýA ‘practical’ → praktičnostN ‘practicality’

(55) A-ký>D-ce: blízkýA ‘close’ → blízceD ‘closely’
A-chý>D-še: jednoduchýA ‘simple’ → jednodušeD ‘simply’
A-rý>D-ře: dobrýA ‘good’ → dobřeD ‘well’

(56) A-ský>N-ština: arabskýA ‘Arabic’ → arabštinaN ‘Arabic language’
A-cký>N-čtina: anglickýA ‘English’ → angličtinaN ‘English language’

In our data sample, only few base adjectives underwent alternations in the root.
However, since there was a varied spectrum of vowel alternations in the roots and
they occurred selectively with individual affixes (see (57) and (58)), base-target pairs
with root alternations were identified individually and linked manually in the data.

(57) mladýA ‘young’ a>á
−−→ mládíN ‘youth’

mladýA ‘young’ a>á
−−→ mláděN ‘baby animal’

mladýA ‘young’ → mladěD ‘in a young manner’
mladýA ‘young’ a>á

−−→ mládnoutV ‘to become younger’

(58) bílýA ‘white’ í>ě
−→ běloučkýA ‘purely white’

bílýA ‘white’ í>ě
−→ běloušN ‘white horse’

bílýA ‘white’ í>ě
−→ bělitV ‘to bleach’

bílýA ‘white’ → bílitV ‘to paint white’
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─┮ bílý A `white'
├─╼ bílost N `whiteness'
├─┮ bělouš N `white (horse)'
│ ├─┮ běloušek N `small white horse'
│ │ └─╼ bělouškův A `small white horse's'
│ └─╼ běloušův A `white horse's'
├─┮ bílek N `egg white'
│ └─╼ bílkový A `made from egg white'
├─┮ bělásek N `white (butterfly)'
│ └─╼ běláskův A `white butterfly's'
├─┮ bělost N `whiteness'
│ └─┮ bělostný A `purely white'
│ ├─╼ bělostnost N `pure whiteness'
│ └─╼ bělostně D `pure white(ly)'
├─┮ běloch N `white man'
│ ├─┮ běloška N `white woman'
│ │ └─╼ běloščin A `white woman's'
│ ├─╼ bělochův A `white man's'
│ └─┮ bělošský A `white-men-like'
│ ├─╼ bělošství N `white-men(ess)'
│ ├─╼ bělošskost N `white-men(ess)'
│ └─╼ bělošsky D `white-men-like'
├─┮ běloučký A `purely white'
│ ├─╼ běloučce D `purely white(ly)'
│ ├─╼ běloučkost N `pure whiteness'
│ └─┮ superběloučký A `super-white'
│ └─╼ superběloučce D `super-white(ly)'
├─┮ bílit V `to whiten'
│ ├─╼ bílení N `whitening'
│ ├─╼ bílený A `whitened'
│ ├─╼ bílicí A `used for whitening'
│ ├─╼ bílící A `whitening'
│ └─╼ bílitelný A `whitenable'
├─┮ bělit V `to bleach'
│ ├─╼ bělení N `bleaching'
│ ├─╼ bělidlo N `bleaching ground'
│ ├─╼ bělený A `bleached'
│ ├─╼ bělicí A `used for bleaching'
│ ├─╼ bělící A `bleaching'
│ └─╼ bělitelný A `bleachable'
├─╼ bíle D `white(ly)'
└─╼ bílo D `white(ly)'

Figure 1. Derivational tree with the root adjective bílý
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A derivational tree with the root adjective bílý ‘white’ is displayed in Fig. 1.17 In the
tree, each lexeme is connected by an edge with its direct base word; each edge thus
corresponds to a single derivational step. There are five nouns derived directly from
bílý, namely bílost, bělouš, bílek, bělásek, bělost, and běloch, as listed from the top to the
bottom of the tree. The noun běloch is the base word for the noun běloška and for two
adjectives (bělochův, bělošský); on the latter adjective, three other lexemes (bělošskost,
bělošství, bělošsky) are based (see the tree for English equivalents).

The adjectival data, under the title AdjDeriNet, were published in 2014 (consisting
of app. 18 thousand adjectives with more than 26 thousand nouns, adjectives, verbs
and adverbs derived from them; Ševčíková and Žabokrtský, 2014a).

4.2. Alternations in string-substitution rules

The decision to overcome the limitation to deadjectival derivation and to extend
the repertory of derivational relations (with the ambition of identifying as many deriva-
tional relations in the data as possible) was connected with an attempt to automatize
the process of identification of the candidate base-target pairs.

Based on the assumption that lemmas that share a sufficiently long sequence of
characters are likely to be derivationally related, pairs of lemmas with a high string
similarity (from the left-most character) were identified automatically and, subse-
quently, grouped according to the strings in which the pair members differed. The
differing suffix strings were formalized as string-substitution rules for app. 400 most
frequent groups. Out of the list of rules thus obtained, 35 rules were manually selected
that reliably corresponded to derivational relations of a base word and a word imme-
diately derived from it.18 As the next step, the direction of the relation was determined
in the rules. The string of the base word was mostly shorter than the corresponding
string in the target word; see (59). A single rule often matched several word-formation
types; e.g. the first rule in (59) covers derivation of feminine profession nouns from
masculine counterparts as well as diminutivization of feminine nouns, the third rule
deverbal derivation of both agentive nouns and instrument nouns. Only three out
of 35 rules involved alternations, namely an alternation in the final consonant of the
stem (60).

17In the paper, a simple tree representation was preferred to the graphical output provided by the tools
DeriNet Search and DeriNet Viewer since the simple tree requires less space. The tools can be used online
for searching the DeriNet data; see http://ufal.mff.cuni.cz/derinet/search and http://ufal.mff.cuni.
cz/derinet/viewer.

18The remaining rules either matched less frequent relations, or corresponded to relations between pairs
of words that are related only indirectly. For instance, the candidate rule A-ův>A-čin corresponds to
the relation between a masculine and a feminine possessive adjective (manželův ‘husband’s’ and manželčin
‘wife’s’) that both belong into the same derivational family and, thus, into the same derivational tree but
are not in the direct base-target relation.
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(59) N-a>N-ka: policistaN ‘policeman’ → policistkaN ‘policewoman’, školaN ‘school’→ školkaN ‘kindergarden’
A-ý>N-ec: báz-liv-ýA ‘timid’ → báz-liv-ecN ‘coward’
V-t>N-č: bav-i-tV ‘entertain’ → bav-i-čN ‘entertainer’, vypín-a-tV ‘to switch off’→ vypín-a-čN ‘switch’

(60) N-ce>A-ční: akc-eN ‘action’ → akč-níA ‘action’
N-k>N-ček: zob-ákN ‘beak’ → zob-áč-ekN (dimin.)
N-ce>N-čka: had-ic-eN ‘hose’ → had-ič-kaN (dimin.)

The set of 35 rules was applied to the data in order to find candidate pairs of base-
target words. Incorrect candidate pairs were excluded manually; e.g. in (61) both the
suggested base and target nouns are directly derived from the verb rýt ‘to engrave’ (in
examples, the correct base word follows in parentheses). A significant portion of the
excluded pairs was defective due to the inappropriate approach to alternations (62).

(61) rytýA ‘engraved’ ̸→ rytecN ‘engraver’ (rýtV ‘to engrave’ ý>y
−−→ rytecN)

(62) karetaN ‘Caretta turtle’ ̸→ karetníA ‘card (game)’ (kartaN ‘card’ 0>e
−−→ karetníA)

letN ‘flight’ ̸→ letníA ‘summer (time)’ (létoN ‘summer’ é>e
−−→ letníA)

A significantly larger list of (app. 450) string-substitution rules was compiled man-
ually from a representative grammar of Czech (Karlík et al., 2000). As compared to
the automatically extracted rules used in the previous step, the manually compiled
rules concerned less frequent word-formation types (for instance, deverbal nouns de-
noting actions, or collective nouns derived from nouns (63)) and, moreover, some of
them included highly frequent morphographemic alternations of all types (vowel in-
sertion and deletion, quantitative vowel alternations, and palatalization). Thus, for
instance, the rules in (64) match derivation of feminine profession nouns from mas-
culines without an alternation and with the alternation c>č, which is very frequent
with this word-formation type. Similarly, the second rule in (65) includes a frequent
vowel deletion that is associated with the derivation of adjectives from nouns. The
application of the rules on the data was followed by manual annotation of incorrect
base-target pairs, similarly as with the automatically extracted rules.

(63) V-it>N-ba: léčitV ‘to treat’ → léčbaN ‘treatment’
N->N-stvo: členN ‘member’ → členstvoN ‘members’

(64) N->N-ka: učitelN ‘teacher’ → učitelkaN ‘female teacher’
N-c>N-čka: herecN ‘actor’ → herečkaN ‘actress’

(65) N->A-ový: achátN ‘agate’ → achátovýA ‘agate’
N-ek>A-kový: bílekN ‘egg white’→ bílkovýA ‘made from egg white’ (see Fig. 1)
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Table 1. Frequency list of 28 alternation pairs applied in the string-substitution rules

altern. freq. altern. freq. altern. freq. altern. freq. altern. freq.

i>í 594 á>a 104 h>ž 31 n>ň 13 r>ř 4
í>i 314 ě>í 77 o>u 26 u>ou 9 é>í 2
í>ě 191 z>ž 53 ý>y 21 o>ů 8 e>é 2
ou>u 178 a>á 50 é>e 21 d>ď 8 u>ú 1
s>š 116 y>ý 36 ch>š 17 ů>o 7
e>í 114 k>č 36 c>č 15 t>ť 7

Since so far we were able to cover only alterations explicitly encoded in the string-
substitution rules the amount of which was still rather limited, an experiment was car-
ried out that allowed alternations in stems during application of both automatically
extracted and manually compiled rules. A total of 18 vowel alternations and 10 con-
sonant alternations were selected in advance and applied mechanically together with
each string-substitution rule. No more than one alternation was allowed in each pair
in order to prevent unmanageable overgeneration of base-target candidate pairs. Nev-
ertheless, if the alternation was applied together with a string-substitution rule that
encoded an alternation too, derivations with up to two alternations might be covered
for the first time (66).

(66) N-k>A-čí: ptákN ‘bird’ á>a, k>č
−−−−→ ptačíA ‘bird’s’

Examples of incorrectly suggested pairs were rejected by a human annotator (67).
In total, alternations were applied with more than 1,600 derivational links confirmed
within the manual annotation; see the frequency list in Table 1.

(67) kuřeN ‘chicken’ u>ou
−−−→// kouřovýA ‘smoky’ (kouřN ‘smoke’ → kouřovýA)

ženaN ‘woman’ e>í
−→// žíněnýA ‘made of horsehair’ (žíněN ‘horsehair’ → žíněnýA)

cenaN ‘price’ e>í
−→// cínovýA ‘made of tin’ (cínN ‘tin’ → cínovýA)

celaN ‘cell’ e>í
−→// cílovýA ‘finishing’ (cílN ‘finish’ → cílovýA)

Application of string-substitution rules was extremely efficient. The steps described
in this subsection yielded 350 thousand derivational relations in DeriNet 1.4.

4.3. Alternations extracted from the MorfFlex CZ dictionary

Another considerable portion of derivational links in the DeriNet database was
extracted from the MorfFlex CZ dictionary. In MorfFlex CZ, derivational informa-
tion was encoded as a part of the so-called technical suffix of the lemma (Hajič, 2004;
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Hana et al., 2005). The technical suffix *2t in (68) means that by substituting two final
graphemes of the lemma for the grapheme t, the base of the adjective is reconstructed
(the verb hubnout ‘to lose weight’).

(68) hubnoucí_^(*2t) ‘losing weight’

MorfFlex CZ was exploited to identify base words for high-frequency groups of
words derived mostly from verbs. Derivation from verbs in Czech is specific in that
inflected verbal forms rather than the infinitive itself often serve as the base word in
derivation. However, since individual verb forms are not involved in DeriNet and are
all represented by the infinitive, words derived from different verbal forms had to be
linked up to the particular infinitive in the database. Radical changes in the formal
shape of deverbal adjectives with respect to the base infinitive are demonstrated in (69)
and (70), the changes though do not in fact relate to derivation, but are to be traced
back to the inflection (the respective verbal form that entered the derivation is given in
square brackets after the infinitive). The formation of deverbal adjectives from trans-
gressives (69) and participles (70) is thus very close to inflection and has been dis-
cussed as a transition zone between inflection and derivation in Czech (Dokulil, 1962,
pp. 44; Karlík et al., 2000, pp. 172f).

(69) hnátV ‘to drive’ [ženouctransgr.fem.sg.pres.act.impf] → ženoucíA ‘driving’
setřítV ‘to wipe’ [setřevšitransgr.fem.sg.past.act.pf] → setřevšíA ‘wiped’

(70) hnátV ‘to drive’ [hnán3.sg.masc.ptcp.pass.impf] → hnanýA ‘driven’
projítV ‘to expire’ [prošel3.sg.masc.ptcp.past.pf] → prošlýA ‘expired’

In addition to the deverbal derivation, the technical suffixes were related to pos-
sessive adjectives derived from nouns, which are another word-formation type from
the transition zone between derivation and inflection. Some of the most frequent tech-
nical suffixes exploited in DeriNet are listed in Table 2. For each suffix, an example
lemma is provided and the suffix information is reformulated as a base-target pair.

As for morphographemic alternations, the technical suffixes *3at and *3it are exam-
ples of vowel alternations in the final grapheme of the stem; vowel deletion is encoded
in the last technical suffix in Table 2.

Derivational information from the technical suffixes in MorfFlex CZ was used to
establish 399 thousand derivational links in DeriNet 1.4.

4.4. Exploiting inflectional paradigms for description of alternations in derivation

Although alternations were included in each of the methods reported on so far,
we were still not satisfied with the coverage of lexemes with alternations. Therefore,
a method was proposed that targeted specifically at connecting derived words con-
taining alternations with the correct base word. It focused on alternations that were
difficult to cover with the methods described above, especially on changes occurring
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Table 2. Technical suffixes of lemmas in MorfFlex used for the establishment of
derivational links in DeriNet

technical lemma with the corresponding derivational relation
suffix technical suffix

*2t hubnoucí_^(*2t) hubnoutV ‘to slim down’ → hubnoucíA ‘slimming’
marinovaný_^(*2t) marinovatV ‘marinate’ → marinovanýA ‘marinated’

*4 popsatelný_^(*4) popsatV ‘to describe’ → popsatelnýA ‘describable’
*3at dělání_^(*3at) dělatV ‘to do’ → děláníN ‘doing’
*3it bílení_^(*3it) bílitV ‘to whiten’ → bíleníN ‘whitening’ (see Fig. 1)
*2 manželův_^(*2) manželN ‘husband’ → manželůvA ‘husband’s’
*3ec otcův_^(*3ec) otecN ‘father’ → otcůvA ‘father’s’

“deeper” in the root morpheme and on vowel deletion in suffixes. We exploited the
fact that alternations which are identified in derived words with respect to their base
words might be identical with those observed in the inflectional paradigm of the re-
spective base word (cf. an analogous approach for French by Bonami et al., 2009).

Since lemmas in DeriNet were taken from the inflectional dictionary MorfFlex CZ
and both resources are interconnected, information on inflection of DeriNet lemmas
is easily accessible. The core issue that alternations are not marked in MorfFlex CZ
has been overcome by a provisional, rather technical solution. Each lemma was com-
pared letter-wise from left to right against each of its inflected forms. At least one final
grapheme of the inflected form was supposed to be the inflectional ending and thus
was not included into the comparison. The inflectional string was marked as contain-
ing an alternation, if at any position the character in the lemma differed from that in
the inflected form and the pair of differing characters was found in the list of 30 alter-
nations pairs.19 Due to the alternations e>0 and 0>e, the lemma might be longer then
the inflected substring (71), or the other way round (72). Inflectional strings with one
to three alternations with respect to the lemma (“alternated strings”) were identified.
For a single lemma, more formally different alternated strings could be listed (72).

(71) lemma k r k a v e c krkavec ‘raven’
alternated string k r k a v 0 č krkavč

(72)

lemma d v ů r 0 dvůr ‘yard’
alternated string 1 d v o r 0 dvor
alternated string 2 d v o r e dvore
alternated string 3 d v o ř 0 dvoř

19The list in Table 1 was enriched with the alternations e>0 and 0>e for this purpose.

26



M. Ševčíková Modelling Morphographemic Alternations in Czech (7–42)

The list of lemmas and corresponding alternated strings was used as input data
for the string-substitution rules compiled in the previous steps of the annotation pro-
cess. The string-substitution (esp. string-adding) rules were applied to the alternated
strings instead of to the lemma and the existence of output string suggested by the
rule was attested in the data. Manual annotation confirmed app. 2,300 derivational
relations that have not been identified so far.

For instance, the rule in (73) was applied on the alternated string from (71) in order
to create a link to a derived adjective; the first one out of the alternated strings in (72)
turned out to be most effective for creating links between dvůr and its derivatives (74).

(73) N->A-í: krkavecN ‘raven’ / krkavč → krkavčíA ‘belonging to raven’
(74) N->N-ec: dvůrN ‘yard’/ dvor → dvorecN ‘court’

N->N-ek: dvůrN ‘yard’/ dvor → dvorekN (dimin.)
N->A-ský: dvůrN ‘yard’/ dvor → dvorskýA ‘court (etiquette)’
N->A-ní: dvůrN ‘yard’/ dvor → dvorníA ‘court (lady)’

4.5. Alternations in derivation of verbs from verbs

Derivation of verbs from verbs was addressed separately. In Czech, verbs are de-
rived from verbs by suffixation and prefixation. Prefixation is even prevailing in for-
mation of verbs whereas suffixes predominate over prefixes in derivation of other
part-of-speech categories in Czech. Deverbal derivation of verbs is connected with a
significant amount of alternations.Deverbal prefixation and suffixation of verbs are
both closely interconnected with the category of aspect.20

Prefixation either changes imperfective verbs into perfective ones (see the pure
aspectual pair of verbs in (75)), or modifies the lexical meaning of an imperfective ((77)
and (76)) or perfective verb (resulting in another perfective; (78)). In monosyllabic
verbs with a long vowel, the vowel is shortened during prefixation systematically (in
addition to (75) and (76), verbs znát ‘to know’, brát ‘to take’, hnát ‘to ride’ belong to
this group). Suffixation is used especially to form imperfective counterparts from
perfective verbs (79), to derive iterative verbs from imperfectives (80), or secondary
imperfectives from prefixed perfectives (81).21 Suffixation is connected mostly with

20In spite of a long-term discussion on the category of aspect, the status of this category is far from clear
in Czech and other Slavic languages (e.g. Vey, 1952; Comrie, 1976; Mel’čuk, 1976; Kopečný, 1962; Komárek,
2006). In DeriNet, and thus in the present paper, derivation of verbs is treated with the primary focus on
formal features, without respect to whether the affix changes just the aspect of the verb (e.g. “pure perfec-
tivizing” prefixes in Czech) or whether it modifies the lexical meaning of the base verb. For a linguistically
rooted discussion on the representation of derivational relations in verbal families with regard to the aspect
see (Ševčíková et al., 2017, in press).

21The possibility to form a secondary imperfective is used to distinguish pure perfectivizing prefixes (cf.
the prefixed derivative in ex. (75) from which the secondary imperfective cannot be derived) from other
prefixes (cf. ex. (81) derived from the prefixed verb in ex. (76)).
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Table 3. Prefixes used in the verb-to-verb derivation

ad- do- na- o- ot- pode- při- roze- u- vý- zá-
bez- dů- ná- ob- ote- pro- pří- s- ú- vz- ze-
de- in- nad- obe- pa- pře- pů- se- v- vze- zne-
des- ko- nade- od- po- před- re- sou- ve- z- zu-
dez- kon- ne- ode- pod- přede- roz- sub- vy- za- zů-

alternations in the root morpheme that are often specific for the particular pair of
verbs or are limited to small groups of verbs.

(75) ps-á-tVimpf ‘to write’ á>a
−−→ na-ps-a-tVpf ‘to write down’

(76) ps-á-tVimpf ‘to write’ á>a
−−→ za-ps-a-tVpf ‘to record’

(77) skák-a-tVimpf ‘to jump’ → vy-skák-a-tVpf ‘to jump out’
(78) skoč-i-tVpf ‘to jump’ → vy-skoč-i-tVpf ‘to jump out’

(79) skoč-i-tVpf ‘to jump’ o>á, č>k
−−−−→ skák-a-tVimpf ‘to jump’

(80) skák-a-tVimpf ‘to jump’ → skák-áva-tVimpf.iter ‘to jump’

(81) za-ps-a-tVpf ‘to record’ 0>i
−→ za-pis-ova-tVimpf ‘to record’

As in the existing valency lexicon of Czech verbs Vallex (Lopatková et al., 2015) re-
lations between aspectual pairs of verbs derived by suffixation are explicitly marked,
we decided to extract these pairs as the first step in our task of creating derivational
relations between verbs in DeriNet. Pairs of verbs that are not in a derivational re-
lation (e.g. suppletive aspectual pairs such as brátVimpf ‘to take’ – vzítVpf ‘to take’)
were excluded from the list. The usage of an existing, reliable lexical resource was
preferred to the above presented methods (particularly string-substitution rules) pre-
cisely because of the heterogeneous nature of alternations in this type of suffixation.
Second, a list of app. 50 prefixes used in deverbal derivation of verbs (vocalized vari-
ants listed as separate items; Table 3) was compiled and used to search Vallex for verbs
that are derivationally related to the verbs in the extracted list of aspectual pairs. In
these two steps, more than 3,100 verbs were found and preliminarily organized into
660 derivational families with a scope reaching from several tens of verbs (cf. families
with the verbs psátVimpf ‘to write’ or skočitVpf ‘to jump’) up to pairs of verbs such as
šítVimpf ‘to sew’, ušítVpf ‘to finish sewing’.

The inner organization of the derivational families into a derivational tree consist-
ing of oriented binary relations could not be inferred unambiguously from the data
itself since there are complicated interconnections between the verbs with respect to
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─┮ skočit Vpf `to jump'
├─╼ vyskočit Vpf `to jump out'
└─┮ skákat Vimpf `to jump'
└─╼ vyskákat Vpf `to jump out'

─┮ skočit Vpf `to jump'
├─┮ vyskočit Vpf `to jump out'
│ └─╼ vyskákat Vpf `to jump out'
└─╼ skákat Vimpf `to jump'

Figure 2. Alternative derivational trees with the root skočit ‘to jump’. The derivational
tree on the left is preferred in the presented approach (cf. ex. (77) to (80)).

the form and aspectual characteristics that allow to organize the verbs in several com-
peting ways. For instance, when modelling relations between the verbs skočitVpf ‘to
jump’, skákatVimpf ‘to jump’, vyskočitVpf ‘to jump out’, and vyskákatVpf ‘to jump out’,
the last verb can be interpreted either as the perfective counterpart of vyskočit formed
through suffixation, or as a prefixed perfective derived from skákat. We preferred the
prefixation (to creation of aspectual pairs by suffixation) to be a more important orga-
nizational principle in DeriNet, therefore, the latter interpretation was chosen in (77)
and is mirrored in the tree structure on the left-hand side in Fig. 2; the former, re-
fused interpretation corresponds to the tree on the right. The compared trees differ
from the point of view of alternations; the preferred organization is connected with
alternations along the single edge skočitVpf ‘to jump’ → skákatVimpf ‘to jump’.

The following general guidelines for the inner organization of the derivational
families into trees were specified:

• if an unprefixed aspectual pair is available in the derivational family (i.e. the
aspectual pair differs in suffixes), the perfective verb is the root of the tree:
e.g. skočitVpf ‘to jump’ → skákatVimpf ‘to jump’

• if only an unprefixed imperfective is available with a prefixed perfective coun-
terpart, the imperfective verb is the root of the tree:
e.g. šítVimpf ‘to sew’ → ušítVpf ‘to finish sewing’

• all prefixed perfectives are derived from the unprefixed counterpart;
the counterpart is either perfective, e.g. skočitVpf ‘to jump’ → naskočitVpf ‘to hop
on’ | odskočitVpf ‘to jump aside’ | poskočitVpf ‘to jump up’, ...,
or imperfective, e.g. skákatVimpf ‘to jump’ → přeskákatVpf ‘to jump over’ | vyská-
katVpf ‘to jump out’ ...

• secondary imperfectives were linked to particular prefixed perfectives:
e.g. naskočitVpf ‘to hop on’ → naskakovatVimpf ‘to hop on’, poskočitVpf ‘to jump
up’ → poskakovatVimpf ‘to jump up’

• iterative imperfectives as derived from the imperfective:
e.g. skákatVimpf ‘to jump’ → skákávatVimpf.iter ‘to jump’ .

Having the derivational families organized into the tree structures (see Fig. 3), fur-
ther verbs were searched for in the DeriNet data, using all pieces of information avail-
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─┮ skočit Vpf `to jump'
├─┮ naskočit Vpf `to hop on'
│ └─╼ naskakovat Vimpf `to hop on'
├─┮ odskočit Vpf `to jump aside'
│ └─╼ odskakovat Vimpf `to jump aside'
├─┮ poskočit Vpf `to jump up'
│ └─╼ poskakovat Vimpf `to jump up'
├─┮ přeskočit Vpf `to jump over'
│ └─╼ přeskakovat Vimpf `to jump over'
├─┮ vyskočit Vpf `to jump out'
│ └─╼ vyskakovat Vimpf `to jump out'
└─┮ skákat Vimpf `to jump'
├─╼ přeskákat Vpf `to jump over'
└─╼ vyskákat Vpf `to jump out'

Figure 3. Derivational tree with the root verb skočit ‘to jump’ consisting of derivationally
related verbs from the Vallex dictionary organized according to the adopted guidelines.

able so far (in particular, string-substitution rules based on the tree structures and
list of prefixes). The items were added into the derivational trees according to the
guidelines. Compare the simplified derivational trees of the adjective bílýA ‘white’
in Fig. 4; the simplification consists in displaying verbal nodes only (nodes of other
part-of-speech categories were omitted).

The procedure described in Sect. 4.5 resulted in nearly 23 thousand new deriva-
tional relations in total. Since the newly connected verbs were mostly roots of subtrees
consisting of direct and indirect deverbal derivatives, the new links led to connection
of a number of trees into a structure with an extremely high number of nodes.22

5. Discussion and conclusions

In the paper, morphographemic alternations were approached from the perspec-
tive of semi-automatic modelling of derivational relations in the language resource
specialized in derivational morphology of Czech. Methods of creating derivational
links in DeriNet were presented with a focus on alternations covered by each of the
methods. The method of exploiting inflectional paradigms developed specifically for
dealing with alternations with respect to individual lexemes (Sect. 4.4) was less ef-
ficient (in terms of absolute frequency of created derivational links) than the string-
substitution rules and derivational information from MorfFlex CZ, but it confirmed
the feasibility and, also, usefulness of integrating inflectional information into de-
scription of derivation. As inflectional resources are elaborated for Czech more com-
prehensively than derivational data, which seems to be the case for other languages
as well, the possible profits should be further explored.

22There are nearly 80 trees with more than 500 nodes each in DeriNet 1.4.
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─┮ bílý A `white'
├─┮ bílit Vimpf `to whiten'
│ ├─╼ bílívat Vimpf.iter `to whiten'
│ ├─╼ dobílit Vpf `to finish whitening'
│ ├─╼ nabílit Vpf `to paint white'
│ ├─╼ obílit Vpf `to whitewash'
│ ├─╼ přebílit Vpf `to whitewash once more'
│ ├─╼ vybílit Vpf `to finish whitewashing'
│ └─╼ zabílit Vpf `to cover with whitewash'
└─┮ bělit Vimpf `to bleach'

├─╼ bělívat Vimpf.iter `to bleach'
├─╼ nabělit Vpf `to finish bleaching'
├─┮ probělit Vpf `to bleach partially'
│ └─┮ probělovat Vimpf `to bleach partially'
│ └─╼ probělovávat Vimpf.iter `to make lighter'
├─╼ předbělit Vpf `to bleach preliminarily'
└─┮ vybělit Vpf `to make lighter'
└─┮ vybělovat Vimpf `to make lighter'
└─╼ vybělovávat Vimpf.iter `to make lighter'

Figure 4. A simplified derivational tree with the root bílý ‘white’ involving verbs derived
directly and indirectly from the adjective, as organized in DeriNet 1.4.

However, there are still words with alternations that we have not been able to treat
so far. The following examples of some significant groups indicate the diversity of
problems encountered when extending the coverage of the annotation:

• words with more alternations occurring in a single derivation step; one or more
of the alternations usually correlate with alternations in inflection, the other one
is in the final grapheme of the stem:

(82) vejc-eN ‘egg’ e>a, 0>e, c>č
−−−−−−−→ vaječ-nýA ‘made from eggs’

sníhN ‘snow’ í>ě, h>ž
−−−−→ sněž-nýA ‘snowy’

louk-aN ‘meadow’ ou>u, k>č
−−−−−→ luč-níA ‘meadow’

• words derived from part-of-speech categories that are not contained in DeriNet,
particularly from pronouns and numerals:

(83) devětNUM ‘nine’ ě>í
−→ devít-inaN ‘(one) ninth’

• compounds with alternations; a substantial change of the architecture of the
database is required in the near future in order to make it possible to represent
composition:

(84) BíláA HoraN ‘White Mountain’ (geographical name) í>ě
−→ běl-o-hor-skýA

‘from Bílá Hora’
• deverbal nouns are often both formally and semantically based on the whole

aspectual pair of verbs (vysloužitVpf ‘to earn’, vysluhovatVimpf ‘to earn’); a lin-
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guistically adequate solution is to be developed that would enable to connect a
word with more than one parent though it is not a compound (without being
fused with compounds), etc.

(85) vy-slouž-i-tVpf ‘to earn’ y>ý, ou>u
−−−−−→ vý-služ-baN ‘retirement’ and/or

vy-sluh-ova-tVimpf ‘to earn’ y>ý, h>ž
−−−−−→ vý-služ-baN ‘retirement’

The approach to alternations in DeriNet is to be interpreted as the first step in
the data-based description of alternations in Czech derivation. The next step is the
automatic morphemic segmentation, which makes it possible to look at alternations in
connection with particular morphemes. The DeriNet data are expected to be helpful
in developing the tools for morphemic segmentation, which is still missing for Czech.
For instance, consonant alternations can be detected as an important formal feature
indicating the root-suffix (ex. (86)) or suffix-suffix boundary (ex. (87)) while vowel
lengthening typically at the second position in nouns derived from verbs (ex. (88))
delimits the prefix-root boundary.

(86) such-ýA ‘dry’ ch>š
−−→ suš-i-tV ‘to dry’

(87) čern-ochN ‘black person’ ch>š
−−→ čern-ouš-ekN ‘black person (demin.)’

(88) vy-robitV ‘to product’ y>ý
−−→ vý-robaN ‘production’
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Appendix: Morphographemic alternations in contemporary Czech

altern. example counter-example

(A
,B

,C
)v

ow
el

al
te

rn
at

io
ns a>á in pref. za-bal-i-t → zá-bal na-hr-á-t → na-hr-á-vka

(bidir.) ‘to pack’ ‘wet pack’ ‘to record’ ‘recording’
in root vrat-a → vrát-ka pat-a → pat-ka

‘gate’ (dimin.) ‘heel’ (dimin.)
in suf. hled-a-t → hled-á-ní hled-a-t → hled-a-ný

‘to search’ ‘search’ ‘to search’ ‘searched’

a>e in root úřad → úřed-ník ná-klad → ná-klad-ní
(bidir.) ‘office’ ‘officer’ ‘load’ ‘cargo’

a>ě in root svat-ý → svět-ec
‘holy’ ‘holy man’

a>o in root hrab-a-t → hrob s-pad-a-t → s-pad
‘to dig’ ‘grave’ ‘to fall down’ ‘fallout’

á>a in root kámen → kamen-ný památ-ka → památ-ný
(bidir.) ‘stone’ ‘stony’ ‘memory’ ‘memorable’

in suf. ps-á-t → ps-a-ní
‘to write’ ‘letter’

á>e in root o-třás-t → o-třes krás-t → krád-ež
(bidir.) ‘to shake’ ‘shake’ ‘to steal’ ‘theft’

á>i in root ďábel → dibl-ík ďábel → ďáblík
‘devil’ ‘imp’ ‘devil’ (dimin.)

á>í in root přá-t → pří-tel hrá-t → hrá-č
(bidir.) ‘to wish’ ‘friend’ ‘to play’ ‘player’

e>a in root vejc-e → vaječ-ný strejc → strejc-ův
(bidir.) ‘egg’ ‘made from eggs’ ‘uncle’ ‘uncle’s’

e>á in root deset → desát-ý
(bidir.) ‘ten’ ‘tenth’

e>é in root oheň → ohén-ek ú-čes → ú-čes-ek
(bidir.) ‘fire’ (dimin.) ‘hairstyle’ (dimin.)

in suf. prst-en → prst-én-ek
‘ring’ (dimin.)

e>o in root lež-e-t → po-lož-i-t žel-e-t → o-žel-e-t
‘to lie’ ‘to lay down’ ‘to regret’ ‘to do without’

e>í in root deset → desít-ka raket-a → raket-ka
(bidir.) ‘ten’ ‘(number) ten’ ‘rocket’ (dimin.)

e>ý in root postel → postýl-ka činel → činel-ek
‘bed’ (dimin.) ‘cymbal’ (dimin.)

in suf. uči-tel → uči-týl-ek
‘teacher’ (dimin.)

ě>í in root květ → kvít-ek paměť → pamět-ník
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altern. example counter-example

(bidir.) ‘blossom’ (dimin.) ‘memory’ ‘survivor’

ě>á in root paměť → památ-ka Bět-a → Bět-ka
(bidir.) ‘memory’ ‘souvenir’ fem. name (dimin.)

é>a in root vléc-t → vlak vléc-t → vlek
‘to pull’ ‘train’ ‘to pull’ ‘ski lift’

é>e in root lét-o → let-ní bazén → bazén-ek
(bidir.) ‘summer’ ‘summer-adj’ ‘pool’ (dimin.)

é>í in root mléko → mlíko mléko → mléčný
‘milk’ ‘(non-stand.)’ ‘milk’ ‘milk’

in suf. svíc-en → svíc-ín-ek
‘candlestick’ (dimin.)

é>ý in root okén-ko → okýn-ko
‘window’ ‘(non-stand.)’

in suf. prst-en → prst-ýn-ek prst-en → prst-en-ec
‘ring’ (dimin.) ‘ring’ ‘big ring’

i>e insuf. zlob-i-t → zlob-e-ní zlob-i-t → zlob-i-vý
‘to misbehave’ ‘misbehavior’ ‘to misbehave’ ‘naughty’

i>í in pref. při-děl-i-t → pří-děl při-hr-á-t → při-hr-á-vka
(bidir.) ‘to assign’ ‘ration’ ‘to pass’ ‘pass’

in root list → líst-ek sešit → sešit-ek
‘leaf’ (dimin.) ‘block’ (dimin.)

in suf. čum-il → čum-íl-ek text-il → text-il-ka
‘gaper’ (dimin.) ‘textile’ ‘textile factory’

í>i in root líp-a → lip-ka píst → píst-ek
(bidir.) ‘linden’ (dimin.) ‘piston’ (dimin.)

í>a in root žít → žat-va
‘to mow’ ‘mowing’

í>á in root přítel → přátel-ský
(bidir.) ‘friend’ ‘friendly’

í>e in root říd-i-t → řed-i-tel z-říd-i-t → z-říz-en-ec
(bidir.) ‘to lead’ ‘director’ ‘to establish’ ‘attendant’

in suf. zaj-íc → zaj-eč-í měs-íc → měs-íč-ní
‘hare’ ‘hare’s’ ‘moon’ ‘lunar’

í>ě in root vítr → větr-ný mír-a → mír-ný
(bidir.) ‘wind’ ‘windy’ ‘degree’ ‘moderate’

o>á in root s-klon-i-t → s-klán-ě-t
‘to inclinepf’ ‘to inclineimpf’

o>ó in root Božen-a → Bóž-a Božen-a → Bož-ka
(bidir.) (fem. name) (familiar) (fem. name) (familiar)

o>ů in pref. pro-střel-i-t → prů-střel pro-slov-i-t → pro-slov
(bidir.) ‘to shoot through’ ‘shot through’ ‘to give a speech’ ‘speech’

in root cop → cůp-ek strom → stromek
‘plait’ (dimin.) ‘tree’ (dimin.)
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altern. example counter-example

in suf. lib-ost → lib-ůst-ka
‘liking’ (dimin.)

o>ou in root boř-i-t → bour-a-t po-noř-i-t → po-noř-ova-t
‘to destroypf’ ‘to destroyimpf’ ‘to dippf’ ‘to dipimpf’

in suf. čern-och → čern-ouš-ek let-os → let-oš-ek
‘black man’ (dimin.) ‘this year’ ‘this year’

ó>o in root próz-a → proz-aický
(bidir.) ‘prose’ ‘prosaic’

ou>u in root kouř-i-t → kuř-ák bouř-i-t → bouř-e
(bidir.) ‘to smoke’ ‘smoker’ ‘to storm’ ‘storm’

in suf. ln-ou-t → ln-u-tí
‘to adhere’ ‘adhering’

u>ou in root dub → doub-ek stuh-a → stuž-ka
(bidir.) ‘oak’ (dimin.) ‘ribbon’ (dimin.)

u>ú in pref. u-lovit → ú-lovek ú-toč-i-t → ú-tok
(bidir.) ‘to catch’ ‘catch’ ‘to attack’ ‘attack’

ú>u in pref. ú-cta → u-ctivý ú-nav-a → ú-nav-ný
(bidir.) ‘respect’ ‘respectful’ ‘fatique’ ‘tiring’

in root úz-ký → uz-oučký útl-ý → útl-oučký
narrow’ (dimin.) ‘thin’ (dimin.)

ů>o in root kůž-e → kož-ený kůr-a → kůr-ový
(bidir.) ‘leather’ ‘leather-adj’ ‘bark’ ‘bark-adj.’

y>ý in pref. vy-br-a-t → vý-bor vy-hlás-i-t → vy-hláš-ka
(bidir.) ‘to choose’ ‘board’ ‘to declare’ ‘notice’

in root vys-oký → výš-ka ryb-a → ryb-ka
‘high’ ‘height’ ‘fish’ (dimin.)

ý>y in root hýb-a-t → hyb-ný hýb-a-t → hýb-ací
(bidir.) ‘to move’ ‘movable’ ‘to move’ ‘moving’

(D
)v

ow
el

de
le

tio
n e>0 in root kart-a → karet-ní nárt → nárt-ní

(bidir.) ‘card’ ‘card-adj’ ‘instep’ ‘instep-adj.’
in suf. dár-ek → dár-k-ový do-tek → do-tek-ový

‘gift’ ‘gift-adj’ ‘touch’ ‘touch-adj.’

é>0 in root déšť → dšt-í-t
(bidir.) ‘rain’ ‘to rain’

u>0 in root such-ý → sch-nout
‘dry’ ‘to dry’

(E
)v

ow
el

in
se

rt
io

n 0>e in root hr-a → her-ní hr-á-t → hr-a
(bidir.) ‘play’ ‘playing’ ‘to play’ ‘play’

in suf. služ-b-a → služ-eb-ní
‘service’ ‘business-adj’

0>é in root okn-o → okén-ko
(bidir.) ‘window’ (dimin.)

0 >o in root hřm-ít → hrom
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altern. example counter-example

‘to thunder’ ‘thunder’

0>i in root na-ps-a-t → ná-pis
‘to write’ ‘sign’

0>í in root ps-á-t → pís-ař
‘to write’ ‘writer’

0>y in root za-mk-nou-t → za-myk-a-t
‘to lockpf’ ‘to lockimpf’

0>ý in root na-zv-a-t → na-zýv-a-t
‘to callpf’ ‘to callimpf’

(F
)c

on
so

na
nt

al
te

rn
at

io
ns c>č in root ovc-e → ovč-í

‘sheep’ ‘sheep’s’
in suf. chlap-ec → chlap-eč-ek

‘boy’ (dimin.)

c>k in root péc-t → pek-ař pec → pec-ař
(bidir.) ‘to bake’ ‘baker’ ‘oven’ ‘oven builder’

č>k in root breč-e-t → brek
(bidir.) ‘to cry’ ‘cry’

d>ď in root hněd-ý → hněď sled-ova-t → sled
(bidir.) ‘brown’ ‘brown (colour)’ ‘to follow’ ‘sequence’

d>z in root tvrd-ý → tvrz hod-i-t → hod
‘hard’ ‘fort’ ‘to throw’ ‘throw’

ď>d in root loď → lod-ní
(bidir.) ‘ship’ ‘shipping’

g>ž in root chirurg → chirurž-ka
‘surgeon’ ‘woman surgeon’

h>z in root tuh-ý → tuz-e
‘solid’ ‘solid(ly)’

h>ž in root sníh → sníž-ek
(bidir.) ‘snow’ (dimin.)

ch>š in root živočich → živočiš-ný všechen → po-všech-ný
(bidir.) ‘animal’ ‘animal-adj’ ‘all’ ‘general’

in suf. čern-och → čern-oš-ka
‘black man’ ‘black woman’

k>c in root trpk-ý → trpc-e
(bidir.) ‘bitter’ ‘bitterly’

in suf. blíz-k-ý → blíz-c-e
‘close’ ‘closely’

k>č in root ruk-a → ruč-ní
(bidir.) ‘hand’ ‘manual’

in suf. balet-k-a → balet-č-in
‘ballerina’ ‘ballerina’s’

k>t in root hrušk-a → hrušt-ička
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altern. example counter-example

‘pear’ (dimin.)
in suf. služ-k-a → služ-t-ička

‘housemaid’ (dimin.)

n>ň in root čern-ý → čerň u-hrn-ou-t → ú-hrn
(bidir.) ‘black’ ‘black (colour)’ ‘to sum up’ ‘summary’

in suf. želez-n-ý → želez-ň-ák
‘iron’ ‘basalt’

ň>n in root skříň → skřín-ka
(bidir.) ‘closet’ (dimin.)

r>ř in root star-ý → stař-ík
(bidir.) ‘old’ ‘old man’

ř>r in suf. truhl-ář → truhl-ár-na
(bidir.) ‘joiner’ ‘joiner’s shop’

s>š in root mysl-e-t → myšl-e-ní
‘to think’ ‘thinking’

š>ch in root prš-e-t → s-prch-a srš-e-t → srš-atý
(bidir.) ‘to rain’ ‘shower’ ‘to fume’ ‘furious’

t>ť in root žlut-ý → žluť
(bidir.) ‘yellow’ ‘yellow (colour)’

t>c in root svít-i-t → svíc-e
‘to shine’ ‘candle’

in suf. o-boh-at-i-t → o-boh-ac-ova-t boh-at-ý → boh-at-ec
‘to enrichpf’ ‘to enrichimpf’ ‘rich’ ‘rich man’

ť>t in root řiť → řit-ní
(bidir.) ‘anus’ ‘anal’

z>ž in root řez-a-t → řež řez-a-t → řez
‘to cut’ ‘scuffle’ ‘to cut’ ‘section’

ž>h in root slouž-i-t → sluh-a těž-i-t → těž-ba
(bidir.) ‘to serve’ ‘servant’ ‘to mine’ ‘mining’

(G
)c

on
s.

de
l.

an
d

in
s. k>0 in root Hamburk → hambur-ský

‘Hamburg’ ‘from Hamburg’

g>0 in root Peking → pekin-ský
‘Beijing’ ‘from Beijing’

p>0 in root kyp-ě-t → ky-nou-t máv-a-t → máv-nou-t
‘to brim’ ‘to rise’ ‘to waveimpf’ ‘to wavepf’

v>0 in root kýv-a-t → ky-nou-t
‘to nod’ ‘to wave’

0>j in root mí-t → jmě-ní
‘to have’ ‘property’

(H
)g

ro
up

al
te

rn
at

io
ns ck>čť root/suf. řec-k-ý → řeč-t-ina

‘Greek’ ‘Greek lang.’

sk>šť root/suf. rus-k-ý → ruš-t-ina
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altern. example counter-example

‘Russian’ ‘Russian lang.’
in suf. arab-sk-ý → arab-št-ina

‘Arabic’ ‘Arabic lang.’

st>šť in root měst-o → měšť-an chvost → chvost-an
‘town’ ‘burgher’ ‘tail’ ‘saki monkey’

(I)
m

ix
ed

al
te

rn
at

io
ns á>av in root stá-t → stav stá-t → stá-va-t

‘to stand’ ‘to state’ ‘to standimpf’ ‘to standiter’

á>ěj in root vá-t → věj-íř vá-t → vá-nice
‘to blow’ ‘fan’ ‘to blow’ ‘blizzard’

á>oj in root stá-t → stoj-ící stá-t → stá-va-t
‘to stand’ ‘standing’ ‘to standimpf’ ‘to standiter’

á>av in root stá-t → stav-ba stá-t → stá-va-t
‘to stand’ ‘building’ ‘to standimpf’ ‘to standiter’

í>ij in root bí-t → bij-ící
‘to beat’ ‘beating’

í>oj in root bí-t → boj
‘to beat’ ‘fight’

ý>ov in root krý-t → krov
‘to cover’ ‘roof frame’
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Abstract
This article describes our experiments in neural machine translation using the recent Ten-

sor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017).
We examine some of the critical parameters that affect the final translation quality, memory
usage, training stability and training time, concluding each experiment with a set of recom-
mendations for fellow researchers. In addition to confirming the general mantra “more data
and larger models”, we address scaling to multiple GPUs and provide practical tips for im-
proved training regarding batch size, learning rate, warmup steps, maximum sentence length
and checkpoint averaging. We hope that our observations will allow others to get better results
given their particular hardware and data constraints.

1. Introduction

It has been already clearly established that neural machine translation (NMT) is
the new state of the art in machine translation, see e.g. the most recent evaluation
campaigns (Bojar et al., 2017a; Cettolo et al., 2017). Many fundamental changes of the
underlying neural network architecture are nevertheless still frequent and it is very
difficult to predict which of the architectures has the best combination of properties
to win in the long term, considering all relevant criteria like translation quality, model
size, stability and speed of training, interpretability but also practical availability of
good implementations. A considerable part of a model’s success in translation quality
consists in the training data, the model’s sensitivity to noise in the data but also on a
wide range of hyper-parameters that affect the training. Having the right setting of
them turns out to be often a critical component for the success.

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: popel@ufal.mff.cuni.cz
Cite as: Martin Popel, Ondřej Bojar. Training Tips for the Transformer Model. The Prague Bulletin of Mathematical
Linguistics No. 110, 2018, pp. 43–70. doi: 10.2478/pralin-2018-0002.
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In this article, we experiment with a relatively new NMT model, called Trans-
former (Vaswani et al., 2017) as implemented in the Tensor2Tensor1 (abbreviated T2T)
toolkit, version 1.2.9. The model and the toolkit have been released shortly after the
evaluation campaign at WMT20172 and its behavior on large-data news translation is
not yet fully explored. We want to empirically explore some of the important hyper-
parameters. Hopefully, our observations will be useful also for other researchers con-
sidering this model and framework.

While investigations into the effect of hyper-parameters like learning rate and batch
size are available in the deep-learning community (e.g. Bottou et al., 2016; Smith and
Le, 2017; Jastrzebski et al., 2017), these are either mostly theoretic or experimentally
supported from domains like image recognition rather than machine translation. In
this article, we fill the gap by focusing exclusively on MT and on the Transformer
model only, providing hopefully the best practices for this particular setting.

Some of our observations confirm the general wisdom (e.g. larger training data
are generally better) and quantify the behavior on English-to-Czech translation ex-
periments. Some of our observations are somewhat surprising, e.g. that two GPUs
are more than three times faster than a single GPU, or our findings about the interac-
tion between maximum sentence length, learning rate and batch size.

The article is structured as follows. In Section 2, we discuss our evaluation method-
ology and main criteria: translation quality and speed of training. Section 3 describes
our dataset and its preparations. Section 4 is the main contribution of the article: a
set of commented experiments, each with a set of recommendations. Finally, Sec-
tion 5 compares our best Transformer run with systems participating in WMT17. We
conclude in Section 6.

2. Evaluation Methodology

Machine translation can be evaluated in many ways and some forms of human
judgment should be always used for the ultimate resolution in any final application.
The common practice in MT research is to evaluate the model performance on a test set
against one or more human reference translations. The most widespread automatic
metric is undoubtedly the BLEU score (Papineni et al., 2002), despite its acknowledged
problems and better-performing alternatives (Bojar et al., 2017b). For simplicity, we
stick to BLEU, too (we evaluated all our results also with chrF (Popović, 2015), but
found no substantial differences from BLEU). In particular, we use the case-insensitive
sacréBLEU3 which uses a fixed tokenization (identical to mteval-v14.pl --interna-

1https://github.com/tensorflow/tensor2tensor

2http://www.statmt.org/wmt17

3 https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu
The signature of the BLEU scores reported in this paper is BLEU+case.lc+lang.en-cs+numrefs.1+smooth.
exp+test.wmt13+tok.intl+version.1.2.3.
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tional-tokenization) and automatically downloads the reference translation for a
given WMT testset.

2.1. Considerations on Stopping Criterion

The situation in NMT is further complicated by the fact that the training of NMT
systems is usually non-deterministic,4 and (esp. with the most recent models) hardly
ever converges or starts overfitting5 on reasonably big datasets. This leads to learning
curves that never fully flatten let alone start decreasing (see Section 4.2). The common
practice of machine learning to evaluate the model on a final test set when it started
overfitting (or a bit sooner) is thus not applicable in practice.

Many papers in neural machine translation do not specify any stopping criteria
whatsoever. Sometimes, they mention only an approximate number of days the model
was trained for, e.g. Bahdanau et al. (2015), sometimes the exact number of training
steps is given but no indication on “how much converged” the model was at that
point, e.g. Vaswani et al. (2017). Most probably, the training was run until no further
improvements were clearly apparent on the development test set, and the model was
evaluated at that point. Such an approximate stopping criterion is rather risky: it is
conceivable that different setups were stopped at different stages of training and their
comparison is not fair.

A somewhat more reliable method is to keep training for a specified number of
iterations or a certain number of epochs. This is however not a perfect solution either,
if the models are not quite converged at that time and the difference in their perfor-
mance is not sufficiently large. It is quite possible that e.g. a more complex model
would need a few more epochs and eventually arrived at a higher score than its com-
petitor. Also, the duration of one training step (or one epoch) differs between models
(see Section 4.1) and from the practical point of view, we are mostly interested in the
wall-clock time.

When we tried the standard technique of early stopping, when N subsequent eval-
uations on the development test set do not give improvements larger than a given
delta, we saw a big variance in the training time and final BLEU, even for experi-
ments with the same hyper-parameters and just a different random seed. Moreover
to get the best results, we would have had to use a very large N and a very small delta.

4 Even if we fix the random seed (which was not done properly in T2T v1.2.9), a change of some hyper-
parameters may affect the results not because of the change itself, but because it influenced the random
initialization.

5 By overfitting we mean here that the translation quality (test-set BLEU) begins to worsen, while the
training loss keeps improving.
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2.2. Our Final Choice: Full Learning Curves

Based on the discussion above, we decided to report always the full learning curves
and not just single scores. This solution does not fully prevent the risk of premature
judgments, but the readers can at least judge for themselves if they would expect any
sudden twist in the results or not.

In all cases, we plot the case-insensitive BLEU score against the wall-clock time in
hours. This solution obviously depends on the hardware chosen, so we always used
the same equipment: one up to eight GeForce GTX 1080 Ti GPUs with NVIDIA driver
375.66. Some variation in the measurements is unfortunately unavoidable because we
could not fully isolate the computation from different processes on the same machine
and from general network traffic, but based on our experiments with replicated ex-
periments such variation is negligible.

2.3. Terminology

For clarity, we define the following terms and adhere to them for the rest of the
paper:
Translation quality is an automatic estimate of how well the translation carried out

by a particular fixed model expresses the meaning of the source. We estimate
translation quality solely by BLEU score against one reference translation.

Training Steps denote the number of iterations, i.e. the number of times the opti-
mizer update was run. This number also equals the number of (mini)batches
that were processed.

Batch Size is the number of training examples used by one GPU in one training step.
In sequence-to-sequence models, batch size is usually specified as the number
of sentence pairs. However, the parameter batch_size in T2T translation specifies
the approximate number of tokens (subwords) in one batch.6 This allows to use
a higher number of short sentences in one batch or a smaller number of long
sentences.

Effective Batch Size is the number of training examples consumed in one training
step. When training on multiple GPUs, the parameter batch_size is interpreted
per GPU. That is, with batch_size=1500 and 8 GPUs, the system actually digests
12k subwords of each language in one step.

Training Epoch corresponds to one complete pass over the training data. Unfortu-
nately, it is not easy to measure the number of training epochs in T2T.7 T2T

6 For this purpose, the number of tokens in a sentence is defined as the maximum of source and target
subwords. T2T also does reordering and bucketing of the sentences by their length to minimize the use of
padding symbols. However, some padding is still needed, thus batch_size only approximates the actual
number of (non-padding) subwords in a batch.

7https://github.com/tensorflow/tensor2tensor/issues/415
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reports only the number of training steps. In order to convert training steps to
epochs, we need to multiply the steps by the effective batch size and divide by
the number of subwords in the training data (see Section 3.1). The segmentation
of the training data into subwords is usually hidden to the user and the number
of subwords must be thus computed by a special script.

Computation Speed is simply the observed number of training steps per hour. Com-
putation speed obviously depends on the hardware (GPU speed, GPU-CPU
communication) and software (driver version, CUDA library version, imple-
mentation). The main parameters affecting computation speed are the model
size, optimizer and other settings that directly modify the formula of the neural
network.

Training Throughput is the amount of training data digested by the training. We
report training throughput in subwords per hour. Training Throughput equals
to the Computation Speed multiplied by the effective batch size.

Convergence Speed or BLEU Convergence is the increase in BLEU divided by time.
Convergence speed changes heavily during training, starting very high and de-
creasing as the training progresses. A converged model should have conver-
gence speed of zero.

Time Till Score is the training time needed to achieve a certain level of translation
quality, in our case BLEU. We use this as an informal measure because it is not
clear how to define the moment of “achieving” a given BLEU score. We define
it as time after which the BLEU never falls below the given level.8

Examples Till Score is the number of training examples (in subwords) needed to
achieve a certain level of BLEU. It equals to the Time Till Score multiplied by
Training Throughput.

2.4. Tools for Evaluation within Tensor2Tensor

T2T, being implemented in TensorFlow, provides nice TensorBoard visualizations
of the training progress. The original implementation was optimized towards speed
of evaluation rather than towards following the standards of the field. T2T thus re-
ports “approx-bleu” by default, which is computed on the internal subwords (never
exposed to the user, actually) instead of words (according to BLEU tokenization). As
a result, “approx-bleu” is usually about 1.2–1.8 times higher than the real BLEU. Due
to its dependence on the training data (for the subword vocabulary), it is not easily
reproducible in varying experiments and thus not suitable for reporting in publica-
tions.

8 Such definition of Time Till Score leads to a high variance of its values because of the relatively high
BLEU variance between subsequent checkpoints (visible as a “flickering” of the learning curves in the
figures). To decrease the variation one can use a bigger development test set.
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sentences EN words CS words
CzEng 1.7 57 M 618 M 543 M
europarl-v7 647 k 15 M 13 M
news-commentary-v11 190 k 4.1 M 3.7 M
commoncrawl 161 k 3.3 M 2.9 M
Total 58 M 640 M 563 M

Table 1: Training data resources

We implemented a helper script t2t-bleuwhich computes the “real” BLEU (giving
the same result as sacréBLEU with --tokenization intl). Our script can be used in
two ways:

• To evaluate one translated file:
t2t-bleu --translation=my-wmt13.de --reference=wmt13_deen.de

• To evaluate all translations in a given directory (created e.g. by t2t-translate-
all) and store the results in a TensorBoard events file. All the figures in this
article were created this way.

We also implemented t2t-translate-all and t2t-avg-all scripts, which translate
all checkpoints in a given directory and average a window of N subsequent check-
points, respectively.9 For details on averaging see Section 4.10.

3. Data Selection and Preprocessing

We focused on the English-to-Czech translation direction. Most of our training
data comes from the CzEng parallel treebank, version 1.7 (57M sentence pairs),10 and
the rest (1M sentence pairs) comes from three smaller sources (Europarl, News Com-
mentary, Common Crawl) as detailed in Table 1.

We use this dataset of 58M sentence pairs for most our experiments. In some exper-
iments (in Sections 4.2 and 4.6), we substitute CzEng 1.7 with an older and consider-
ably smaller CzEng 1.0 (Bojar et al., 2012) containing 15M sentence pairs (233M/206M
of en/cs words).

To plot the performance throughout the training, we use WMT newstest2013 as
a development set (not overlapping with the training data). In Section 5, we apply
our best model (judged from the performance on the development set) to the WMT
newstest2017, for comparison with the state-of-the-art systems.

9 All three scripts are now merged in the T2T master. All three scripts can be used while the training is
still in progress, i.e. they wait a given number of minutes for new checkpoints to appear.

10 http://ufal.mff.cuni.cz/czeng/czeng17, which is a subset of CzEng 1.6 (Bojar et al., 2016).
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3.1. Training Data Preprocessing

Data preprocessing such as tokenization and truecasing has always been a very
important part of the setup of statistical machine translation systems. A huge leap in
scaling NMT to realistic data size has been achieved by the introduction of subword
units (Sennrich et al., 2016), but the long-term vision of the deep-learning community
is to leave all these “technicalities” up to the trained neural network and feed it with
as original input as possible (see e.g. Lee et al., 2016).

T2T adopts this vision and while it supports the use of external subword units, it
comes with its own built-in method similar to the word-piece algorithm by Wu et al.
(2016) and does not expect the input to be even tokenized. Based on a small sample of
the training data, T2T will train a subword vocabulary and apply it to all the training
and later evaluation data.

We follow the T2T default and provide raw plain text training sentences. We use
the default parameters: shared source and target (English and Czech) subword vocab-
ulary of size 32k.11 After this preprocessing, the total number of subwords in our main
training data is 992 millions (taking the maximum of English and Czech lengths for
each sentence pair, as needed for computing the number of epochs, see Section 2.3).
The smaller dataset CzEng 1.0 has 327 million subwords. In both cases the average
number of subwords per (space-delimited) word is about 1.5.

Even when following the defaults, there are some important details that should be
considered. We thus provide our first set of technical tips here:

Tips on Training Data Preprocessing

• Make sure that the subword vocabulary is trained on a sufficiently large sample
of the training data.12

• As discussed in Section 4.5, a higher batch size may be beneficial for the train-
ing and the batch size can be higher when excluding training sentences longer
than a given threshold. This can be controlled with parameter max_length (see
Section 4.4), but it may be a good idea to exclude too long sentences even before
preparing the training data using t2t-datagen. This way the TFRecords training
files will be smaller and their processing a bit faster.13

11 More details on T2T with BPE subword units by Sennrich et al. (2016) vs. the internal implementation
can be found in the technical report “Morphological and Language-Agnostic Word Segmentation for NMT”
attached to the Deliverable 2.3 of the project QT21: http://www.qt21.eu/resources/.

12This is controlled by a file_byte_budget constant, which must be changed directly in the source code
in T2T v1.2.9. A sign of too small training data for the subword vocabulary is that the min_count as reported
in the logs is too low, so the vocabulary is estimated from words seen only once or twice.

13 We did no such pre-filtering in our experiments.

49

http://www.qt21.eu/resources/


PBML 110 APRIL 2018

4. Experiments

In this section, we present several experiments, always summarizing the obser-
vations and giving some generally applicable tips that we learned. All experiments
were done with T2T v1.2.9 unless stated otherwise.

We experiment with two sets of hyper-parameters pre-defined in T2T: transfor-
mer_big_single_gpu (BIG) and transformer_base_single_gpu (BASE), which differ
mainly in the size of the model. Note that transformer_big_single_gpu and trans-
former_base_single_gpu are just names of a set of hyper-parameters, which can be
applied even when training on multiple GPUs, as we do in our experiments, see Sec-
tion 4.7.14

Our baseline setting uses the BIG model with its default hyper-parameters except
for:

• batch_size=1500 (see the discussion of different sizes in Section 4.5),
• --train_steps=6000000, i.e. high enough, so we can stop each experiment man-

ually as needed,
• --save_checkpoints_secs=3600 which forces checkpoint saving each hour (see

Section 4.10),
• --schedule=train which disables the internal evaluation with approx_bleu and

thus makes training a bit faster (see Section 2).15

4.1. Computation Speed and Training Throughput

We are primarily interested in the translation quality (BLEU learning curves and
Time Till Score) and we discuss it in the following sections 4.2–4.10. In this section, we
focus however only on the computation speed and training throughput. Both are affected
by three important factors: batch size, number of used GPUs and model size. The
speed is usually almost constant for a given experiment.16

Table 2 shows the computation speed and training throughput for a single GPU
and various batch sizes and model sizes (BASE and BIG). The BASE model allows for
using a higher batch size than the BIG model. The cells where the BIG model resulted
in out-of-memory errors are marked with “OOM”.17 We can see that the computa-

14 According to our experiments (not reported here), transformer_big_single_gpu is better than trans-
former_big even when training on 8 GPUs, although the naming suggests that the T2T authors had an
opposite experience.

15Also there are some problems with the alternative schedules train_and_evaluate (it needs more mem-
ory) and continuous_train_and_eval (see https://github.com/tensorflow/tensor2tensor/issues/556).

16 TensorBoard shows global_step/sec statistics, i.e. the computation speed curve. These curves in our
experiments are almost constant for the whole training with variation within 2%, except for moments when
a checkpoint is being saved (and the computation speed is thus much slower).

17 For these experiments, we used max_length=50 in order to be able to test bigger batch sizes. However,
in additional experiments we checked that max_length does not affect the training throughput itself.
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model
batch_size BASE BIG

500 43.4k 23.6k
1000 30.2k 13.5k
1500 22.3k 9.8k
2000 16.8k 7.5k
2500 14.4k 6.5k
3000 12.3k OOM
4500 8.2k OOM
6000 6.6k OOM

(a) Computation speed (steps/hour)

model
batch_size BASE BIG

500 21.7M 11.9M
1000 30.2M 13.5M
1500 33.4M 14.7M
2000 33.7M 15.0M
2500 36.0M 16.2M
3000 37.0M OOM
4500 36.7M OOM
6000 39.4M OOM

(b) Training throughput (subwords/hour)

Table 2: Computation speed and training throughput for a single GPU.

tion speed decreases with increasing batch size because not all operations in GPU are
fully batch-parallelizable. The training throughput grows sub-linearly with increas-
ing batch size, so based on these experiments only, there is just a small advantage
when setting the batch size to the maximum value. We will return to this question in
Section 4.5, while taking into account the translation quality.

We can also see the BASE model has approximately two times bigger throughput
as well as computation speed relative to the BIG model.

GPUs steps/hour subwords/hour
1 9.8k 14.7M
2 7.4k 22.2M
6 5.4k 48.6M
8 5.6k 67.2M

Table 3: Computation speed and training throughput for various numbers of GPUs,
with the BIG model and batch_size=1500.

Table 3 uses the BIG model and batch_size=1500, while varying the number of
GPUs. The overhead in GPU synchronization is apparent from the decreasing com-
putation speed. Nevertheless, the training throughput still grows with more GPUs,
so e.g. with 6 GPUs we process 3.2 times more training data per hour relative to a sin-
gle GPU (while without any overhead we would hypothetically expect 6 times more
data).
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Figure 1: Training data size effect. BLEU learning curves for our main training dataset
with 58 million sentence pairs and an alternative training dataset with 16 million sen-
tence pairs. Both trained with 8 GPUs, BIG model and batch_size=1500.

The overhead when scaling to multiple GPUs is smaller than the overhead when
scaling to a higher batch size. Scaling from a single GPU to 6 GPUs increases the
throughput 3.2 times, but scaling from batch size 1000 to 6000 on a single GPU in-
creases the throughput 1.3 times.

4.2. Training Data Size

For this experiment, we substituted CzEng 1.7 with CzEng 1.0 in the training data,
so the total training size is 16 million sentence pairs (255M / 226M of English/Czech
words). Figure 1 compares the BLEU learning curves of two experiments which differ
only in the training data: the baseline CzEng 1.7 versus the smaller CzEng 1.0. Both
are trained on the same hardware with the same hyper-parameters (8 GPUs, BIG,
batch_size=1500). Training on the smaller dataset (2.5 times smaller in the number
of words) converges to BLEU of about 25.5 after two days of training and does not
improve over the next week of training. Training on the bigger dataset gives slightly
worse results in the first eight hours of training (not shown in the graph) but clearly
better results after two days of training, reaching over 26.5 BLEU after eight days.18

With batch_size=1500 and 8 GPUs, training one epoch of the smaller dataset (with
CzEng 1.0) takes 27k steps (5 hours of training), compared to 83k steps (15 hours) for
the bigger dataset (with CzEng 1.7). This means about 10 epochs in the smaller dataset
were needed for reaching the convergence and this is also the moment when the bigger

18 We compared the two datasets also in another experiment with two GPUs, where CzEng 1.7 gave
slightly worse results than CzEng 1.0 during the first two days of training but clearly better results after
eight days. We hypothesize CzEng 1.0 is somewhat cleaner than CzEng 1.7.
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dataset starts being clearly better. However, even 18 epochs in the bigger dataset were not
enough to reach the convergence. enough to reach the convergence

Tips on Training Data Size

• For comparing different datasets (e.g. smaller and cleaner vs. bigger and nois-
ier), we need to train long enough because results after first hours (or days if training
on a single GPU) may be misleading.

• For large training data (as CzEng 1.7 which has over half a gigaword), BLEU
improves even after one week of training on eight GPUs (or after 20 days of training
on two GPUs in another experiment).

• We cannot easily interpolate one dataset results to another dataset. While the smaller
training data (with CzEng 1.0) converged after 2 days, the main training data
(with CzEng 1.7), which is 2.5 times bigger, continues improving even after
2.5×2 days.19

4.3. Model Size

Choosing the right model size is important for practical reasons: larger models
may not fit any more on your GPU or they may require to use a very small batch size.

We experiment with two models,20 as pre-defined in Tensor2Tensor – transfor-
mer_big_single_gpu (BIG) and transformer_base_single_gpu (BASE), which differ in
four hyper-parameters summarized in Table 4.

model hidden_size filter_size num_heads adam_beta2
BASE 512 2048 8 0.980
BIG 1024 4096 16 0.998

Table 4: transformer_big_single_gpu (BIG) and transformer_base_single_gpu
(BASE) hyper-parameter differences.

Figure 2 shows that on a single GPU, the BIG model becomes clearly better than the
BASE model after 4 hours of training if we keep the batch size the same – 2000 (and we
have confirmed it with 1500 in other experiments). However, the BASE model takes
less memory, so we can afford a higher batch size, in our case 4500 (with no max_length
restriction, see the next section), which improves the BLEU (see Section 4.5). But even

19 Although such an expectation may seem naïve, we can find it in literature. For example, Bottou (2012)
in Section 4.2 writes: “Expect the validation performance to plateau after a number of epochs roughly comparable to
the number of epochs needed to reach this point on the small training set.”

20 We tried also a model three times as large as BASE (1.5 times as large as BIG), but it did not reach better
results than BIG, so we don’t report it here.
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Figure 2: Effect of model size and batch size on a single GPU.
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Figure 3: Effect of model size and batch size on 8 GPUs.

so, after less than one day of training, BIG with batch size 2000 becomes better than
BASE with batch size 4500 (or even 6000 with max_length=70 in another experiment)
and the difference grows up to 1.8 BLEU after three days of training.

Figure 3 confirms this with 8 GPUs – here BIG with batch size 1500 becomes clearly
better than BASE with batch size 4500 after 18 hours of training.

Tips on Model Size

• Prefer the BIG over the BASE model if you plan to train longer than one day and
have 11 GB (or more) memory available on GPU.

• With less memory you should benchmark BIG and BASE with the maximum
possible batch size.
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maximum batch size longer sentences
max_length BIG+Adam BIG+Adafactor BASE+Adam train test

none 2040 2550 4950 0.0% 0.0%
150 2230 2970 5430 0.2% 0.0%
100 2390 3280 5990 0.7% 0.3%
70 2630 3590 6290 2.1% 2.2%
50 2750 3770 6430 5.0% 9.1%

Table 5: Maximum batch size which fits into 11GB memory for various combinations
of max_length (maximum sentence length in subwords), model size (base or big) and
optimizer (Adam or Adafactor). The last two columns show the percentage of sen-
tences in the train (CzEng 1.7) and test (wmt13) data that are longer than a given
threshold.

• For fast debugging (of model-size-unrelated aspects) use a model called trans-
former_tiny.

4.4. Maximum Training Sentence Length

The parameter max_length specifies the maximum length of a sentence in sub-
words. Longer sentences (either in source or target language) are excluded from the
training completely. If no max_length is specified (which is the default), batch_size
is used instead. Lowering the max_length allows to use a higher batch size or a bigger
model. Since the Transformer implementation in T2T can suddenly run out of mem-
ory even after several hours of training, it is good to know how large batch size fits
in your GPU. Table 5 presents what we empirically measured for the BASE and BIG
models with Adam and Adafactor21 optimizers and various max_length values.

Setting max_length too low would result in excluding too many training sentences
and biasing the translation towards shorter sentences, which would hurt the trans-
lation quality. The last two columns in Table 5 show that setting max_length to 70
(resp. 100) results in excluding only 2.1% (resp. 0.7%) of sentences in the training
data, and only 2.2% (resp. 0.3%) sentences in the development test data are longer,
so the detrimental effect of smaller training data and length bias should be minimal
in this setting. However, our experiments with batch_size=1500 in Figure 4 show a
strange drop in BLEU after one hour of training for all experiments with max_length
70 or lower. Even with max_length 150 or 200 the BLEU learning curve is worse than
with max_length=400, which finally gives the same result as not using any max_length

21 The Adafactor optimizer (Shazeer and Stern, 2018) is available only in T2T 1.4.2 or newer and has three
times smaller models than Adam because it does not store first and second moments for all weights. We
leave further experiments with Adafactor for future work.
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Figure 4: Effect of restricting the training data to various max_length values. All
trained on a single GPU with the BIG model and batch_size=1500. An experiment
without any max_length is not shown, but it has the same curve as max_length=400.

restriction. The training loss of max_length=25 (and 50 and 70) has high variance and
stops improving after the first hour of training but shows no sudden increase (as in
the case of diverged training discussed in Section 4.6 when the learning rate is too
high). We have no explanation for this phenomenon.22

We did another set of experiments with varying max_length, but this time with
batch_size=2000 instead of 1500. In this case, max_length 25 and 50 still results in
slower growing BLEU curves, but 70 and higher has the same curve as no max_length
restriction. So in our case, if the batch size is high enough, the max_length has almost no
effect on BLEU, but this should be checked for each new dataset.

We trained several models with various max_length for three days and observed
that they are not able to produce longer translations than what was the maximum length used
in training, even if we change the decoding parameter alpha.

Tips on max_length

• Set (a reasonably low) max_length. This allows to use a higher batch size and
prevents out-of-memory errors after several hours of training. Also, with a
higher percentage of training sentences that are almost max_length long, there
is a higher chance that the training will fail either immediately (if the batch size
is too high) or never (otherwise).,

• Set a reasonably high max_length. Consider the percentage of sentences excluded
from training and from the targeted development test set and also watch for un-
expected drops (or stagnations) of the BLEU curve in the first hours of training.

22 https://github.com/tensorflow/tensor2tensor/issues/582
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Figure 5: Effect of the batch size with the BASE model. All trained on a single GPU.

4.5. Batch Size

The default batch_size value in recent T2T versions is 4096 subwords for all mod-
els except for transformer_base_single_gpu, where the default is 2048. However, we
recommend to always set the batch size explicitly23 or at least make a note what was
the default in a given T2T version when reporting experimental results.

Figure 5 shows learning curves for five different batch sizes (1000, 1500, 3000, 4500
and 6000) for experiments with a single GPU and the BASE model.24 A higher batch
size up to 4500 is clearly better in terms of BLEU as measured by Time Till Score and
Examples Till Score metrics defined in Section 4.1. For example, to get over BLEU of 18
with batch_size=3000, we need 7 hours (260M examples), and with batch_size=1500,
we need about 3 days (2260M examples) i.e. 10 times longer (9 time more examples).
From Table 2a we know that bigger batches have slower computation speed, so when
re-plotting Figure 5 with steps instead of time on the x-axis, the difference between the
curves would be even bigger. From Table 2b we know that bigger batches have slightly
higher training throughput, so when re-plotting with number of examples processed
on the x-axis, the difference will be smaller, but still visible. The only exception is
the difference between batch size 4500 and 6000, which is very small and can be fully

23e.g. --hparams="batch_size=1500,learning_rate=0.20,learning_rate_warmup_steps=16000"
As the batch size is specified in subwords, we see no advantage in using power-of-two values.

24All the experiments in Figure 5 use max_length=70, but we have got the same curves when re-running
without any max_length restrictions, except for batch_size=6000 which failed with OOM.
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Figure 6: Effect of the batch size with the BIG model. All trained on a single GPU.

explained by the fact that batch size 6000 has 7% higher throughput than batch size
4500.

So for the BASE model, a higher batch size gives better results, although with dimin-
ishing returns. This observation goes against the common knowledge in other NMT
frameworks and deep learning in general (Keskar et al., 2017) that smaller batches pro-
ceed slower (training examples per hour) but result in better generalization (higher
test-set BLEU) in the end. In our experiments with the BASE model in T2T, bigger
batches are not only faster in training throughput (as could be expected), but also
faster in convergence speed, Time Till Score and Examples Till Score.

Interestingly, when replicating these experiments with the BIG model, we see quite
different results, as shown in Figure 6. The BIG model needs a certain minimal batch
size to start converging at all, but for higher batch sizes there is almost no difference
in the BLEU curves (but still, bigger batch never makes the BLEU worse in our ex-
periments). In our case, the sharp difference is between batch size 1450, which trains
well, and 1400, which drops off after two hours of training, recovering only slowly.

According to Smith and Le (2017) and Smith et al. (2017), the gradient noise scale,
i.e. scale of random fluctuations in the SGD (or Adam etc.) dynamics, is proportional
to learning rate divided by the batch size (cf. Section 4.8). Thus when lowering the
batch size, we increase the noise scale and the training may diverge. This may be either
permanent, as in the case of batch size 1000 in Figure 6, or temporary, as in the case
of batch size 1300 and 1400, where the BLEU continues to grow after the temporary
drop, but much more slowly than the non-diverged curves.

We are not sure what causes the difference between the BASE and BIG models with
regards to the sensitivity to batch size. One hypothesis is that the BIG model is more
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Figure 7: Effect of the learning rate on a single GPU. All trained on CzEng 1.0 with
the default batch size (1500) and warmup steps (16k).

difficult to initialize and thus more sensitive to divergence in the early training phase.
Also while for BASE, increasing the batch size was highly helpful until 4500, for BIG
this limit may be below 1450, i.e. below the minimal batch size needed for preventing
diverged training.

Tip on Batch Size

• Batch size should be set as high as possible while keeping a reserve for not hitting
the out-of-memory errors. It is advisable to establish the largest possible batch
size before starting the main and long training.

4.6. Learning Rate and Warmup Steps on a Single GPU

The default learning rate in T2T translation models is 0.20. Figure 7 shows that
varying the value within range 0.05–0.25 makes almost no difference. Setting the
learning rate too low (0.01) results in notably slower convergence. Setting the learning
rate too high (0.30, not shown in the figure) results in diverged training, which means
in this case that the learning curve starts growing as usual, but at one moment drops
down almost to zero and stays there forever.

A common solution to prevent diverged training is to decrease the learning_ra-
te parameter or increase learning_rate_warmup_steps or introduce gradient clipping.
The learning_rate_warmup_stepsparameter configures a linear_warmup_rsqrt_decay
schedule25 and it is set to 16 000 by default (for the BIG model), meaning that within

25 The schedule was called noam in T2T versions older than 1.4.4.
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Figure 8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0 with
the default batch size (1500) and learning rate (0.20).

the first 16k steps the learning rate grows linearly and then follows an inverse square
root decay (t−0.5, cf. Section 4.8.3). At 16k steps, the actual learning rate is thus the
highest.

If a divergence is to happen, it usually happens within the first few hours of train-
ing, when the actual learning rate becomes the highest. Once we increased the warmup
steps from 16k to 32k, we were able to train with the learning rate of 0.30 and even
0.50 without any divergence. The learning curves looked similarly to the baseline one
(with default values of 16k warmup steps and learning rate 0.20). When trying learn-
ing rate 1.0, we had to increase warmup steps to 60k (with 40k the training diverged
after one hour) – this resulted in a slower convergence at first (about 3 BLEU lower
than the baseline after 8 hours of training), but after 3–4 days of training having the
same curve as the baseline.

Figure 8 shows the effect of different warmup steps with a fixed learning rate (the
default 0.20). Setting warmup steps too low (12k) results in diverged training. Setting
them too high (48k, green curve) results in a slightly slower convergence at first, but
matching the baseline after a few hours of training.

We can conclude that for a single GPU and the BIG model, there is a relatively
large range of learning rate and warmup steps values that achieve the optimal results.
The default values learning_rate=0.20 and learning_rate_warmup_steps=16000 are
within this range.

Tips on Learning Rate and Warmup Steps

• In case of diverged training, try gradient clipping and/or more warmup steps.
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• If that does not help (or if the warmup steps are too high relative to the expected
total training steps), try decreasing the learning rate.

• Note that when you decrease warmup steps (and keep learning rate), you also
increase the maximum actual learning rate because of the way how the lin-
ear_warmup_rsqrt_decay (aka noam) schedule is implemented.26

4.7. Number of GPUs

T2T allows to train with multiple GPUs on the same machine simply using the
parameter --worker_gpus.27 As explained in Section 2.3, the parameter batch_size is
interpreted per GPU, so with 8 GPUs, the effective batch size is 8 times bigger.

A single-GPU experiment with batch size 4000, should give exactly the same re-
sults as two GPUs and batch size 2000 and as four GPUs and batch size 1000 because
the effective batch size is 4000 in all three cases. We have confirmed this empirically.
By the “same results” we mean BLEU (or train loss) versus training steps on the x-axis.
When considering time, the four-GPU experiment will be the fastest one, as explained
in Section 4.1.

Figure 9 shows BLEU curves for different numbers of GPUs and the BIG model
with batch size, learning rate and warmup steps fixed on their default values (1500,
0.20 and 16k, respectively). As could be expected, training with more GPUs converges
faster. What is interesting is the Time Till Score. Table 6 lists the approximate training
time and number of training examples (in millions of subwords) needed to “surpass”
(i.e. achieve and never again fall below) BLEU of 25.6.

# GPUs hours subwords (M)
1 > 600 > 9000
2 203 2322·2 = 4644
6 56 451·6 = 2706
8 40 341·8 = 2728

Table 6: Time and training data consumed to reach BLEU of 25.6, i.e. Time Till Score
and Examples Till Score. Note that the experiment on 1 GPU was ended after 25 days
of training without clearly surpassing the threshold (already outside of Figure 9).

26This holds at least in T2T versions 1.2.9–1.5.2, but as it is somewhat unexpected/unintuitive for some
users, it may be fixed in future, see https://github.com/tensorflow/tensor2tensor/issues/517.

27and making sure environment variable CUDA_VISIBLE_DEVICES is set so enough cards are visible. T2T
allows also distributed training (on multiple machines), but we have not experimented with it. Both single-
machine multi-gpu and distributed training use synchronous Adam updates by default.
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Figure 9: Effect of the number of GPUs. BLEU=25.6 is marked with a black line.

We can see that two GPUs are more than three times faster than a single GPU when
measuring the Time Till Score and need much less training examples (i.e. they have
lower Examples Till Score). Similarly, eight GPUs are more than five times faster than two
GPUs and 1.7 times less training data is needed.

Recall that in Figure 6 we have shown that increasing the batch size from 1450 to
2000 has almost no effect on the BLEU curve. However, when increasing the effective
batch size by using more GPUs, the improvement is higher than could be expected
from the higher throughput.28 We find this quite surprising, especially considering
the fact that we have not tuned the learning rate and warmup steps (see the next
section).

Tips on the Number of GPUs

• For the fastest BLEU convergence use as many GPUs as available (in our experi-
ments up to 8).

• This holds even when there are more experiments to be done. For example, it is better
to run one 8-GPUs experiment after another, rather than running two 4-GPUs
experiments in parallel or eight single-GPU experiments in parallel.

28 It would be interesting to try simulating multi-GPU training on a single GPU, simply by doing the
update once after N batches (and summing the gradients). This is similar to the ghost batches of Hoffer et al.
(2017), but using ghost batch size higher than the actual batch size. We leave this for future work.
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4.8. Learning Rate and Warmup Steps on Multiple GPUs

4.8.1. Related Work

There is a growing number of papers on scaling deep learning to multiple ma-
chines with synchronous SGD (or its variants) by increasing the effective batch size.
We will focus mostly on the question how to adapt the learning rate schedule, when
scaling from one GPU (or any device, in general) to k GPUs.

Krizhevsky (2014) says “Theory suggests that when multiplying the batch size by k,
one should multiply the learning rate by

√
k to keep the variance in the gradient expectation

constant”, without actually explaining which theory suggests so. However, in the ex-
perimental part he reports that what worked the best, was a linear scaling heuristics,
i.e. multiplying the learning rate by k, again without any explanation nor details on
the difference between

√
k scaling and k scaling.

The linear scaling heuristics become popular, leading to good scaling results in
practice (Goyal et al., 2017; Smith et al., 2017) and also theoretical explanations (Bot-
tou et al., 2016; Smith and Le, 2017; Jastrzebski et al., 2017). Smith and Le (2017) in-
terpret SGD (and its variants) as a stochastic differential equation and show that the
gradient noise scale g = ϵ

(
N
B
− 1

)
, where ϵ is the learning rate, N is the training set

size, and B is the effective batch size. This noise “drives SGD away from sharp minima,
and therefore there is an optimal batch size which maximizes the test set accuracy”. In other
words for keeping the optimal level of gradient noise (which leads to “flat minima”
that generalize well), we need to scale the learning rate linearly when increasing the
effective batch size.

However, Hoffer et al. (2017) suggest to use
√
k scaling instead of the linear scaling

and provide both theoretical and empirical support for this claim. They show that
cov(∆w,∆w) ∝ ϵ2

NB
, thus if we want to keep the the covariance matrix of the parame-

ters update step ∆w in the same range for any effective batch size B, we need to scale
the learning rate proportionally to the square root of B. They found that

√
k scaling

works better than linear scaling on CIFAR10.29 You et al. (2017) confirm linear scal-
ing does not perform well on ImageNet and suggest to use Layer-wise Adaptive Rate
Scaling.

We can see that large-batch training is still an open research question. Most of
the papers cited above have experimental support only from the image recognition
tasks (usually ImageNet) and convolutional networks (e.g. ResNet), so it is not clear
whether their suggestions can be applied also on sequence-to-sequence tasks (NMT)
with self-attentional networks (Transformer). There are several other differences as
well: Modern convolutional networks are usually trained with batch normalization

29 To close the gap between small-batch training and large-batch training, Hoffer et al. (2017) introduce (in
addition to

√
k scaling) so-called ghost batch normalization and adapted training regime, which means decaying

the learning rate after a given number of steps instead of epochs.
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(Ioffe and Szegedy, 2015), which seems to be important for the scaling, while Trans-
former uses layer normalization (Lei Ba et al., 2016).30 Also, Transformer uses Adam
together with an inverse-square-root learning-rate decay, while most ImageNet pa-
pers use SGD with momentum and piecewise-constant learning-rate decay.

4.8.2. Our Experiments

We decided to find out empirically the optimal learning rate for training on 8 GPUs.
Increasing the learning rate from 0.20 to 0.30 resulted in diverged training (BLEU
dropped to almost 0 after two hours of training). Similarly to our single-GPU exper-
iments (Section 4.6), we were able prevent the divergence by increasing the warmup
steps or by introducing gradient clipping (e.g. with clip_grad_norm=1.0, we were
able to use learning rate 0.40, but increasing it further to 0.60 led to divergence any-
way). However, none of these experiments led to any improvements over the default learning
rate – all had about the same BLEU curve after few hours of training.

Jastrzebski et al. (2017) shows that “the invariance under simultaneous rescaling of
learning rate and batch size breaks down if the learning rate gets too large or the batch size
gets too small”. A similar observation was reported e.g. by Bottou et al. (2016). Thus
our initial hypothesis was that 0.20 (or 0.25) is the maximal learning rate suitable for
stable training in our experiments even when we scale from a single GPU to 8 GPUs.
Considering this initial hypothesis, we were surprised that we were able to achieve so
good Time Till Score with 8 GPUs (more than 8 times smaller relative to a single GPU,
as reported in Table 6). To answer this riddle we need to understand how learning
rate schedules are implemented in T2T.

4.8.3. Parametrization of Learning Rate Schedules in T2T

In most works on learning rate schedules31 the “time” parameter is actually inter-
preted as the number of epochs or training examples. For example a popular setup
for piecewise-constant decay in ImageNet training (e.g. Goyal et al., 2017) is to divide
the learning rate by a factor of 10 at the 30-th, 60-th, and 80-th epoch.

However, in T2T, it is the global_step variable that is used as the “time” parameter.
So when increasing the effective batch size 8 times, e.g. by using 8 GPUs instead of a
single GPU, the actual learning rate32 achieves a given value after the same number of

30 Applying batch normalization on RNN is difficult. Transformer does not use RNN, but still we were
not successful in switching to batch normalization (and possibly ghost batch normalization) due to NaN
loss errors.

31 Examples of learning rate schedules are inverse-square-root decay, inverse-time decay, exponential
decay, piecewise-constant decay, see https://www.tensorflow.org/api_guides/python/train#Decaying_
the_learning_rate for TF implementations.

32 By actual learning rate we mean the learning rate after applying the decay schedule. The learning_rate
parameter stays the same in this case.
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steps, but this means after 8 times less training examples. For the inverse-square-root
decay, we have actual_lr(steps) = c · steps−0.5 = 1√

8
· actual_lr(steps · 8), where c is a

constant containing also the learning_rate parameter. So with 8 GPUs, if we divide
the learning_rate parameter by

√
8, we achieve the same actual learning rate after a

given number of training examples as in the original single-GPU setting.
This explains the riddle from the previous section. By keeping the learning_rate

parameter the same when scaling to k times bigger effective batch, we actually increase the
actual learning rate

√
k times, in accordance with the suggestion of Hoffer et al. (2017).33

This holds only for the linear_warmup_rsqrt_decay (aka noam) schedule and ignoring
the warmup steps.

If we want to keep the same learning rate also in the warmup phase, we would
need to divide the warmup steps by k. However, this means that the maximum actual
learning rate will be

√
k times higher, relative to the single-GPU maximal actual learn-

ing rate and this leads to divergence in our experiments. In deed, many researchers
(e.g. Goyal et al., 2017) suggest to use a warmup when scaling to more GPUs in order
to prevent divergence. Transformer uses learning rate warmup by default even for
single-GPU training (cf. Section 4.6), but it makes sense to use more warmup training
examples in multi-GPU setting.

In our experiments with 8 GPUs and the default learning rate 0.20, using 8k warmup
steps instead of the default 16k had no effect on the BLEU curve (it was a bit higher in
the first few hours, but the same afterwards). Further decreasing the warmup steps
resulted in a retarded BLEU curve (for 6k) or a complete divergence (for 2k).

Tips on Learning Rate and Warmup Steps on Multiple GPUs

• Keep the learning_rate parameter at its optimal value found in single-GPU ex-
periments.

• You can try decreasing the warmup steps, but less than linearly and you should
not expect to improve the final BLEU this way.

4.9. Resumed Training

T2T allows to resume training from a checkpoint, simply by pointing the output_dir
parameter to a directory with an existing checkpoint (specified in the checkpoint file).
This may be useful when the training fails (e.g. because of hardware error), when we
need to continue training on a different machine or during hyper-parameter search,
when we want to continue with the most promising setups. T2T saves also Adam

33 In addition to suggesting the
√
k learning-rate scaling, Hoffer et al. (2017) show that to fully close the

“generalization gap”, we need to train longer because the absolute number of steps (updates) matters. So
from this point of view, using steps instead of epochs as the time parameter for learning rate schedules may
not be a completely wrong idea.
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Figure 10: Effect of checkpoint averaging. All trained on 6 GPUs.

momentum into the checkpoint, so the training continues almost as if it had not been
stopped. However, it does not store the position in the training data – it starts from a
random position. Also the relative time (and wall-clock time) in TensorBoard graphs
will be influenced by the stopping.

Resumed training can also be exploited for changing some hyper-parameters, which
cannot be meta-parametrized by the number of steps. For example, Smith et al. (2017)
suggest to increase the effective batch size (and number of GPUs) during training, in-
stead of decaying the learning rate.

Yet another usage is to do domain adaptation by switching from (large) general-
domain training data to (small) target-domain training data for the few last epochs. In
this case, consider editing also the learning rate or learning rate schedule (or faking
the global_step stored in the checkpoint) to make sure the learning rate is not too
small.

4.10. Checkpoint Averaging

Vaswani et al. (2017) suggest to average the last 20 checkpoints saved in 10-minute
intervals (using utils/avg_checkpoints.py). According to our experiments slightly
better results are achieved with averaging checkpoints saved in 1-hour intervals. This
has also the advantage that less time is spent with checkpoint saving, so the training
is faster.

Figure 10 shows the effect of averaging is twofold: the averaged curve has lower
variance (flickering) from checkpoint to checkpoint and it is almost always better than
the baseline without averaging (usually by about 0.2 BLEU). In some setups, we have
seen improvements due to averaging over 1 BLEU. In the early phases of training,
while the (baseline) learning curve grows fast, it is better to use fewer checkpoints for
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Manual Automatic Scores
# Ave % Ave z BLEU TER CharacTER BEER System
– – – 23.8 0.662 0.582 0.543 T2T 8 GPUs 8 days
1 62.0 0.308 22.8 0.667 0.588 0.540 uedin-nmt
2 59.7 0.240 20.1 0.703 0.612 0.519 online-B
3 55.9 0.111 20.2 0.696 0.607 0.524 limsi-factored

55.2 0.102 20.0 0.699 - - LIUM-FNMT
55.2 0.090 20.2 0.701 0.605 0.522 LIUM-NMT
54.1 0.050 20.5 0.696 0.624 0.523 CU-Chimera
53.3 0.029 16.6 0.743 0.637 0.503 online-A

8 41.9 -0.327 16.2 0.757 0.697 0.485 PJATK

Table 7: WMT17 systems for English-to-Czech and our best T2T training run. Manual
scores are from the official WMT17 ranking. Automatic metrics were provided by
http://matrix.statmt.org/. For *TER metrics, lower is better. Best results in bold,
second-best in italics.

averaging. In later phases (as shown in Figure 10, after 4.5–7.5 days of training), it
seems that 16 checkpoints (covering last 16 hours) give slightly better results on aver-
age than 8 checkpoints, but we have not done any proper evaluation for significance
(using paired bootstrap testing for each hour and then summarizing the results).

The fact that resumed training starts from a random position in the training data
(cf. Section 4.9) can be actually exploited for “forking” a training to get two (or more)
copies of the model, which are trained for the same number of steps, but indepen-
dently in the later stages and thus ending with different weights saved in the final
checkpoint. These semi-independent models can be averaged in the same way as
checkpoints from the same run, as described above. Our preliminary results show
this helps a bit (on top of checkpoint averaging).

Tips on Checkpoint Averaging

• Use it. Averaging 8 checkpoints takes about 5 minutes, so it is a “BLEU boost
for free” (compared with the time needed for the whole training).

• See the tools for automatic checkpoint averaging and evaluation described in
Section 2.4.

5. Comparison with WMT17 Systems

Table 7 provides the results of WMT17 English-to-Czech news translation task,
with our best Transformer model (BIG trained on 8 GPUs for 8 days, averaging 8
checkpoints) evaluated using the exact same implementation of automatic metrics.
While the automatic evaluation is not fully reliable (see e.g. the high BLEU score for
CU-Chimera despite its lower manual rank), we see that the Transformer model out-
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performs the best system in BLEU, TER, CharacTER and BEER, despite it does not
use any back-translated data, reranking with other models (e.g. right-to-left rerank-
ing) nor ensembling (as is the case of uedin-nmt and other systems). Note that our
Transformer uses a subset of the constrained training data for WMT17, so the results
are comparable.

6. Conclusion

We presented a broad range of basic experiments with the Transformer model
(Vaswani et al., 2017) for English-to-Czech neural machine translation. While we limit
our exploration to the more or less basic parameter settings, we believe this report can
be useful for other researchers. In sum, experiments done for this article took about
4 years of GPU time.

Among other practical observations, we’ve seen that for the Transformer model,
larger batch sizes lead not only to faster training but more importantly better trans-
lation quality. Given at least a day and a 11GB GPU for training, the larger setup
(BIG) should be always preferred. The Transformer model and its implementation in
Tensor2Tensor is also best fit for “intense training”: using as many GPUs as possible
and running experiments one after another should be preferred over running several
single-GPU experiments concurrently.

The best performing model we obtained on 8 GPUs trained for 8 days has outper-
formed the WMT17 winner in a number of automatic metrics.
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Abstract
The aim of the contribution is to introduce a database of linguistic forms and their func-

tions built with the use of the multi-layer annotated corpora of Czech, the Prague Dependency
Treebanks. The purpose of the Prague Database of Forms and Functions (ForFun) is to help the
linguists to study the form-function relation, which we assume to be one of the principal tasks
of both theoretical linguistics and natural language processing. We demonstrate possibilities
of the exploitation of the ForFun database.

This article is largely based on a paper presented at the 16th International Workshop on
Treebanks and Linguistic Theories in Prague (Bejček et al., 2017).

1. Introduction

The study of the relation between (linguistic) forms and their functions or mean-
ings (terms known from Saussure’s structural linguistics (Saussure, 1916) as the rela-
tion between “signifié” and “signifiant”) is one of the fundamental tasks of linguis-
tics, with important implications for natural language understanding. As Katz (1966,
p. 100) says, to understand the ability of natural languages to serve as an instrument
to the communication of thoughts and ideas we must understand what it is that per-
mits those who speak them consistently to connect the right sounds with the right
meanings. This, however, is obviously not an easy task as the relation between form
and function is a many-to-many relation. At present, the availability of richly anno-
tated corpora helps the linguist to analyze the given relation in its variety, and it is a
challenging task to provide linguists with useful tools for their study.

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: mikulova@ufal.mff.cuni.cz
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Figure 1. Many-to-many relation between forms and functions demonstrated on
prepositional case po+Locative.

One of the most useful types of corpora for this task are treebanks based on a
stratificational (multi-layer) approach, where the form-function relation may be un-
derstood as a relation between units of two layers of the system. The aim of this
paper is to introduce a database of language forms and their linguistic functions built
with the use of the multi-layer annotated corpora of Czech, the Prague Dependency
Treebanks (PDTs), with the purpose to help the linguists to study the form-function
relation. We offer a new database ForFun which gives a possibility to search in a user-
friendly way all forms (almost 1 500 items) used in PDTs for particular functions and
vice versa to look up all functions (66 items) expressed by the particular forms.

The research question we follow by constructing the database can be illustrated
e.g. by the example of the Czech preposition po + Locative case of a noun (translated
to English as along, on, about, at, … + noun) in Figure 1. The dark colour indicates the
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forms, the light colour the functions, identified in the PDTs by the functors attached to
the nodes representing the given item (see below Section 2).1 The prepositional case
po + Locative (see the inner circle) may express the following eight functions (see the
middle circle): TWHEN (when), THL (how long), ORIG (origin), MEANS, MANN (manner), EXT
(extent), DIR2 (direction which way), DPHR (idiomatic meaning). Each of these func-
tions, in turn, may be expressed by a number of forms (see the outer circle) one of
which is po + Locative. Thus for example, the function labelled THL (how long) may
be expressed by an adverb, or Accusative of a noun (prepositionless case), or prepo-
sitional cases za + Genitive, za + Accusative, po + Accusative, and, of course, by the al-
ready mentioned po + Locative. In Figure 1, only a few functions of po + Locative are
displayed; for a full list of 32 functions see their list in Table 3.

2. Multi-layer Architecture of Prague Dependency Treebanks

PDTs (on which our ForFun database is based) are complex linguistically moti-
vated treebanks based on the dependency syntactic theory of the Functional Gen-
erative Description (see Sgall et al. 1986). The original annotation scheme has the
following multi-layer architecture:2

• morphological layer: all tokens of the sentence get a lemma and a (disam-
biguated) morphological tag,

• surface syntax layer (analytical): a dependency tree capturing surface syntac-
tic relations such as subject, object, adverbial; a (structural) tag reflecting these
relations is attached to the nodes as one component of their (complex) labels,

• deep syntax layer (tectogrammatical) capturing the semantico-syntactic rela-
tions: on this layer, the dependency structure of a sentence is a tree consisting
of nodes only for autonomous meaningful units (function words such as prepo-
sitions, subordinating conjunctions, auxiliary verbs etc. are not represented as
separate nodes in the structure, their contribution to the meaning of the sentence
is captured within the complex labels of the autonomous units). The types of
dependency relations are captured by means of the so-called functors.

Functors (66 in total) are classified according to different criteria. The basic subdi-
vision is based on the the valency criterion, which divides functors into the argument
functors and adjunct functors. There are five arguments: Actor/Bearer (ACT), Patient
(PAT), Addressee (ADDR), Origin (ORIG) and Effect (EFF). The repertory of adjuncts is

1Throughout the paper, we use the term functor for the label of the type of the dependency relation
between the governor and its dependent; in the dependency tree structure representing the sentence on the
deep (underlying, tectogrammatical; see Section 2) layer this label is a part of the complex label attached
to the dependent node. The term prepositional case is used for a combination of a preposition and a noun
or a nominal group in a morphological case. In the figures and tables, morphological cases are indicated
by numbers, i.e. 2 for Genitive, 3 for Dative, 4 for Accusative, 6 for Locative, 7 for Instrumental. When the
noun or nominal group is not accompanied by a preposition, we use the term prepositionless case.

2The PDTs annotation scenario is described in detail in Mikulová et al. (2006) and Hajič et al. (2017).
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much larger than that of arguments. Their set might be divided into several sub-
classes, such as temporal (TWHEN for “when?”, TSIN for “since when?”, TTILL for “till
when?”, TPAR for “during what time?”, THL for “how long?”, THO for “how often?”,
TFHL for “for how long?”, TFRWH for “from when?”, and TOWH for “to when?”), local
(LOC for “where?”, DIR1 for “where from?”, DIR2 for “which way?”, DIR3 for “where
to?”), causal (CAUS for “cause”, AIM for “aim”, INTT for “intention”, COND for “condi-
tion”, CNCS for “concession”), functors for manner (MANN for general “manner”, MEANS
for “means or instrument”), and other functors for other adjuncts (such as ACMP for
“accompaniment”, EXT for “extent”, INTF for “intensifier”, BEN for “benefactor”, etc.).
For a full list of all dependency relations and their labels see Mikulová et al. (2006).

The nodes on a lower layer are explicitly referenced from the corresponding closest
(immediately higher) layer. These links allow for tracing every unit of annotation all
the way down to the original raw text. For the ForFun database, we use the annota-
tions of the nodes on the deep syntactic layer and their counterparts on the morpho-
logical layer, which has made it possible to retrieve the relations between functions
(expressed on the deep layer by functors) and forms and vice versa.

3. List of available Prague Dependency Treebanks

For Czech, the following four treebanks are available, each of them contains data
of a different source. The Prague Dependency Treebank version 3.5 (PDT 3.5),3 the
newest edition of the core Prague Dependency Treebank, consists of articles from
Czech daily newspapers. A slightly modified scenario was used for the annotation
of the Prague Czech-English Dependency Treebank 2.0 (PCEDT 2.0),4 the Prague De-
pendency Treebank of Spoken Czech 2.0 (PDTSC 2.0),5 and the PDT-Faust corpus. In
contrast to the original PDT project, in these treebanks, the morphological and sur-
face syntactic annotations were done automatically, and the manually annotated deep
syntactic layer does not contain some special annotations. However, the annotation of
functors, which is important for our research of the form-function relation, has been
done manually in all treebanks.

In the parallel PCEDT 2.0 (Hajič et al., 2012), the English part consists of the Wall
Street Journal sections of the Penn Treebank (Marcus et al., 1993), and the Czech part,
which is used in the ForFun database, was manually translated from the English orig-
inal. PDTSC 2.0 (Mikulová et al., 2017b) contains dialogs from the Malach project6

(slightly moderated testimonies of Holocaust survivors) and from the Companions

3https://ufal.mff.cuni.cz/pdt3.5

4https://ufal.mff.cuni.cz/pcedt2.0/

5https://ufal.mff.cuni.cz/pdtsc2.0

6https://ufal.mff.cuni.cz/cvhm/vha-info.html

74

https://ufal.mff.cuni.cz/pdt3.5
https://ufal.mff.cuni.cz/pcedt2.0/
https://ufal.mff.cuni.cz/pdtsc2.0
https://ufal.mff.cuni.cz/cvhm/vha-info.html


Mikulová et al. Search for the Relation of Form and Function Using ForFun (71–84)

project7 (two participants chat over a collection of photographs). PDT-Faust is a small
treebank containing short segments (very often with vulgar content) typed in by var-
ious users on the reverso.net webpage for translation.

It is obvious (see Table 1) that the Prague Dependency Treebank family provides
rich language data for our purpose, i.e. for the study of the relation of forms and
their functions since every content word there is assigned one of those 66 functors.
Altogether, the treebanks contain around 180 000 sentences with their morphological,
syntactic and semantic annotation.

PDT 3.0 PCEDT 2.0 PDTSC 2.0 Faust Total
Tokens 833 195 1 162 072 742 257 33 772 2 771 296
Sentences 49 431 49 208 73 835 3 000 175 474

Table 1. Volume of data in Prague Depencency Treebanks

4. Prague Database of Forms and Functions

ForFun 1.0, the Prague Database of Forms and Functions (Mikulová and Bejček,
2018), is a rich database of syntactic functions and their formal realizations with a
large amount of examples coming from both written and spoken Czech texts. Since
the database is extracted from the PDTs (see Section 3), it takes over the list of syntactic
functions as well as the terminology (they are called functors).

ForFun is provided as a digital open source accessible to all scholars via the LIN-
DAT/CLARIN repository.8

4.1. Design

We have already mentioned that in general the relation between forms and func-
tions is a many-to-many relation. As such, it has to be explored from both sides: a
given form has several functions and any of these functions may again be realized
by several forms (the given one among them). When such relations have to be ex-
plored, ForFun is a perfect choice, since it is designed exactly for this kind of traversing
through data.

Although the annotated example sentences are the same, they can be retrieved by
asking either for their forms or for their functions. The ForFun database provides two
entry points (cf. Figures 2 and 3):

7http://cordis.europa.eu/project/rcn/96289_en.html

8http://hdl.handle.net/11234/1-2542
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Figure 2. A screenshot of the ForFun web interface: From Form to Function.

• The user can choose one of almost 1 500 formal realizations of sentence units (i.e.
prepositionless and prepositional cases, subordinated and coordinate conjunc-
tions, adverbs, infinitive and finite verb forms, etc.) and obtains all functions it
can represent.

• The user can choose one of 66 syntactic functions (i.e. LOC, TTILL, CAUS etc.) and
obtains all forms used to express it.

The view can be always switched from a list of forms to a list of functions of one of
them and vice versa.

For each form-function relation there are plenty of examples in the form of a sen-
tence with the highlighted expression representing the relation. All these examples
are sorted by various criteria:
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Figure 3. A screenshot of the ForFun web interface: From Function to Form.

• the word class of the parent node,
• the particular forms for the function or particular functions for the form, and
• the source of data (written, spoken, translated texts and texts from internet).
The number of examples available in the database is displayed for each pair form

+ functor, or functor + word class, each combination functor + form + word class and
each specified 4-combination (form + functor + word class + source). Either first ten
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examples or all of them are displayed on demand. On top of that, examples can be
also first filtered by their source, which allows the user to hide e.g. all forms used only
in spoken language or use only sentences from written corpora.

An illustration of how the result of user’s search for the functions of the prepo-
sitional case do + Genitive looks like is given in Figure 2. In the upper part of the
screenshot of the ForFun web interface, there are 9 415 occurrences in all PDTs of the
form do + Genitive representing the functor DIR3. The occurrences of do + Genitive are
divided according to their heads (be it a v(erb) or a n(oun), see the first column); their
distribution within particular treebank is given in the second column followed by
real examples from the corresponding treebank. A few of them are displayed on de-
mand whereas many (see the last column) stay hidden. In the lower part of Figure 2,
the same form do + Genitive in the function TTILL is exemplified in the same style.
Note that Figure 2 presents only a part of the full response obtained from the For-
Fun database for the given query. The other functions of do + Genitive (PAT, EXT, EFF
and others) are also not included in this shortened sample. (The list of all functions
expressed by do + Genitive is in Table 3.)

For the opposite direction “from function to form” see the screenshot in Figure 3,
where (among others) the same sentences for do + Genitive as the functor DIR3 can
be found searching for all representations of the functor DIR3. Other forms include a
finite verb (#vfin) or an adverb (#adv).

4.2. Volume

The ForFun database contains 2.2 million examples altogether for all forms (and
the same number from the function point of view), split approx. 3:1 between written
and spoken text (see Table 2). Each example is one sentence long.9 They can be exam-
ined from the function side (66 functors) or the form side (1 469 forms). All examples
are split into 13.5 thousand of 4-combinations (form + functor + word class + source),
each with 163 examples in average.

While the average number is high, median is only two examples. The reason is
that there is a long tail of 4-combinations used very rarely. These occurences with
very low frequencies in the data are one of the main benefits of the large volume of
database, but they have to be used carefully. Every result has to be always understood
solely as an input for a subsequent research, as ForFun may contain errors (caused by
annotators as well as speakers/writers) considering its volume.

9One sentence typically contains many different functions and serves for many examples (once for each
of its parts).
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examples from written text 1 608 061
examples from spoken text 593 400
examples altogether 2 201 461
number of functions 66
number of forms 1 469
number of 4-combinations 13 514
avg. examples for a function 33 355
avg. examples for a form 1 500
avg. examples for a 4-combination 163
max. number of examples for a function 490 121
max. number of examples for a form 370 586
max. number of examples for a 4-combination 97 469

Table 2. Volume of the ForFun database

5. Possibilities of the Exploitation of the ForFun Database

To display the richness of the material we work with, we present several examples
connected with the studies of the form-function relation what the user can find out in
the ForFun database.

5.1. Multi-functionality of Forms

A rather straightforward use of the ForFun database is to retrieve which functions
can be expressed by the particular form and which forms can express the particu-
lar function. Table 3 contains seven prepositional cases with the highest number
of functions they express: na + Accusative, v + Locative, k + Dative, za + Accusative,
do + Genitive, and po + Locative (cf. Figure 1).

5.2. Functions with the Most Limited List of Forms

Table 4, by contrast with Table 3, displays those functions that are expressed by the
smallest number of forms (not only prepositional cases, but also other possible forms).
We can observe that the HER (heritage), CONTRD contradiction, and TFRWH (from-when)
functions are expressed exclusively by a single form. E.g. functor HER (heritage) is
expressed exclusively by the form po + Locative, but HER belongs to many functions
(32 in total) which are expressed by po + Locative (cf. their list in Table 3).
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prep. number list of functors
na+4 42 ACT ADDR AIM APP ATT BEN CAUS COMPL COND CPHR CPR CRIT

DIFF DIR1 DIR3 DPHR EFF EXT ID INTF INTT LOC MANN MAT
MEANS MOD ORIG PAT PREC REG RESL RESTR RHEM RSTR SUBS
TFHL TFRWH THL TOWH TPAR TTILL TWHEN

v+6 36 ACMP ACT AIM APP ATT BEN CAUS COMPL COND CPR CRIT DE-
NOM DIR2 DIR3 DPHR EFF EXT ID LOC MANN MAT MEANS MOD
PAT PREC REG RESL RESTR RHEM RSTR SUBS TFHL THL THO
TPAR TWHEN

k+3 34 ACMP ACT ADDR AIM APP ATT BEN CAUS COMPL CPHR CRIT
DIR1 DIR2 DIR3 DPHR EFF EXT ID INTT LOC MANN PAR PAT
PREC REG RESL RESTR RHEM RSTR TOWH TPAR TSIN TTILL
TWHEN

za+4 33 ACMP ACT AIM APP BEN CAUS CNCS COMPL COND CPHR DIR1
DIR3 DPHR EFF EXT HER ID INTT LOC MANN MEANS ORIG PAT
PREC REG RSTR SUBS TFHL TFRWH THL THO TPAR TWHEN

na+6 33 ACT ADDR AIM APP ATT BEN CAUS COND CPR CRIT DIR2 DIR3
DPHR EFF EXT ID INTT LOC MANN MEANS ORIG PAR PAT PREC
REG RESL RESTR RSTR TFHL THO TOWH TPAR TWHEN

do+2 33 ADDR AIM APP ATT BEN COMPL COND CPHR DIR1 DIR3 DPHR
EFF EXT INTT LOC MANN MEANS MOD OPER PAR PARTL PAT REG
RESL RSTR TFHL THL THO TOWH TPAR TSIN TTILL TWHEN

po+6 32 ACT AIM APP CAUS COND CPR CRIT DIR2 DIR3 DPHR EXT HER
ID INTT LOC MANN MAT MEANS ORIG PAR PAT REG RSTR SUBS
TFHL THL THO TOWH TPAR TSIN TTILL TWHEN

Table 3. The prepositional cases with the highest number of functions.

5.3. Absolute Frequency of Forms and Functions (in both written and spoken texts)

An observation of frequency has an important place in the description of language
because it quantifies linguistic choices made by speakers and writers. For each form
and function, ForFun provides information about raw frequency in all PDTs as well
as in each corpus separately. The users can search quickly and in a user-friendly way
which formal means are the most frequent in Czech sentences and which ones are
rarely used. See Table 5 for five most frequent prepositional cases in comparison with
the class of adverbs and the clause with the conjunction že ’that’.

The users of ForFun can also find out the distribution of a particular function (var-
ious arguments or adjuncts) in the sentences. For both forms and functions, they can
compare their absolute frequencies in written and spoken texts. In Table 6, the sub-
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functor meaning list of forms example
HER heritage po+6 Podědila tu nemoc po rodičích. ‘She in-

herited the disease from parents.’
CONTRD contradiction zatímco+verb On byl jedináček, zatímco ona měla

dvanáct dětí. ‘He was an only child,
while she had twelve children.’

TFRWH from when z+2 Ze kterého roku je tato fotka? ‘From
which year is this photo?’

TOWH to when na+4; pro+4 Derby je vypsáno na 3. září. ‘Derby is
listed on September 3.’

TSIN since when od+2; z+2; adverb V energetice pracuje od roku 1964. ‘He
has worked in energetics since 1964.’

THO how often adverb; Acc; Instr Pořádáte přechod každý rok? ’Do you
organize march every year?’

TTILL till when do+2;
dokud+verb;
adverb; než+verb

Smlouva nebyla dodnes podepsána. ‘No
contract has been signed yet.’

Table 4. Functions with the most limited list of forms.

classification of the most frequent functors for adjuncts is presented in comparison
of their presence in written and spoken texts. We see that spatial and temporal func-
tors (see their list in Section 2) are by far the most frequently occurring adjunct types.
Hypothetically, in a Czech text of 100 sentences, there would be 61 sentences contain-
ing an adjunct (or several different adjuncts) and out of these sentences there would
be: 29 sentences with spatial functor(s), 26 with temporal functor(s), 12 with manner
functor(s), 10 with causal functor(s) and 22 with other functor(s).

5.4. Material for Detailed Linguistic Studies

In addition to valuable statistical data, the ForFun database provides an extremely
rich material for detailed linguistic studies of individual language phenomena and
for their description and classification, e.g., valency behavior, coordination/discourse
relations, idioms and complex predicates, comparison of written and spoken texts,
etc. The first linguistic studies based on the database analyze and subclassify the
functors denoting space and time (Mikulová et al., 2017a, 2018). The studies perform
a detailed description of subtle meanings of temporal and spatial adjuncts including
a list of formal means with real examples coming from both written and spoken texts
and as such demonstrate that ForFun can be used for fundamental linguistic research.
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form occurences
v+6 51 682
na+4 22 444
s+7 19 747
z+2 19 502
na+6 17 870
adverb 93 824
že[that]+verb 26 831

Table 5. The most frequent prepositional cases.

sentences containing: all texts % written texts spoken texts
spatial functors 74 164 29 43 089 31 075
temporal functors 66 503 26 42 266 24 237
functors for manner 31 583 12 21 752 9 831
causal functors 26 569 10 18 022 8 547
other functors for adjuncts 50 425 20 35 967 14 458
no functor for adjuncts 99 564 39 60 060 39 504

Table 6. The frequency distribution of the selected group of functors

6. Conclusion

The ForFun database has been built as a rich and user-friendly resource for those
researchers who (want to) use corpora in their everyday work and look for various
occurrences of specific forms or patterns in relation to their syntactic functions etc.
but they are not interested or just do not need to deal with various technical, formal
and annotation issues. ForFun brings a rich and complex annotation in PDTs based on
a sound linguistic theory closer to common researchers. It will be further developed,
though it should be borne in mind that it is designed to provide only a limited number
of most useful features, rather than a full interface to everything PDTs can offer. There
are other complex tools for that10 and ForFun does not aim to substitute them. In its
simplicity and clarity, it is a user-friendly source of examples for various explorations
especially in syntax.

10E.g. PML Tree Query https://lindat.mff.cuni.cz/services/pmltq/, INESS Search http://clarino.
uib.no/iness, etc.
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Abstract
Managing large collections of documents is an important problem for many areas of sci-

ence, industry, and culture. Probabilistic topic modeling offers a promising solution. Topic
modeling is an unsupervised machine learning method and the evaluation of this model is an
interesting problem on its own. Topic interpretability measures have been developed in recent
years as a more natural option for topic quality evaluation, emulating human perception of
coherence with word sets correlation scores. In this paper, we show experimental evidence
of the improvement of topic coherence score by restricting the training corpus to that of rel-
evant information in the document obtained by Entity Recognition. We experiment with job
advertisement data and find that with this approach topic models improve interpretability in
about 40 percentage points on average. Our analysis reveals as well that using the extracted text
chunks, some redundant topics are joined while others are split into more skill-specific topics.
Fine-grained topics observed in models using the whole text are preserved.

1. Introduction

Probabilistic topic models, such as Latent Dirichlet Allocation (Blei et al., 2003)
and its many variants (Newman et al., 2006; Blei and Lafferty, 2005, 2006; Teh et al.,
2006; Blei et al., 2007), were introduced in an unsupervised setting to discover latent
semantic structures in a collection of documents, namely the topics. However, there is
no guarantee that the inferred topics – typically modeled as a set of important words
– are easily interpretable by humans.

Traditionally, held-out likelihood had been used to perform topic model evalua-
tion. Chang et al. (2009) conducted a study that showed that perplexity actually corre-
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lates negatively with human interpretability of such topics. In other words, choosing
the model with the lowest perplexity on unseen data may generate topics that are
hardly interpretable. This motivates the search of different evaluation methods for
topic modeling, referred in the literature as topic coherence measures (Newman et al.,
2010; Musat et al., 2011; Mimno et al., 2011; Stevens et al., 2012; Aletras and Stevenson,
2013; Lau et al., 2014).

In this work, we hypothesize that topic interpretability – as measured by topic
coherence – can be improved by training a topic model over text chunks of relevant
information instead of the whole text per document, for job advertisement posts pub-
lished in job-hunting websites. We analyze two scenarios of how categories of skills
required for a specific job vacancy span across professional majors. The first scenario
is a noisy scenario in which the topics are inferred using all the information available
in job ads which includes e.g. company description, payment, working schedule. In
the second scenario, the topics are inferred only over specific information about the
job itself, such as expected skills, tasks to perform, and professional major of pref-
erence, extracted by named entity recognition. We find that this last setup scenario
successfully increases coherence scores of inferred topics, obtains much cleaner topics
and is able to infer meaningful clusters of majors related by the skills applicants are
required to know.

This article is structured as follows. We first present related work on the field.
Then, in section 3 we present all the theoretical background necessary to formulate the
problem tackled. In section 4, the experimental setup of every module is thoroughly
explained, and the dataset used in presented as well. Section 5 presents the results
and discussion of our findings. Finally, section 6 presents the conclusions.

2. Related Work

In recent years, several topic coherence measures have been proposed (Newman
et al., 2010; Musat et al., 2011; Mimno et al., 2011; Stevens et al., 2012; Aletras and
Stevenson, 2013; Lau et al., 2014) in order to automate the method of Chang et al.
(2009) and emulate human interpretability. Newman et al. (2010) introduced the no-
tion of coherence and was the first to propose an automatic measure based on pairwise
pointwise mutual information (PMI) between the topic words. Subsequent empirical
works on topic coherence proposed measures based on word statistics that differ in
several details, such as normalization (Lau et al., 2014), aggregation methods (Mimno
et al., 2011), and reference corpus (Musat et al., 2011; Aletras and Stevenson, 2013).
Röder et al. (2015) proposed a framework for the exploration of all possible coherence
measures, modeled as a pipeline where the blocks (e.g. aggregation method, confir-
mation measure) can be exchanged and create new measures. They combined two
complementary lines of research on coherence: scientific coherence and topic model-
ing.
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As the acceptance of topic coherence measures increases as a mean of topic model
assessment (Paul and Girju, 2010; Reisinger et al., 2010; Hall et al., 2012), recent re-
search trends focus on proposing fast and efficient models that can be scaled up to
big amounts of data (Yang et al., 2015; Nguyen et al., 2015), using the whole text per
document for training.

Prior to directly evaluating human interpretability, several approaches were pro-
posed to improve topic quality. Airoldi et al. (2010) analyzed the effect of varying
the source text and inference strategies for PNAS biological sciences publications, ob-
taining a slightly higher number of new categories that better explain nowadays in-
tertwined research fields. The usage of name entities as extra information in a topic
model is explored by Newman et al. (2006). They propose a customized probabilistic
graphical model that directly learns the entity-topic relationship and making better
predictions about entities.

3. Problem Formulation

We define the problem of improving topic coherence as follows. Given a collection
of highly noisy documents, we extract only relevant information from each document
in the form of custom entities. The extraction task is modeled as a sequence labeling
problem, and we tackle it by using the averaged structured perceptron (see Section
3.1).

As test case, we consider the domain of job advertisements. A job ad contains valu-
able information about what skills applicants are expected to have, but they contain
spurious information as well. In order to avoid inferring topics over noise, we extract
requirements, functions and preferred major from a job ad using a custom named
entity recognition and extraction pipeline.

We now present notation and definitions core to the modules our model is based.
We start by formally defining the entity extractor module, followed by the topic mod-
eling. Then, the coherence metric is presented.

3.1. Averaged Structured Perceptron

The structured perceptron and its averaged version was initially introduced by
Collins (2002). They differ from the well-known perceptron algorithm in that the out-
put for each training instance pair (xt, yt) ∈ T is a structure y ′ ∈ Yt, where Yt is the
space of permissible structured outputs for input x. The inference algorithm to predict
y ′ is problem dependent. In our case, sequence labeling, a first order Viterbi decoder
is used. In each step, the candidate y ′ is transformed to a high-dimensional feature
representation f(x, y) ∈ Rm and the prediction is determined by a linear classifier
based on the dot product of this representation and a weight vector w ∈ Rm.
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In practice, this algorithm can be implemented easily and behaves remarkably well
in several problems. These two characteristics make the structured perceptron algo-
rithm a natural first choice for prototyping structured models.

3.2. Latent Dirichlet Allocation

In this section, we briefly describe the graphical model called Latent Dirichlet Al-
location (LDA) (Blei et al., 2003), originally proposed for doing topic modeling. LDA
is a generative probabilistic model in which the data is in the form of a collection of
documents, and each document in the form of a collection of words. The model as-
sumes that each document is a mixture of latent topics, and each topic is modeled
as a mixture of words. These random mixture distributions are considered Dirichlet-
distributed to be inferred from the data. The generative process of LDA can be de-
scribed as follow:

1. For all D documents sample θd ∼ Dir(α).
2. For all K topics sample ϕk ∼ Dir(β).
3. For each of the Nd words υi in document d:

• Sample a topic zi ∼ Multinomial(θd)
• Sample a word υi ∼ Multinomial(ϕzi

)
• Observe the word

We assume symmetric Dirichlet priors for θd andϕk, as suggested by Griffiths and
Steyvers (2004).

Regarding inference strategies for the models, we make use of Gibbs Sampling as
described in Griffiths and Steyvers (2004) and the Variational Expectation - Maximiza-
tion (VEM) algorithm as described in Blei et al. (2003).

3.3. Topic Coherence

We use the coherence metric proposed by Mimno et al. (2011), based in condi-
tional log likelihood of co-occurrence of top topic word pairs. We refer to it as UMass
coherence from now on. It is defined as follows:

CUMass =
2

N · (N− 1)

N∑
i=2

i−1∑
j=1

log P(wi, wj) + ϵ

P(wj)
,

where N is the number of top words in a topic to consider.

4. Experimental Setup
4.1. Job Ads Corpus

The job ads corpus (Cardenas Acosta et al., 2016) was built by extracting job ads
from several popular job search websites in Peru, and it is divided in two parts, one
for entity extraction tasks and the other for topic inference.
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The first part consists of 4̃00,000 word tokens spanning 800 posts manually labeled
with entity tags following the CoNLL-2000 BIO tagging format (Ramshaw and Mar-
cus, 1995). This amount of data proved to give good results for named entity extrac-
tion in Spanish, as reported by Carreras et al. (2002). The custom entities defined for
our task are FUN (tasks to be performed at the job), REQ (skills required) and CARR
(preferred professional major of the applicant). Table 1 show an example of annota-
tion along with its translation into English, whereas Table 2 shows the proportion of
entities in the annotated corpus as well as the average length in words.

Spa Egresado/O en/O Ingeniería/B-CARR de/I-CARR Software/I-CARR
con/O conocimientos/O de/O base/B-REQ de/I-REQ datos/I-REQ MySQL/I-REQ .

Eng Graduate in Software Engineering with knowledge of MySQL databases

Table 1: Example of tagging of custom entities

Entity Number of chunks Avg. number of words per chunk

FUN 3291 11.09
REQ 4833 1.84

CARR 2097 1.64

Table 2: Defined entities and presence in corpus

The second part consists of only job ads requesting engineering professions pub-
lished between January and March 2015. We compose each document instance as the
concatenation of the title and description fields of each job ad. We consider 23 engi-
neering categories and leave out categories with less than 50 posts. Since the same job
ad can be published in more than one website, we consider it as repeated if the same
description of the position is found within the last fifteen days in the database. The
final topic inference corpus consists of 9,472 job ads, with an average of 91.3 ± 40.8

tokens per document and a total of 476,990 tokens.
The dataset is publicly available in the Lindat repository.1

1http://hdl.handle.net/11234/1-2673
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4.2. Data Preparation

Job ads often contain very sparse information like emails, dates, office hours and
salary. We treated this type of tokens as noise and replaced them with appropriate
tags (e.g. URL) using regular expressions. Low-frequency words were filtered as well,
following Bikel et al. (1999) approach of using generic labels based on orthographic
features (e.g. Capitalized, hasDigit, AllCaps).

4.3. Skills and Tasks Extraction

We train one tagger for each entity, each one with the following features. Note
that each feature is conditioned to the current label being predicted, unless otherwise
specified (e.g. transition features).

• Trigger word features for the current word (Carreras et al., 2002), only for REQ
and CARR entities.

• Lowercase form and position of all words in a window of ±n words (Carreras
et al., 2002). For the CARR entity, n = 2 and for the others n = 3.

• Stemmed form and position of previous, current and next word.
• Part-of-list feature (list :: yi), if current word is part of a list.
• Orthographic features, including long-word and single-digit (Carreras et al.,

2002), for previous, current and next word.
• Suffix and prefix features, last and first 3 characters respectively, for previous,

current and next word.
• Word brown-cluster mapping features (Miller et al., 2004) for previous, current

and next word.
• Token bigram and trigram emission features (Liang and Collins, 2005) for lower-

case and stemmed form of all words, as well as orthographic class, in a window
of ±2 words.

• Relative position of sentence in document, if the current sentence belongs to the
document border (first one or last two sentences). Only used for FUN entity.

• Bigram transition features for word cluster mapping (Liang and Collins, 2005),
used only for REQ entity.

• Bigram transition features (Liang and Collins, 2005) for lowercase and stemmed
form, as well as orthographic class, of each word in the bigram.

• Bigram transition features of last states (labels) predicted.
Preliminary experiments showed that POS information does not contribute sig-

nificantly to the taggers’ performance. Additionally, usage of a Conditional Random
Field model (Lafferty et al., 2001) showed no significant improvements with respect to
the Averaged Perceptron. We also considered using pre-trained word embeddings as
input, but the limited amount of data available would not allow us to obtain reliable
estimates. On the other hand, pre-training the embeddings on a large monolingual
benchmark and then training over our data would not allow the model to learn ter-
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minology not only specific to the domain but to the Spanish dialect spoken in the
country in which the ads where published.

The annotated dataset is divided in 70, 15 and 15 percent for training, validation
and testing, respectively. The evaluation metrics are the standard precision P (frac-
tion of output chunks that exactly match the reference chunks), recall R (fraction of
reference chunks returned by the tagger), and their harmonic mean, the F1 score,
F1 = 2 × P × R/(P + R). The accuracy rate for individual labeling decisions is over-
optimistic as an accuracy measure for NER, given that O labels are more frequent.
Even so, we report BIO accuracy for reference.

4.4. Topic Modeling

We employ the analysis approach suggested by Airoldi et al. (2010), aimed to ex-
plore the effect of varying the data source over model dimensionality and using dif-
ferent hyperparameters inference strategies and algorithms (Variational Inferences vs
Gibbs sampling).

We explore models both estimating and fixing the latent categories proportion per
document hyperparameter (α), and compare each for the case in which all the text
from the ad is used for training versus using only entities extracted by the taggers.
Hence, we compare six LDA models in a layout denoted as {VEM with estimated
alpha, VEM with fixed alpha, Gibbs with estimated alpha}× {Whole text, Text chunks
}.

For the case in which α is estimated during training, we set its initial value to
α = 5/K and fix β = 0.1, as suggested by Griffiths and Steyvers (2004). Then, K is
grid-search tuned to minimize perplexity of the model. For the case in which α is
fixed, it is grid-search tuned after an optimum K is found. This strategy follows the
conclusion that the VEM inference algorithm estimates too low α hyperparameters,
as reported by Asuncion et al. (2009). Low α hyperparameters cause the model to
assign few topics per document, only one in the worse case.

Dimensionality Selection Each time we fit a mixed-membership model to data, we
must specify the number of latent categories, K, in the model. The goal of model selec-
tion is to findK∗, the number of latent categories that is optimal in some sense. We use
10-fold cross-validation following the approach described in Airoldi et al. (2010), and
widely used in other machine learning applications. First, we split the N job ads into
10 batches. Then, we estimate the model parameters using the ads in nine batches,
and we calculate the posterior perplexity of the ads in the tenth held-out batch. This
approach leads to summarize how good a model fits for a given K ∈ [5, 200], on a
batch of ads not included in the estimation. We fit each model a total of 60 times (10
times in cross-validation for each of 6 models) for each value of K. Fold splitting dur-
ing cross-validation was seeded to assure consistency of multiple runs of a model and
to assure comparability among different models that use the same data.
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For our experiments, we use the LDA R library topicmodels by Grün and Hornik
(2011), which wraps Blei et al. (2003) C code for VEM inference and Phan et al. (2008)
C++ code for Gibbs sampling.

4.5. Topic Coherence

In our coherence experiments, we use the framework proposed by Röder et al.
(2015), available online,2 in which many more scores are available and a reference
corpus for probability counts can be specified. Although Mimno et al. (2011) do not
use any external reference corpus, Röder et al. (2015) showed that using Wikipedia as
an additional reference corpus improved correlation with gold human ratings for this
metric. Following this setup, we use as external reference corpus the concatenation of
the entire Job Ads dataset (more than 500,000 documents) and the Wikipedia dump
in Spanish. Following the literature (Chang et al., 2009; Mimno et al., 2011; Aletras
and Stevenson, 2013; Lau et al., 2014), we employ the top 10 words by topic.

5. Results and Discussion

5.1. Skills and Tasks Extraction

Table 3 shows results for the tagger. It can be observed that CARR tagger shows
the best performance. This can be explained by the fact that majors are mostly men-
tioned in determined word patterns in job ads. For the FUN tagger, taking advantage
of the fact that functions are not mentioned in the beginning nor the end of the ad
improves the precision significantly in comparison to early experiments. In addition,
FUN entities mostly appear at the beginning of the sentences.

Entity # Feat. P R F1 ACC.

FUN 503701 61.1 62.3 61.7 93.4
REQ 605864 77.6 55.9 65.0 97.1

CARR 215143 87.2 86.9 87.0 99.5

Table 3: Feature set sizes and taggers’ performance

5.2. Topic Models Tuning

Following the procedure described in sections 4, we show in Figure 1 the behavior
of the held-out perplexity as the number of topics changes. We observe that in general

2https://github.com/AKSW/Palmetto
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Figure 1: Average held-out perplexity as a function of the number of latent categories
K for whole text models 1, 2 and 3 (left), and text chunks models 4, 5 and 6 (right).

there is no agreement among the methods of inference for the optimal number of
topics and that in some cases the perplexity does not converge.

Using the UMass topic coherence score to measure the quality of the models as the
number of topics changes, we observe in Figure 2 that for each method of inference,
the optimal number of topics is found between 5 and 18. We choose K = 10 as the
optimal value for both models, as it gives the best score for models using text chunks
(Figure 2, right) regardless of the inference strategy followed. For models using the
whole text (left), this value is fairly close to the optimum (15).

5.3. Topic Coherence Improvement

For the optimal number of topics chosen in Section 5.2, 10, the bar plot in Figure 3
shows the improvement of the UMass topic coherence when restricting the text to the
chunks extracted by the entity extractors. Also, it can be observed that this happens
independently of the method of inference, and that there is at least an improvement
of 40% in each case, with VEM estimated alpha having the better coherence score when
text chunks are used.

5.4. Qualitative and quantitative analysis of inferred categories

Topics are explored by examining the top 10 words (Tables 4, 5 and 6). In addi-
tion, the topic proportion for each professional major is investigated. For each major,
the mean of posterior membership scores of all documents where this major was re-
quired is taken, as proposed by Erosheva et al. (2004). Figure 5 shows this calculation
for VEM inference method with fixed alpha. Figure 4 presents matrices for the six
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Figure 2: Average UMass coherence score (higher is better) as a function of the number
of topics K for whole text models 1, 2 and 3 (left), and text chunks models 4, 5 and 6
(right).
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Figure 3: Comparison of the UMass coherence score for each method of inference.
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mixed-membership models, which represent the similarity of the probability distribu-
tions over categories between all majors. This similarity is calculated using Hellinger
distance. Each row and column of each matrix represent a professional major and its
similarity with other majors, regarding the text source and inference strategy applied.
Major names are not shown because each matrix has different major names order in
rows and columns. The purpose of Figure 4 is to unveil the effect of how professional
majors are grouped. A similar behavior can be observed in Figure 5 by observing for
each topic the majors that have the most vivid colors.

Furthermore, it can be observed in both graphics Figure 5 and 4 that for the case
of the text chunks model, getting rid of irrelevant words (ignored by the entity extrac-
tors) has the effect of smoothing the probability distribution over topics. For instance,
for the whole text model, the job ads for environmental engineering basically just talk
about one topic. On the other hand, for the text chunks model, the major now talks
about more than one topic with similar proportions.

A closer look at Figure 5 allows to spot three main behaviors under the effect of
restricting the source text (whole text versus text chunks).

• Joining of redundant categories
Consider the major of Electronic Engineering. In Figure 5 for the whole text
model, topics 4 and 7 are the predominant ones. See Table 4 for the content of
the topics. On the other hand, for the text chunks model, it can be seen that only
topic 5 is predominant. Table 4 confirms that topic 5 of the text chunks model
contains words (with high probability) from both of the topics of the whole text
model.

• Splitting in two or more detailed categories
Consider the majors of Environmental Engineering and Industrial Hygiene and
Safety. In Figure 5 for the whole text model, topic 2 is predominant for both
majors. Exploration of this topic reveals that its content is related to industrial,
environmental safety and management, as can be appreciated in Table 5. On the
other hand, for the text chunks model, it can be observed that categories 2 and
10 are predominant and with almost the same proportion. A closer exploration
reveals that topic 2 is related to environmental safety and management but no
longer contains the word industrial, which appears in topic 10, i.e. the top two
words from topic 2 (whole text model) was split.

• Persistence of latent structure
There are cases where the number of predominant topics does not change. Con-
sider the majors of Systems and Informatics Engineering. For the whole text
model, it can be observed that topic 4 is predominant. Likewise, for the text
chunks model, topic 9 present the same behaviour. Table 6 shows that the con-
tent of these topics is maintained in both models.
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(a) VEM inference with estimated alpha, for whole text (left) and text chunks (right) models.

(b) VEM inference with fixed alpha, for whole text (left) and text chunks (right) models.

(c) Gibbs inference, for whole text (left) and text chunks (right) models.

Figure 4: Similarity matrices using Hellinger distance between discrete distributions
(topic proportion over majors), for each of the six topic models mentioned in section
4.4. A whiter cell means a shorter distance, i.e. more similar categories.
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Figure 5: Scaled estimated average membership of engineering majors to 10 categories
inferred by VEM with fixed alpha for (a) whole text setup and (b) text chunks setup.
The whiter the highest the membership; black denotes zero membership. Original
Spanish names for majors are showed with the English gloss in parenthesis.
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Whole text Text chunks
Topic 4 Topic 7 Topic 5
sistemas (systems) técnico (technician) mantenimiento (mainte-

nance)
técnico (technician) mantenimiento (mainte-

nance)
mecánica (mechanical)

informática (informatics) mecánica (mechanical) electrónica (electronics)
desarrollo (development) eléctrica (electrical) eléctrica (electrical)
computación (computa-
tion)

electricidad (electricity) electricidad (electricity)

sql (SQL) industrial (industrial) técnico (technician)
programador (program-
mer)

preventivo (preventive) instalación (installation)

analista (analyst) electrónica (electronics) reparar (repair)
programación (program-
ming)

sistemas (systems) preventivo (preventive)

servidor (server) instalación (installation) sistemas (systems)

Table 4: Topics behavior for VEM fixed α strategy: joining of redundant categories.
Each entry consists of the Spanish token and its English gloss in parenthesis.

Whole text Text chunks
Topic 2 Topic 2 Topic 10
seguridad (safety) seguridad (safety) industrial (industrial)
industrial (industrial) risk supervisor (supervisor)
management environmental administración (manage-

ment)
ocupacional (occupational) management marketing
ambiente (environment) ocupacional (occupational) especialización (specializa-

tion)
supervisor (supervisor) normas (norms) venta (selling)
normas (norms) documentos (documents) economía (economy)
capacitación (capacitation) seguimiento (tracing) proactivo (proactive)
risk industrial (industrial) responsable (responsible)
iso (ISO) soporte (support) dinámico (dynamic)

Table 5: Topics behavior for VEM fixed α strategy: splitting in two or more detailed
categories. Each entry consists of the Spanish token and its English gloss in parenthe-
sis when applicable.
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Whole text Text chunks
Topic 4 Topic 9

sistemas (systems) sistemas (systems)
técnico (technician) informática (informatics)

informática (informatics) analista (analyst)
desarrollo (development) programador (programmer)

computación (computation) sql (SQL)
sql (SQL) desarrollo (development)

programador (programmer) computación (computation)
analista (analyst) programación (programming)

programación (programming) servidor (server)
servidor (server) administrador (administrator)

Table 6: Topics behavior for VEM fixed α strategy: persistence of latent structure.
Each entry consists of the Spanish token and its English gloss in parenthesis.

6. Conclusions
Throughout the analysis of multiple variants of topic models, consistent results

confirm our hypothesis that coherence of inferred categories significantly improves
when using only relevant text extracted by named entity extraction rather that the
whole document. In our case study, the relevant text constitutes expected skills, tasks
to perform, and academic background in job ads.

Compared to categories inferred using whole-text models, entities models gener-
ate categories that join redundant ones and split to high skill-specific categories. In
addition, fine-grained categories are preserved with entity models.
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