
The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 51–62

Grasp: Randomised Semiring Parsing

Wilker Aziz
Universiteit van Amsterdam

Abstract
We present a suite of algorithms for inference tasks over (finite and infinite) context-free sets.

For generality and clarity, we have chosen the framework of semiring parsing with support to the
most common semirings (e.g. F, V, k- and I). We see parsing from the more
general viewpoint of weighted deduction allowing for arbitrary weighted finite-state input and
provide implementations of both bottom-up (CKY-inspired) and top-down (E-inspired)
algorithms. We focus on approximate inference by Monte Carlo methods and provide imple-
mentations of ancestral sampling and slice sampling. In principle, sampling methods can deal
with models whose independence assumptions are weaker than what is feasible by standard
dynamic programming. We envision applications such as monolingual constituency parsing,
synchronous parsing, context-free models of reordering for machine translation, and machine
translation decoding.

1. Introduction

Many inference tasks in Natural Language Processing (NLP) involve operations
over weighted context-free sets of solutions. Typical examples are constituency pars-
ing and hierarchical Statistical Machine Translation (SMT). These weighted sets rep-
resent functions over large spaces of tree-structured solutions. We focus on cases
where these functions have a probabilistic interpretation and can be represented by
a weighted Context-Free Grammar (CFG). Common inference tasks involve finding
the solution which maximises the underlying function (optimisation), or the one which
minimises an expected loss (minimum Bayes risk, MBR), or the one that is marginally
optimum. Depending on the complexity of the underlying distribution, these decision
rules can be hard to compute. Particularly, in its most general form, the marginalisa-
tion problem is NP-complete (Sima’an, 1996). The MBR objective can also become

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: w.aziz@uva.nl
Cite as: Wilker Aziz. Grasp: Randomised Semiring Parsing. The Prague Bulletin of Mathematical Linguistics
No. 104, 2015, pp. 51–62. doi: 10.1515/pralin-2015-0013.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

unwieldy depending on the complexity of the loss function. To all such tasks, Monte
Carlo (MC) methods provide sound approximations (often with some guarantees)
based on random simulation techniques. We investigate and propose a framework
towards a general and flexible MC approach to inference with weighted CFGs.

2. Semiring parsing

A first step in generalising parsing is understanding it as the intersection between
the language of a grammar and that of a Finite-State Automaton (FSA) (Bar-Hillel
et al., 1961; Billot and Lang, 1989). This insight motivates a generalisation of parsing
to arbitrary weighted finite-state input (Nederhof and Satta, 2003; Dyer and Resnik,
2010). In this context, not only the set intersection is computed, but strings in the
resulting set are weighted by the product of their input weights. Parsing (or intersect-
ing) an automaton finds use in applications where it is natural to represent uncertainty
over finite-state input, for instance due to automatic pre-processing.

Another general view of parsing, orthogonal to the previous point, arises from the
relationship between parsing and logic deductive systems (Pereira and Warren, 1983).
Specifying a parser by means of a deductive system abstracts away from implemen-
tation details redirecting attention back to the parsing strategy itself. Shieber et al.
(1995) lay down the principles of parsing as deduction and offer an extensive discus-
sion regarding implementation. Arguably their most exciting result is to uncover the
relationship between parsers for different grammar formalisms (context-free and be-
yond) which turn out to share the same (or very closely related) set of deduction rules
under perhaps different control mechanisms.

In deductive parsing, a deduction rule is a template A1...Ak

B
C1 . . . Cj, whereA1 . . . Ak

(called antecedents), C1 . . . Cj (called side condition) and B (called consequent) are items.
A rule states that, if the side condition holds and the antecedents have already been
inferred, we can infer the consequent. Each possible way to deduce an item from the
grammar rules by instantiation of deduction rules is called an item derivation and de-
noted by D. Any given instance x of an item implicitly defines a set Dx of possible
ways to infer x. To test membership, the parser needs to prove at least one item deriva-
tion (a sequence of instantiation of deduction rules) that leads to a goal item form, or to
show that no such sequence exists. A parse forest can be thought of as the exhaustive
instantiation of all item derivations compatible with the grammar and the input.1

On top of this item-based description, parsing can be further generalised to com-
ply with an algebraic view of formal languages (Goodman, 1999). In this view, a
parser does not simply test for membership, instead, it performs abstract computa-

1The word exhaustive here does not imply inefficiency. In fact, item derivations are defined recursively
which leads to efficient representation. Suppose a1...ak

b
c1 . . . cj an instantiation of a deduction rule and

Da1
. . . Dak

sets of item derivations deducing a1 . . . ak, then ⟨b : Da1
, . . . , Dak

⟩ is itself an item deriva-
tion. This is very similar to the use of back-pointers in chart parsing (Billot and Lang, 1989).

52

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

tions under a given semiring.2 Goodman (1999) combines the representational power
of deductive systems with the generality of semirings to describe, under a uniform
and simple representation, parsers that perform a multitude of tasks from recogni-
tion (B semiring) to best-first enumeration (k- semiring).

In this work, we provide implementation of semiring parsing for CFGs and the fol-
lowing semirings: B and C for recognition and counting; I used
to compute the probability of a string; V used to compute the probability of the
best derivation; 1- and k- used to enumerate derivations in best-first order;
and F used to represent the set of all derivations in some compact manner.

We deploy semiring parsing as deductive programs which intersect an epsilon-free
weighted CFG with a weighted deterministic FSA. Because CFGs are closed under in-
tersection with automata (Hopcroft and Ullman, 1979), the result is another CFG. We
observe from the state of the deductive program’s execution a parse forest which we
represent using a hypergraph (Gallo et al., 1993).3 This is basically our implemen-
tation of the F semiring. Computing values in the other semirings follows by
direct application of the value recursion (Goodman, 1999, Equations 5 and 7) using
the corresponding semiring operators (Goodman, 1999, Figure 5). In solving the value
recursion, we consult the forest as a data structure which compactly organises items
and their derivations.

We present G, a toolkit which incorporates these ideas while facilitating re-
search on sampling methods for structured prediction problems, particularly, pars-
ing and machine translation. In the remainder of this paper we present its design as
well as S and S, two novel semirings which play a central role in delivering
sampling algorithms for complex distributions over context-free sets of solutions.

3. Randomised semiring parsing

Our goal is to sample probabilistically from a distribution proportional to f(d) de-
fined over a support DG(x), where x is an input object and DG(x) is the derivation
forest resulting of intersecting G (a CFG) and an FSA based on x. Moreover, we as-
sume f to factorise as shown in Equation 1, whereψ(d) is some non-negative function
of d which is not assumed to factorise further (we call ψ a nonlocal parameterisation),
and θ(d) is some non-negative function of d compliant with the independence as-
sumptions of G which underlie DG(x) (we call θ a local parameterisation). Equation

2A semiring is an algebraic structure with operations that generalise the arithmetic addition and mul-
tiplication. The generalisation extends beyond numerical objects and may be defined over arbitrary sets
(e.g. the tree-language of a context-free grammar).

3A hypergraph, more specifically a backward-hypergraph, is a generalisation of a graph where an edge
connects a sequence of tail nodes under a head node and carries a weight. The nodes can be thought of as
grouping item derivations, an edge can be thought of as an instantiated deduction rule. Hypergraphs are
popular data structures in parsing (Klein and Manning, 2005) and MT (Huang, 2008).

53

PBML 104 OCTOBER 2015

2 illustrates how θ(d) factorises in terms of the rules used in the derivation d, where
rs is a rule headed by s and θrs is the rule’s value.

f(d) = ψ(d)× θ(d) (1)

= ψ(d)×
∏
rs∈d

θrs (2)

The nonlocal dependencies introduced by ψ(d) make inference over f(d) a very
difficult task. In order to make inference feasible, we resort to the principle of sam-
pling by data augmentation (Tanner and Wong, 1987). In Data Agumentation (DA),
we extend the target distribution with auxiliary variables u that make sampling from
the joint f(d,u) easier than sampling from the original distribution. Simulation then
follows by Gibbs sampling, a Markov Chain Monte Carlo (MCMC) technique, whereby
we sample each component in turn holding the remaining components fixed. That is,
if we draw u ∼ f(u|d) followed by a draw d ∼ f(d|u), then the pair (u,d) is a draw
from the joint distribution, and d is a draw from the target.

The benefit of DA comes from the fact that we can choose the shape of the joint
relatively flexibly, and we do so aiming at conditionals f(u|d) and f(d|u) that are easy
to sample from. A common choice of joint for functions of the form shown in Equation
2 is illustrated in Equation 3,4 where δA(x) is the Dirac’s measure which equals 1 iff
x ∈ A. This principle underlies, and can be seen as a multivariate generalisation of,
a univariate sampling technique called slice sampling (Neal, 2003). With such a choice
of joint, we typically call the auxiliary variables slice variables. They define a “slice” of
the distribution, i.e. a subset of DG(x) for which f(d,u) > 0.

f(d,u) = ψ(d)×
∏

s:rs∈d

δ(0,θrs)
(us)×

∏
s:rs ̸∈d

ϕ(us;ααα) (3)

First, we make the harmless independence assumption that f(u|d) =
∏

us
f(us|d),

where the auxiliary random vector u is indexed by items in the derivation forest
(nodes in the hypergraph), and f factorises as a product of independent distributions
(one for each item). Then, we specify the conditional f(us|d) as shown in Equation 4,
whereϕ is a probability distribution with parametersααα. Basically, the conditional is a
uniform distribution when the item associated with us participates in the condition-
ing derivation through rule rs, and it falls back to a given less informed distribution
ϕ otherwise.

f(us|d) =

{
δ(0,θrs)(us)

θrs
if rs ∈ d

ϕ(us;ααα) otherwise
(4)

4Errata: after publication, we noticed that we had misrepresented f(d,u) in Equation 3, a mistake we
remedy in this electronic version.

54

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

Blunsom and Cohn (2010) devised a special case of this slice sampling technique
for binary Inversion Transduction Grammars (ITGs) in the context of Bayesian gram-
mar induction for translation. In their work, s represents a pair of aligned spans,
0 ≤ θrs ≤ 1 with

∑
rs
θrs = 1 for any given s are the parameters of a probabilis-

tic ITG, and there is no ψ(d) (otherwise thought of as ψ(d) = 1). Thus they choose
ϕ(us;ααα) = Beta(us;a, b), a Beta distribution with shape parameters a and b. We
generalise their work to arbitrary weighted CFGs including those parameterised by
log-linear models as common in SMT. To do so, we extend s to correspond to an
arbitrary item in the derivation forest program, and we choose ϕ in different ways.5

The final step in the design of our sampler is to derive what f(d|u) turns out to be
under the conditions above. Equations 5 to 7 are crucial, particularly, the latter implies
that every derivation for which some θrs ≤ us will have zero probability regardless
of the assignments of other slice variables. This basically means that f(d|u) can be
represented by a “truncated” derivation forest such that us < θrs for every rs. We
can interpret the slice variables as random thresholds on the values associated with
item derivations of a given item.

f(d|u) ∝ f(d)× f(u|d) (5)

= ψ(d)×
∏
rs

θrs ×
∏

us:rs∈d

δ(0,θrs)
(us)

θrs
×

∏
us:rs ̸∈d

ϕ(us;ααα) (6)

∝ ψ(d)×
∏
rs

δ(0,θrs)
(us)

ϕ(us;ααα)
(7)

Obviously, becauseψ(d) breaks context-free independence assumptions, sampling
from f(d|u) (Equation 7) might remain challenging. On the one hand, if ψ(d) makes
a low-order Markov assumption, exactly rescoring the slice might be possible, partic-
ularly, if slices are sufficiently thin. On the other hand, thin slices reduce the mobility
of the sampler increasing autocorrelation. Moreover, if slices are deterministically
too thin, we may risk trapping the sampler to a subset of the state space, which would
compromise ergodicity. A more general solution is not to assume that we can sample
from ψ(d) exactly, and rely on MCMC techniques instead. One possible technique is
to uniformly sample a subset (of some predetermined size) of the slice, and evaluate
Equation 7 only for the derivations in that subset.

Finally, we note a connection to semiring parsing. We can define a S semiring
which is to the I semiring as 1- is to V. Informally, by modifying the
1- addition operation so that it samples from the distribution associated with the
I values of item derivations (instead of maximising over their V values), we

5For example, for log-linear models ϕ(us;ααα) = Exp(us, λ), an exponential distribution with rate pa-
rameter λ. Note that the greater λ, the thicker the slice (the mean of the exponential distribution is λ−1).

55

PBML 104 OCTOBER 2015

1 # Create and source a dedicated virtual environment for Grasp
2 ~$ virtualenv -p python3 ~/envs/grasp; source ~/envs/grasp/bin/activate
3 # Clone and install kenlm (if you intend to use Grasp's decoder)
4 (grasp)~$ git clone https://github.com/kpu/kenlm.git; cd kenlm
5 (grasp)~$ python setup.py install; cd ..
6 # Install general dependencies
7 (grasp)~/grasp$ pip install numpy scipy cython
8 # Clone and install Grasp
9 (grasp)~$ git clone https://github.com/wilkeraziz/grasp.git; cd grasp

10 (grasp)~/grasp$ python setup.py install
11 # A better option for contributors is: python setup.py develop

Figure 1. Installing Grasp.

get an independent random sample. Similarly, we can define a S semiring which
is analogous to the F semiring, however, it produces a sliced forest. S condi-
tions on random assignments of an auxiliary vector based on a previous sample.6

4. G

Our toolkit is available on github https://github.com/wilkeraziz/grasp under
Apache 2.0 license. It is written in python3 and cython, it builds trivially with setuptools,
and it has very few (rather standard) dependencies. G is primarily developed for
U-based systems (e.g. Linux and OS X). Figure 1 illustrates how to install G
using a dedicated virtual environment running python3.

G comes with a CFG parser and a hierarchical SMT decoder. Figure 2 il-
lustrates how to run the parser in two different modes. The first command illus-
trates exact inference (which requires complete parse forests) and outputs the V
derivation, the 100-best derivations (--kbest 100), and 1000 independent samples
(--samples 1000). The second command illustrates slice sampling, where ϕ(us;ααα)
defaults to Beta(us; 0.1, 1). In both cases, python -m grasph.cfg.parser invokes the
parser; wsj00 is an example grammar shipped with G, and output specifies a di-
rectory where output files are stored. The last command illustrates the output direc-
tory structure: it contains the independent ancestral samples, the k-best derivations,
the Viterbi derivation, the slice samples and a configuration file which documents the
experiment (args.ini).7

6An initial derivation can be obtained by sampling from the local model alone. If the grammar is too
large, an initial sample can be obtained from a smaller grammar sharing a subset of the nonterminals of
the original one (or where a coarse-to-fine mapping exists).

7A complete list of features and options can be found at https://github.com/wilkeraziz/grasp/blob/
master/grasp/cfg/README.md.

56

https://github.com/wilkeraziz/grasp
https://github.com/wilkeraziz/grasp/blob/master/grasp/cfg/README.md
https://github.com/wilkeraziz/grasp/blob/master/grasp/cfg/README.md

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

1 # Framework: exact inference
2 (grasp)~/grasp/examples/ptb$ echo -e 'I was given a million dollars .' | \
3 python -m grasp.cfg.parser wsj00 output --grammarfmt discodop --start TOP \
4 --unkmodel stfd6 --log --viterbi --kbest 100 --samples 1000 --experiment mtm -v
5 # Framework: slice sampling
6 (grasp)~/grasp/examples/ptb$ echo -e 'I was given a million dollars .' | \
7 python -m grasp.cfg.parser wsj00 output --grammarfmt discodop --start TOP \
8 --unkmodel stfd6 --log --samples 1000 --framework slice --experiment mtm -v
9 # Output directory

10 (grasp)~/grasp/examples/ptb$ tree --charset=ascii output/mtm/
11 output/mtm/
12 |-- ancestral |-- args.ini |-- slice
13 | |-- derivations |-- kbest | |-- derivations
14 | | |-- 0.gz | |-- 0.gz | | |-- 0.gz
15 | |-- trees |-- viterbi | |-- trees
16 | |-- 0.gz |-- 0.gz | |-- 0.gz

Figure 2. Example run of Grasp’s CFG parser.

Figure 3 illustrates how to run the hierarchical decoder. The first command il-
lustrates exact inference. Note that with exhaustive forest rescoring, we cannot go
beyond a bigram language model and very short sentences. The second command il-
lustrates sliced rescoring: ϕ(us;ααα) is set to Exp(us; 1) (--prior const 1), each slice is
uniformly subsampled (--within uniform) making small fixed-size batches (--batch
100) for rescoring (Equation 7). In both cases, python -m grasph.cfg.decoder in-
vokes the decoder; synchronous grammars are stored in grammars; --weights specify
model weights for model components such as rule table (--rt), word penalty (--wp),
arity penalty (--ap), and language model (--lm) . The output directory structure is
very similar to the one produced by the parser.8 Output files are sorted lists of hy-
potheses (best-first), as the last command illustrates.

In this section we also provide some preliminary experiments with our proposed
sampler in the context of decoding for hierarchical phrase-based (hiero) models (Chi-
ang, 2005). We report on experiments conducted using the BTEC Chinese-English cor-
pus (Takezawa et al., 2002). Grammar extraction follows the approach of Lopez (2007),
we use the implementation of Baltescu and Blunsom (2014). We use cdec (Dyer et al.,
2010) to train a linear model with MIRA (Cherry and Foster, 2012).9 We trained mod-

8A complete list of features and options can be found at https://github.com/wilkeraziz/grasp/blob/
master/grasp/mt/README.md.

9Such models are not inherently probabilistic, thus we need to artificially scale the parameters returned
by the optimiser. In the experiments in this paper, we multiplied the weights by 10 (--temperature 0.1).

57

https://github.com/wilkeraziz/grasp/blob/master/grasp/mt/README.md
https://github.com/wilkeraziz/grasp/blob/master/grasp/mt/README.md

PBML 104 OCTOBER 2015

1 # Framework: exact inference
2 (grasp)~/grasp/examples/mt$ head -n1 input | python -m grasp.mt.decoder output \
3 --grammars grammars --glue-grammar glue --pass-through \
4 --rt --wp WordPenalty -0.43429466 --ap Arity -0.43429466 \
5 --lm LanguageModel 2 btec.klm2 --weights mira/lm2-p \
6 --temperature 0.1 --viterbi --kbest 100 --samples 1000 --experiment mtm -v
7 # Framework: slice sampling
8 (grasp)~/grasp/examples/mt$ head -n1 input | python -m grasp.mt.decoder output \
9 --grammars grammars --glue-grammar glue --pass-through \

10 --rt --wp WordPenalty -0.43429466 --ap Arity -0.43429466 \
11 --lm LanguageModel 3 btec.klm3 --weights mira/lm3-p \
12 --temperature 0.1 --temperature0 10 --samples 1000 --framework slice \
13 --batch 100 --within uniform --prior const 1 --experiment mtm -v
14 (grasp)~/grasp/examples/mt$ zcat < output/mtm/slice/yields/0.gz
15 # MCMC samples=1000
16 # estimate count derivations yield
17 0.601 601 5 a throbbing pain .
18 0.271 271 5 throbbing pain .
19 0.065 65 4 is a throbbing pain .
20 0.032 32 4 is throbbing pain .
21 0.027 27 2 throbbing pain in my temples .
22 0.002 2 1 throbbing pain in pain .
23 0.001 1 1 throbbing pain the pain .
24 0.001 1 1 throbbing pain hurts my .

Figure 3. Example run of Grasp’s hierarchical SMT decoder.

els using standard features as well as a bigram/trigram Language Model (LM) com-
ponent. Language modelling and LM queries are done with lmplz/kenlm (Heafield,
2011; Heafield et al., 2013). Additionally, we trained two locally parameterised mod-
els whose LMs were made stateless, i.e. n-grams are scored using as much context as
available within translation rules, but context information (LM state) is discarded at
the boundaries of nonterminals. Finally, as a decision rule, G uses an approxima-
tion to MBR known as consensus decoding (DeNero et al., 2009) based on an empirical
distribution estimated from 2, 000 samples.

We report BLEU scores (Papineni et al., 2002) from multibleu, an implementation
distributed with Moses (Koehn et al., 2007). Results are averaged over 3 runs for a
random subset comprising of 20% of BTEC’s development set.10 Table 1 compares
G’s performance to cdec’s. The stateless models can be decoded exactly by both
cdec (which uses a Viterbi decision rule) and G (which applies consensus decod-

10The exact subset is available at the tool’s repository on github.

58

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

System LM BLEU
1 cdec 2-gram (stateless) 33.6

2 G 2-gram (stateless) 33.85

3 G (batch=100) 2-gram 36.59± 0.61
4 G (batch=200) 2-gram 37.47± 0.67
5 cdec (pop=200) 2-gram 41.46

6 cdec 3-gram (stateless) 33.92

7 G 3-gram (stateless) 33.9

8 G (batch=100) 3-gram 37.78± 0.64
9 G (batch=200) 3-gram 38.89± 0.67
10 cdec (pop=200) 3-gram 46.33

Table 1. Slice sampler using ϕ(us;ααα) = Exp(us; λ = 1.0).

ing to 2,000 ancestral samples), thus both systems perform equally well (rows 1-2 and
6-7). For nonlocal models, cdec employs cube pruning (pop limit 200), and G em-
ploys the proposed slice sampling procedure uniformly subsampling slices to produce
batches of 100 or 200 samples. We can see that G succeeds to incorporate the
language model to a certain extent, it outperforms stateless models by about 5 BLEU
points (rows 3-4 vs rows 1-2, and rows 8-9 vs rows 6-7). However, it still lags behind
cube pruning (rows 5 and 10). By rescoring larger batches from each slice (row 4 vs
row 3, and row 9 vs row 8), we notice significant improvements, which indicates that
sampling from f(d|u) is indeed a bottleneck.

In order to improve G’s translation accuracy, we need to sample more effi-
ciently from slices. The general aim is to increase the sampler’s mobility and reduce
autocorrelation. Indeed, subsampling slices uniformly is a very simple strategy. We
are currently investigating alternatives based on more sophisticated sampling tech-
niques. In the experiments reported, G draws on average 7.5 samples per second
(with batch=100) and 4.7 samples per second (with batch=200). Note that to obtain
a sample, G must first obtain a slice (a random subset of the complete forest),
subsample such slice reducing it to a fixed-size batch, rescore the batch producing an
empirical distribution for f(d|u) (Equation 7), and finally, sample a derivation from
this empirical distribution. To improve G’s time performance we are translating
to cython some of the core procedures associated with these steps.

Finally, Figure 4 lists the features G currently supports (this set is growing at
a fast pace!).

59

PBML 104 OCTOBER 2015

Grammar formalism epsilon-free CFGs
Weighted deduction bottom-up (exact and sliced), top-down (exact and sliced)
Forest rescoring top-down (exact and sliced)
Real-valued semirings B, C, V, I
Value recursion robust to cycles
Derivation semirings 1-, k-, S, F, S
Sampling algorithms ancestral sampling, slice sampling
LM queries kenlm
Applications constituency parsing, decoding for hiero models

Figure 4. Features in Grasp’s current release.

5. Conclusion

We have given a quick overview of semiring parsing and discussed a novel sam-
pling technique for inference over complex structured spaces which is compatible
with this general framework. We have presented G, a toolkit for new directions in
inference for applications such as parsing and machine translation. With this release,
we hope to lower the initial implementation burden associated with complex struc-
tured state spaces, and we invite contributors to explore new sampling algorithms as
well as new applications.

Acknowledgements

This research is funded by The Netherlands Organisation for Scientific Research
(NWO), NWO VICI grant nr. 277-89-002.

Bibliography

Baltescu, Paul and Phil Blunsom. A Fast and Simple Online Synchronous Context Free Gram-
mar Extractor. The Prague Bulletin of Mathematical Linguistics, 102(1):17–26, October 2014.

Bar-Hillel, Yehoshua, Micha A. Perles, and Eli Shamir. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung, (14):143–172, 1961.

Billot, Sylvie and Bernard Lang. The Structure of Shared Forests in Ambiguous Parsing. In
Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, pages
143–151, Vancouver, British Columbia, Canada, June 1989. Association for Computational
Linguistics.

Blunsom, Phil and Trevor Cohn. Inducing Synchronous Grammars with Slice Sampling. In
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 238–241, Los Angeles, California, June 2010.
Association for Computational Linguistics.

60

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

Cherry, Colin and George Foster. Batch Tuning Strategies for Statistical Machine Translation.
In Proceedings of the 2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 427–436, Montréal, Canada, June
2012. Association for Computational Linguistics.

Chiang, David. A Hierarchical Phrase-Based Model for Statistical Machine Translation. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics.

DeNero, John, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation
Forests. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Vol-
ume 2, ACL ’09, pages 567–575, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

Dyer, Chris and Philip Resnik. Context-free Reordering, Finite-state Translation. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, HLT ’10, pages 858–866, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

Dyer, Chris, Jonathan Weese, Hendra Setiawan, Adam Lopez, Ferhan Ture, Vladimir Eidel-
man, Juri Ganitkevitch, Phil Blunsom, and Philip Resnik. cdec: a decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, ACLDemos ’10, pages 7–12, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

Gallo, Giorgio, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3):177–201, Apr. 1993.

Goodman, Joshua. Semiring parsing. Computational Linguistics, 25(4):573–605, Dec. 1999.

Heafield, Kenneth. KenLM: faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, WMT ’11, pages 187–197, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

Heafield, Kenneth, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable Mod-
ified Kneser-Ney Language Model Estimation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 690–696, Sofia,
Bulgaria, August 2013. Association for Computational Linguistics.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And Com-
putation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1979.

Huang, Liang. Advanced Dynamic Programming in Semiring and Hypergraph Frameworks.
In Coling 2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algo-
rithms and Applications - Tutorial notes, pages 1–18, Manchester, UK, August 2008. Coling
2008 Organizing Committee.

Klein, Dan and ChristopherD. Manning. Parsing and Hypergraphs. In Bunt, Harry, John Car-
roll, and Giorgio Satta, editors, New Developments in Parsing Technology, volume 23 of Text,
Speech and Language Technology, pages 351–372. Springer Netherlands, 2005.

61

PBML 104 OCTOBER 2015

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics.

Lopez, Adam. Hierarchical Phrase-Based Translation with Suffix Arrays. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages 976–985, Prague, Czech Republic, June
2007. Association for Computational Linguistics.

Neal, Radford M. Slice Sampling. Annals of statistics, 31:705–741, June 2003.
Nederhof, Mark-Jan and Giorgio Satta. Probabilistic parsing as intersection. In 8th International

Workshop on Parsing Technologies, pages 137–148, Nacy, France, April 2003.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Auto-

matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

Pereira, Fernando C. N. and David H. D. Warren. Parsing As Deduction. In Proceedings of
the 21st Annual Meeting on Association for Computational Linguistics, ACL ’83, pages 137–144,
Stroudsburg, PA, USA, 1983. Association for Computational Linguistics.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. Principles and implementation
of deductive parsing. Journal of Logic Programming, 24:3–36, 1995.

Sima’an, Khalil. Computational complexity of probabilistic disambiguation by means of tree-
grammars. In Proceedings of the 16th conference on Computational linguistics - Volume 2, COL-
ING ’96, pages 1175–1180, Stroudsburg, PA, USA, 1996. Association for Computational Lin-
guistics.

Takezawa, Toshiyuki, Eiichiro Sumita, Fumiaki Sugaya, Hirofumi Yamamoto, and Seiichi Ya-
mamoto. Toward a Broad-coverage Bilingual Corpus for Speech Translation of Travel Con-
versations in the Real World. In Third International Conference on Language Resources and
Evaluation, LREC, Las Palmas, Canary Islands - Spain, May 2002. European Language Re-
sources Association.

Tanner, Martin A. and Wing Hung Wong. The Calculation of Posterior Distributions by Data
Augmentation. Journal of the American Statistical Association, 82(398):528–540, June 1987.

Address for correspondence:
Wilker Aziz
w.aziz@uva.nl
Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 107, F2.11
Netherlands

62

	Introduction
	Semiring parsing
	Randomised semiring parsing
	Grasp
	Conclusion

