PBML

The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 5-14

Open-Source Neural Machine Translation API Server

Sander Tars, Kaspar Papli, Dmytro Chasovskyi, Mark Fishel

Institute of Computer Science, University of Tartu, Estonia

Abstract

We introduce an open-source implementation of a machine translation API server. The
aim of this software package is to enable anyone to run their own multi-engine translation
server with neural machine translation engines, supporting an open API for client applications.
Besides the hub with the implementation of the client API and the translation service providers
running in the background we also describe an open-source demo web application that uses our
software package and implements an online translation tool that supports collecting translation
quality comparisons from users.

1. Introduction

The machine translation community boasts numerous open-source implementa-
tions of neural (e.g. Junczys-Dowmunt et al., 2016; Sennrich et al., 2017; Helcl and Li-
bovicky, 2017; Vaswani et al., 2017), statistical (e.g. Koehn et al., 2007) and rule-based
(e.g. Forcada et al., 2011) translation systems. Some of these (e.g. Koehn et al., 2007;
Junczys-Dowmunt et al., 2016) even include functionality of server-mode translation,
keeping the trained model(s) in memory and responding to the client application’s
translation requests. However, in most cases the frameworks are tuned for machine
translation researchers, and basic production functionality like pre-processing and
post-processing pipelines before/after the translation are missing in the translation
server implementations.

We present an open-source implementation of a machine translation production
server implemented in a modular framework. It supports multiple translation clients
running the translation for different language pairs and text domains. The framework
consists of:

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: fishel@ut.ee
Cite as: Sander Tars, Kaspar Papli, Dmytro Chasovskyi, Mark Fishel. Open-Source Neural Machine Translation API
Server. The Prague Bulletin of Mathematical Linguistics No. 109, 2017, pp. 5-14.

doi: 10.1515/pralin-2017-0034.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

Client #1: Client #2:
online NMT cross-lingual
demo web search
Sauron

Nazgul #1: Nazgul #2: Nazgul #3:
de-en, gen. dom. de-en, subtitles en-fr, gen. dom.
(fast) (slow) (slow)

Figure 1. The overall architecture is very simple. Sauron is the server hub, satisfying
requests from client applications by querying the translation providers, the Nazgul.

® Sauron: a translation server hub, receiving client requests to translate a text us-

ing one of pre-configured translation engines, the Nazgul,

¢ Nazgul: a translation provider and engine wrapper with custom pre-processing

and post-processing steps before/after the translation,

¢ and a demo web page that uses these two to serve translations to web users, and

includes unbiased feedback collection from the users.

The overall architecture is extremely simple and is shown on Figure 1. The hub
(Sauron) can serve several clients and is connected to several instances of Nazgul, the
translation providers. Each Nazgul is configured to deliver translations for a specific
language pair and possibly text domain.

The structure of this paper is the following. Sauron, the translation server hub, is
presented in Section 2. Nazgul, the translation engine wrapper is covered in Section 3.
The demo web application is described in Section 4. Finally we refer to related work
in Section 5 and conclude the paper in Section 6.

2. Sauron, the Translation Server Hub

The central hub tying together all of the components of our framework is Sauron.
It works as a reverse proxy, receiving translation requests from client applications and

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5-14)

retrieving the translations from one of the Nazgul (which are described in Section 3).
The code is freely available on GitHub.!
The main features of this central component include
* support for multiple language pairs and text domains
¢ asynchronous processing of simultaneous translation requests, to enable effi-
cient processing in stressful environments with several requests per second or
more
* support for authentication to limit the service only to registered clients if desired
¢ letting the client application choose between single sentence or whole text trans-
lation speed priority

2.1. Client Interface

Access to a running Sauron server is implemented as a simple REST APIL Once
deployed it runs at a specified URL/IP address and port and supports both GET and
POST HTTP communication methods. The API is described and can be tested online
on SwaggerHub.? The input parameters are:

auth the authentication token, set in configuration

langpair a identifier of the source-target language pair, set in configuration

src the source text

domain text domain identifier; it can be omitted, leading to the usage of a
general-domain translation engine, set in configuration

fast True indicates the fast, sentence speed-oriented translation method;
default is false, document speed-oriented translation

tok true by default, indicates whether to tokenize the input text

tc true by default, indicates whether to apply true-casing to the input
text

alignweights false by default, indicates whether to also compute and return the
attention weights of the NMT decoder

Although the fast parameter is open to interpretation, the idea is to run “fast”
translation servers on GPUs, enabling one to focus on the speed of translating a single
sentence, while the “slot” servers can be run on CPUs, enabling one to translate a
whole document as a batch in multiple threads.

Each combination of language pair, domain and fast/slow has to be covered by
a corresponding Nazgul instance, there is no automatic backoff from slow to fast or
from in-domain to general domain translation.

Thttps://github.com/TartuNLP/sauron

2https://app.swagagerhub.com/apis/kspar/sauron/vl.0

https://github.com/TartuNLP/sauron
https://app.swaggerhub.com/apis/kspar/sauron/v1.0

PBML 109 OCTOBER 2017

2.2. Configuration

The only configuration required for Sauron is a list of Nazgul translation provider
servers. These are described in an XML file located at $R00T/src/main/resources
/providers.xml. Each provider is described with the following parameters:

name The name, used for system identification in logs

languagePair A string identifier representing the source-target translation
language pair; there is no enforced format but the same string
must be used as the value for the API request parameter lang-
pair

translationDomain A string identifier representing the translation domain; this is
similarly mapped to the API request parameter domain

fast The GPU/CPU preference, a boolean indicating whether the
server is using a GPU for translation (whether it is fast); this is
mapped to the API request parameter fast

ipAddress The IP address of the translation server

port The listening port of the translation server

2.3. Deployment

Sauron runs on Java Spring Boot.2 The preferred method of deployment is to use
Gradle? to build a war file:

./gradlew war

and deploy it into a Java web container such as Tomcat. You can also run the server
without a web container:

./gradlew bootRun
3. Nazgul, the Translation Servant

Nazgul implements a translation server provider for Sauron. Its design is a mod-
ular architecture: every step of the translation service process like pre-processing,

translating, post-processing, can be easily modified and substituted. The modular-
ity and open-source format is important for usable machine translation to reduce the

Shttps://projects.spring.io/spring-boot/

4https://aradle.ora/

https://projects.spring.io/spring-boot/
https://gradle.org/

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5-14)

time required to create various application specific services. The code for Nazgul is
freely available on GitHub.?

Nazgul uses AmuNMT /Marian (Junczys-Dowmunt et al., 2016) as the translation
engine (though the modularity of the architecture allows one to replace it easily). The
main motivation behind it is because it offers fast neural translation. Moreover, we
use a particular modification of this software (available on GitHub®), which supports
extracting the attention weights after decoding.

3.1. Dependencies

Nazgul is written in Python 2.7 for the reasons of broader compatibility. The im-
plementation requires the following dependencies to be satisfied:
¢ Downloaded and compiled clone of Marian(AmuNMT) with attention weight
output
e The NLTK Python library (Bird et al., 2009). More precisely, the modules punkt,
perluniprops and nonbreaking prefixes are needed. NLTK is used for sentence
splitting, tokenization and detokenization?
The instructions on how to satisfy these dependencies can be found on the Nazgul
GitHub page.?

3.2. Deployment

With the dependency requirements satisfied, the server can be run from the com-
mand-line simply as a Python file. Example command:

python nazgul.py -c config.yml -e truecase.mdl -s 12345

The command-line options for running are:

-C configuration file to be used for AmuNMT run
-e name of the truecasing model file
-s the port on which the server will listen (default: 12345)

Shttps://github.com/TartuNLP/nazqul
https://qgithub.com/barvins/amunmt

7To be precise, NLTK uses Moses (Koehn et al., 2007) to tokenize and detokenize by having a Python
module nltk.tokenize.moses wrap the Moses tokenizing scripts.

8https://aithub.com/TartuNLP/nazqul

https://github.com/TartuNLP/nazgul
https://github.com/barvins/amunmt
https://github.com/TartuNLP/nazgul

PBML 109 OCTOBER 2017

The true-caser expects the true-casing models to be trained using the Moses true-
caser script.? The true-casing model file is expected to be in the same directory with
the Nazgul.

The configuration file that is required for AmuNMT translation, is also expected to
be in the same directory with the Nazgul. The configuration file specifies the transla-
tion model file, vocabularies, whether to use byte pair encoding (BPE, Sennrich et al.,
2015), whether to display attention info and many more options. One possible con-
figuration file that we use, is presented on the Nazgul GitHub page with explana-
tions. Additional information can be found on both the original AmuNMT and cloned
GitHub pages.

Currently the BPE is only available in Nazgul through AmuNMT configuration
file. The reason is that in our experiments having BPE through AmuNMT resulted in
faster translation. We are also adding support for separate BPE. To train and apply
BPE we used the open-source implementation by Sennrich et al. (2015).1

3.3. Workflow

This section describes what happens when Nazgul is started and used to translate.
The process is implemented in the file nazgul. py.

First, it initialises the key components: AmuNMT, tokenizer, detokenizer, true-
caser and finally binds a socket to the specified port to listen for translation requests.
Nazgul is capable of serving multiple clients simultaneously.

Secondly, when a client connects to Nazgul, the connection is verified and then
translation requests are accepted. The necessary protocols are implemented in Sauron,
so it is the most convenient option for connecting with Nazgul. For each client con-
nection Nazgul creates a separate thread. The translation request format is a dict
in JSON, which includes the fields src, tok and tc that are passed unchanged from
Sauron as well as a boolean parameter alignweights, which specifies whether this
Nazgul should include attention info in the response.

Once the translation request JSON is received, the source string is subjected to
pre-processing. Pre-processing starts with sentence splitting, which is always done
for the sake of multi-sentence inputs. After that each received sentence is tokenized
and truecased, if specified in the JSON input.

After pre-processing, the sentences are sent to the instance of AmuNMT to be
translated. From its translation output Nazgul separates the raw translation, atten-
tion info, and raw input. It is recommended to disable AmuNMT de-BPE function
in the configuration file, otherwise the raw translation will actually be the de-BPEd
translation while raw input will be BPEd, thus perturbing the attention info interpre-
tation.

9http://www.statmt.org/moses/?n=Moses .SupportTools#ntocll

Onttps://github.com/rsennrich/subword- nmt

10

http://www.statmt.org/moses/?n=Moses.SupportTools#ntoc11
 https://github.com/rsennrich/subword-nmt

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5-14)

Estonian = English

Séidame sinna paadiga.

@ What are you doing in my house?

;) Let'staketheboat.

’:' We drive into the boat.

Figure 2. A screenshot from the web application’s Play functionality, which aims to let the
users compare the outputs of three translation engines and also to collect the unbiased
feedback from the users’ selection of the best translation. The Estonian input reads:
Let’s take the boat there.

When the translation output is received, the translated sentences are subjected to
post-processing, which includes detokenization (if tokenization is enabled), and de-
truecasing.

Finally, the result of the translation process is sent to the client as a utf-8 encoded
JSON dict, which includes fields raw_trans, raw_input, weights, and final_trans,
which is an array of post-processed and de-BPEd translation outputs. The order of
the outputs is the same as in the input text after sentence-splitting.

After sending the response JSON, Nazgul waits for either the next request or ter-
mination. Anything that is not JSON is interpreted as a termination signal. In Sauron
the process is resolved in such a way that after each fulfilled request the connection is
closed. The waiting for next requests is a feature for use cases where the bi-directional
communication is expected to have a continuous load for several messages, which
would make closing and re-opening the connection an unnecessary overhead.

11

PBML 109 OCTOBER 2017

For further reference on communication, refer to both Nazgul and Sauron docu-
mentation pages and simple test scripts presented in the GitHub repository.

4. Neurotolge, the Example Web Application

Finally we describe an NMT web demo implementation that uses Sauron and
Nazgul to fulfill translation requests: Neurotolge.2 The demo is live at http: //www.
neurotolge.ee (with an international mirror domain http://neuralmt.ee), and the
code of the implementation is freely available on GitHub.!2

The basic functionality of the web application is to translate the input text that
the client enters. The text can consist of several sentences, and the client can switch
between the available source and target languages (English and Estonian in the live
version). Once the client presses the “translate” button the text is translated.

4.1. Collecting User Feedback

Beside the “translate” button there is also a “play” button: once pressed, the ap-
plication uses three different translation engines to translate the source text. In the
live version these are the University of Tartu’s translator running on Sauron, Google
Translatel? and Tilde Neural Machine Translation.

Once ready all three translations are displayed in random order without telling the
user, which output belongs to which translation engine; the user is invited to select
the best translation in order to find out which is which. See an example screenshot of
this functionality on Figure 2.

The aim of this feedback collection is to get an unbiased estimation of which trans-
lation engine gets selected as best most often. Naturally some users will click on the
first or on a random translation, but since the order of the translations is random and
the identity of the translation engines is hidden, this will only add uniform noise to
the distribution of the best translation engines. This approach was inspired by Blind-
Search.12

4.2. Dependencies

The front-end of the web application is implemented in JavaScript, using AJAX for
asynchronous communications with the back-end and the Bootstrap framework® for

U Neural machine translation in Estonian
2nttps://github.com/TartuNLP/neurotolge
Bhttp://translate.qgoogle. com/
“4nhttps://translate. tilde.com/neural/
Bhttp://blindsearch. fejus.com/

6nttp: //getbootstrap. com/

12

http://www.neurotolge.ee
http://www.neurotolge.ee
http://neuralmt.ee
https://github.com/TartuNLP/neurotolge
http://translate.google.com/
https://translate.tilde.com/neural/
http://blindsearch.fejus.com/
http://getbootstrap.com/

S. Tars, K. Papli, D. Chasovskyi, M. Fishel Open-source NMT API Server (5-14)

an appealing graphic design The back-end is built using Flask.! It can be connected
to any web server, like Apache, or to be run as a standalone server.

5. Related Work

Some MT service frameworks have been introduced for SMT (Sadnchez-Cartagena
and Pérez-Ortiz, 2010; Federmann and Eisele, 2010; Tamchyna et al., 2013) and de-
signed to work with Moses (Koehn et al., 2007). The Apertium system also includes
a web demo and server framework (Forcada et al., 2011).

NeuralMonkey (Helcl and Libovicky, 2017) includes server-running mode, and
supports several language pairs and text domains (via different system IDs). How-
ever, AmuNMT that our framework uses has been shown to run faster and bringing
slightly higher translation quality.

6. Conclusions

We introduce an open-source implementation of a neural machine translation API
server. The server consists of a reverse proxy or translation hub that accepts transla-
tion requests from client applications and an implementation of a back-end translation
server with the pre-processing and post-processing pipelines. The current version
uses Marian (AmuNMT) as the translation engine, and the modular architecture of
the implementation allows it to be replaced with other NMT engines.

We also described a demo web application that uses the API implementation. In
addition to letting its users translate texts it also includes a feedback collection compo-
nent, which can be used to get an idea of the user feedback on the translation quality.

Future work includes adding a database support to the hub implementation to al-
low the developer to track the usage of the API, as well as a possibility to visualize the
alignment matrix of the NMT decoder on the demo web application to help the users
analyze translations and understand, why some translations are counter-intuitive.

Acknowledgements

The projects described here were partially supported by the National Programme
for Estonian Language Technology, project EKT88: KaMa: Kasutatav Eesti Masintolge /

Usable Estonian Machine Translation.1

Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly
Media, 2009.

7http://flask.pocoo.org/

Bhttps://www.keeletehnoloogia.ee/et/ekt-projektid/kama- kasutatav-eesti-masintolge

13

http://flask.pocoo.org/
https://www.keeletehnoloogia.ee/et/ekt-projektid/kama-kasutatav-eesti-masintolge

PBML 109 OCTOBER 2017

Federmann, Christian and Andreas Eisele. MT Server Land: An Open-Source MT Architecure.
The Prague Bulletin of Mathematical Linguistics, 94:57-66, 2010.

Forcada, Mikel L, Mireia Ginesti-Rosell, Jacob Nordfalk, Jim O'Regan, Sergio Ortiz-Rojas,
Juan Antonio Pérez-Ortiz, Felipe Sdnchez-Martinez, Gema Ramirez-Sanchez, and Francis M
Tyers. Apertium: a free/open-source platform for rule-based machine translation. Machine
translation, 25(2):127-144, 2011.

Helcl, Jindfich and Jindfich Libovicky. Neural Monkey: An Open-source Tool for Sequence
Learning. The Prague Bulletin of Mathematical Linguistics, (107):5-17, 2017.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Hieu Hoang. Is Neural Machine Translation
Ready for Deployment? A Case Study on 30 Translation Directions. CoRR, abs/1610.01108,
2016. URL http://arxiv.org/abs/1610.011608.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177-180,
Prague, Czech Republic, 2007.

Sanchez-Cartagena, Victor and Juan Pérez-Ortiz. ScaleMT: a free/open-source framework for
building scalable machine translation web services. The Prague Bulletin of Mathematical Lin-
guistics, 93:97-106, 2010.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. CoRR, abs/1508.07909, 2015. URL http://arxiv.org/abs/
1508.07909.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler,
Marcin Junczys-Dowmunt, Samuel L&ubli, Antonio Valerio Miceli Barone, Jozef Mokry, and
Maria Nadejde. Nematus: a Toolkit for Neural Machine Translation. CoRR, abs/1703.04357,
2017. URL http://arxiv.org/abs/1703.04357.

Tamchyna, Ale§, Ondfej Dusek, Rudolf Rosa, and Pavel Pecina. MTMonkey: A Scalable Infras-
tructure for a Machine Translation Web Service. The Prague Bulletin of Mathematical Linguis-
tics, 100:31-40, 2013.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. CoRR, abs/1706.03762,
2017. URL http://arxiv.org/abs/1706.03762.

Address for correspondence:

Mark Fishel

fishel@ut.ee

Institute of Computer Science, University of Tartu
Liivi 2, Tartu 50409

Estonia

14

http://arxiv.org/abs/1610.01108
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1703.04357
http://arxiv.org/abs/1706.03762

	Introduction
	Sauron, the Translation Server Hub
	Client Interface
	Configuration
	Deployment

	Nazgul, the Translation Servant
	Dependencies
	Deployment
	Workflow

	Neurotõlge, the Example Web Application
	Collecting User Feedback
	Dependencies

	Related Work
	Conclusions

