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Abstract
Phrase structure trees have a hierarchical structure. In many subjects, most notably in tax-

onomy such tree structures have been studied using ultrametrics. Here syntactical hierarchical
phrase trees are subject to a similar analysis, which is much simpler as the branching structure
is more readily discernible and switched. The ambiguity of which branching height to choose,
is resolved by postulating that branching occurs at the lowest height available. An ultrametric
produces a measure of the complexity of sentences: presumably the complexity of sentences
increases as a language is acquired so that this can be tested. All ultrametric triangles are equi-
lateral or isosceles. Here it is shown that X structure implies that there are no equilateral tri-
angles. Restricting attention to simple syntax a minimum ultrametric distance between lexical
categories is calculated. A matrix constructed from this ultrametric distance is shown to be
different than the matrix obtained from features. It is shown that the definition of -
can be replaced by an equivalent ultrametric definition. The new definition invokes a mini-
mum distance between nodes and this is more aesthetically satisfying than previous varieties
of definitions. From the new definition of - follows a new definition of of the central
notion in syntax namely .

1. Introduction

1.1. Ultrametric Literature

Ultrametrics are used to model any system that can be represented by a bifurcat-
ing hierarchical tree. To list briefly some areas where ultrametrics have been applied.
Perhaps the most important application is to taxonomy, Jardine and Sibson (1971,
Ch.7), and Sneath and Sokal (1973). Here the end of a branch of the tree represents
a species and the ultrametric distance between them show how closely the species
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are related. Hierarchical cluster methods classify species and also shows how closely
species are related. This technique has also been used in semantics, Shepard and Ara-
bie (1979). The technique can become quite complicated because it involves statistical
analysis with continuous variates. Ultrametrics have been applied frequently in the
theory of spin glass, Weissman (1993). Ultrametrics have been used for description
of slowly driven dissipative systems, which exhibit avalanche-like behaviour, these
include earthquakes, extinction events in biological evolution, and landscape forma-
tion, Boettcher and Paczuski (1997); also ultrametrics can describe systems with fast
relaxation, Vlad (1994). Ultrametrics are used in the theory of neural nets, Parga and
Virasoro (1986). The dynamics of random walks on ultrametric spaces have been stud-
ied, Ogielchi and Stein (1985). Ultrametrics have been applied to the thermodynamics
of macromolecules such as RNA, Higgs (1996), the directed polymer problem Perlman
and Schwarz (1992), and sociology Schweinberger and Snijders (2003). Bounds on the
size of ultrametric structure have been discussed by Baldi and Baum (1986). From
a more theoretical angle, a category theory approach has been elucidated by Rutten
(1996), a model theoretic approach to ultrametrics is given by Delon (1984), and ul-
trametric might be related to T-theory, Andreas Dress and Terhalle (1996). The rela-
tionship between ultrametric distance and hierarchy is further discussed in Guénoche
(1997). Construction of optimal ultrametric trees is discussed by Young and DeSarbo
(1995). Ultrametrics are related to p-adelic quantities, Karwowski and Mendes (1994),
Murtagh (2004) and B. Dragovich and Volovich (2009). P-adelic quantities are used
in string theory: the way that ultrametrics enters here is explained in §10&§13.4 of
Brekke and Freund (1993). There does not seem to be any straightforward connection
of any of the above to the optimization techniques of Prince and Smolensky (1997).
As well as ultrametric trees, there are also decision trees Hammer (1998), and the con-
nection between them is still not known. Some of the above ultrametric applications
have been reviewed by R. Rammal and Virasoro (1986). Chomskian syntatic trees
have been axiomatized by Backofen and Vijay-Shankar (1995).

1.2. Ultrametric Inequalities

There is the following relationship between trees and ultrametrics. An N-leaf
edge(node)-weighted tree corresponds to an N×N square matrix M in which Mij =
the sum of the weights of the edges (nodes) in the shortest path between i and j. When
the weights are non-zero and non-negative, M is a distance in the usual sense.

∀x, y, z Mxy = 0 if x = y (1)
Mxy > 0 for x ̸= y (2)
Mxy = Myx (3)
Mxy ≤ Mxz +Mzy. (4)
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Figure 1: Different syntactic descriptions of “the man ate a dog”

However if the triangle inequality (4) is replaced by

Mxy ≤ max{Mxz,Mzy}. (5)

then M is an ultrametric, equation (5) implies (4).

1.3. Syntactic Phrase Trees

For the analysis of syntactic phrase trees the necessary technique is quite simple
and is illustrated by the examples in Section 2. Psychological analysis of phrase trees
has been carried out by Johnson (1965) and Levelt (1970). The phrase tree approach
has critics Botha (1965); also Evans and Levison (2009) question the existence of lan-
guage universals. The examples here mainly follow the examples in Lockward (1972),
Kayne (1981), McCloskey (1988), and especially Haegeman (1994). There are at least
five reasons for introducing an ultrametric description of syntax.

The first is to completely specify tree (also called dendrogram) structure. Consider
the following example illustrated by Figure 1.

For current syntactic models sometimes nodes are taken to occur at the highest
level, and sometimes the two trees are equivalent see McCloskey (1988, footnote 6);
however consider the ultrametric distance between ‘the’ and ‘man’,

A(the,man) = 1, B(the,man) = 2, (6)

where the numbers are the height of the lowest common node above the two lexical
items. This ambiguity does not occur in current syntactic models, and a purpose of
an ultrametric model is to disambiguate the difference in height, because this might
have consequence in the complexity of the encoded model, see the next point.

The second is it gives a measure of the complexity of a sentence: the greater the
ultrametric distance required the more complex a sentence is. The above can also be
viewed in terms of ‘closeness’. The example Figure 1 illustrates that current syntactic
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models give no notion of how ‘close’ determiners and nouns are. However ultramet-
rics do give an indication of closeness and this can be compared: firstly to the closeness
indicated by features, secondly to the idea that if elements of a sentence are not suffi-
ciently close then there is a  Chomsky (1986b) to movement, roughly speaking
barriers impede the movement of phrases to different places in a sentence. Only the
closeness as indicates by features is looked at here. In traditional syntax phrases can
be iteratively embedded to give sentences of unbounded length and complexity. A
degree of sentence complexity perhaps corresponds to the height of the tree repre-
senting the sentence. As people can only process a finite amount of information this
height must be finite. In the traditional theoretical framework there is no finite bound
on sentence length. An upper bound could perhaps be found by experiment. Inspec-
tion of phrase trees suggests a first guess of h = 12.

The third is that it means that syntax is described in the same formalism as that
used in a lot of other sciences, for example those topics described in the first paragraph
of Section 1.1, so that there is the possibility of techniques being used in one area being
deployed in another.

The fourth is that an ultrametric formulation might allow a generalization so that
ideas in syntax can be applied to other cognitive processes.

The fifth, see the next section 1.4, and perhaps the most important, is that it might
be possible to use some sort of minimum distance principle in syntax: it could be this
minimum description which would have application in other cognitive processes. In
other words that ultrametric trees should be simple rather than complicated and that
the sort of mechanism use to encode simple tress might be used elsewhere.

1.4. Ockham’s Razor

Minimum description in science goes back several hundred years to “Ockham’s ra-
zor” or perhaps further, see for example Sorton (1947, page 552). The principle of
least action (see for example Bjorken and Drell (1965, §11.2) ) in physics is that mini-
mal variation of a given action gives field equations which describe the dynamics of
a system. For example, Maxwell’s equations can be derived from a simple action by
varying it. In the present context one would hope that syntax allows for a minimum
encoding of semantic information, the minimum encoding being given by some ul-
trametric measure. A different approach along these lines is that of Rissanen (1983)
and Zadrozny (1999). Briefly they assign a length of 1 to each symbol in a sentence,
then the    states that the best theory to explain a set of data
is the one which minimizes both the sum of: i) the length, in bits, of the description
of the theory, and ii) the length, in bits, of data when encoded with the help of the
theory. Christiansen (2001) discusses how constraint handling rules (CHR) can be
applied to grammars. This can be thought of as a minimizing procedure.
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Figure 2: A  tree

1            2           3      ...............................................N

Figure 3: N- branching

1.5. Reticulate & N-ary Trees

A  tree is a tree in which there are one or more sets of reconvergent
branches, illustrated by Figure 2, a - tree is a tree in which the branches
do not reconverge. N- branching is illustrated by Figure 3. B branching is
N- branching with N = 2. N- branching can be replaced by binary branching
if additional layers are used. A  tree is a tree in which all the branches are
binary. Syntactic phrase trees are - and . In most linguistic
theories all syntactic phrase trees have X structure, Jackendoff (1977). X structure
implies binary branching, see Section 2.3 and Figure 8. Here attention is restricted to
theory which has X structure.

1.6. Sectional Contents

In Section 2 it is shown how to represent trees by matrices and triangles. All X
triangles are isosceles but not equilateral. In Section 3 the matrix U for the minimum
ultrametric distance for lexical categories is given. For simplicity discussion is limited
to active voice sentences with only determiners, nouns, transitive verbs, adjectives,
and prepositions. Inclusion of case theory, COMP, INFL,.. might be of interest but
would complicate matters. In Section 4 the singular matrix F for features is given. F
is not an ultrametric matrix and there appears to be no relation to U. In Section 5 it
is shown that the notion of - is equivalent to an ultrametric minimum dis-
tance. This allows a new definition of government to be given. In appendix Section 7
other linguistic hierarchies are discussed; in particular there appears to be at least two
separate occurrences of culturally determined partial ordered hierarchies - the acces-
sibility hierarchy for relative clauses and the universal colour ordering. For completion
in appendix Section 7 there is a very brief account of what these hierarchies are, a
comparison and contrasting of them, and the speculation that they are specific exam-
ples of a grand cultural hierarchy. The question arises of why such hierarchies should
exist, and it might be because they reduce the amount of memory needed to process
information by clumping information together in the style of Miller (1956); for a more
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Figure 4: The simplest  tree for “Alf must jump high”

recent reference see Cowan (2001). A hierarchy is an example of a representation as
discussed by Roberts (2005).

2. X Structure Implies No Equilateral Triangles

2.1. Binary and N-ary Branching for simple sentences

X structure implies   Haegeman (1994, p.139), and the Figure 8.
To see what this implies for ultrametric distances consider all five species of 
 tree. The fixed word order in ’Alf must jump high’ reduces the total number
of possible matrices form 15 to 8. The first has diagram Figure 4 (compare Haegeman
(1994, p.141 diagram 84a) ) and corresponding matrix:

First =

• A M J H

A 0 1 2 2

M . 0 2 2

J . . 0 1

H . . . 0

(7)

respectively, where A, M, . . . are short for ’Alf’, ’must’. The matrices correspond-
ing to the other four   trees are (compare Haegeman (1994, p.141&142
diagrams 84b,c,d,e):

Second =

• A M J H

A 0 3 3 3

M . 0 2 2

J . . 0 1

H . . . 0

(8) Third =

• A M J H

A 0 3 3 3

M . 0 1 2

J . . 0 1

H . . . 0

(9)

116



Mark D. Roberts Ultrametric Distance in Syntax (111–130)

........

..high.

....

..jump.

....

..must.

..

..Alf

Figure 5: The 4- tree for “Alf must jump high”

Fourth =

• A M J H

A 0 2 2 3

M . 0 1 3

J . . 0 3

H . . . 0

(10) Fifth =

• A M J H

A 0 1 2 3

M . 0 2 3

J . . 0 3

H . . . 0

(11)

There are two 3- trees with matrices (compare Haegeman (1994) p.142 (Haege-
man, 1994) diagrams 84g and 84h): Haegeman (1994, p.142 diagrams 84g and 84h)):

Sixth =

• A M J H

A 0 1 1 2

M . 0 1 2

J . . 0 2

H . . . 0

(12) Seventh =

• A M J H

A 0 2 2 2

M . 0 1 1

J . . 0 1

H . . . 0

(13)

and finally there is one 4- tree (compare Haegeman (1994) p.142 (Haegeman,
1994) diagram 84f) Haegeman (1994, p.142 diagram 84f)) with diagram Figure 5 and
matrix:

Eighth =

• A M J H

A 0 1 1 1

M . 0 1 1

J . . 0 1

H . . . 0

(14)

2.2. Triangle representation of the proceeding matrices

All ultrametric triangles are isosceles with small base, but only some are equilat-
eral. The previous subsection (2.1) suggests that binary branching implies that there
are no equilateral triangles in ultrametric models of syntax. For example from matrix
(13), d(A,M) = 1, d(A, J) = 2, d(M, J) = 2 has the triangle representation Figure 6,
and from matrix (14), d(A,M) = 1, d(A, J) = 1, d(M, J) = 1 giving in the triangle
representation Figure 7.

In the next section it is proved that X structure implies that there are no equilateral
triangles.
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2.3. The X Template

The X template Figure 8 is the form that nodes take in syntax.
The matrix representation of this is:

µX =

• Spec X YP

Spec 0 i+ 2 i+ 2

X . 0 i+ 1

YP . . 0

(15)

From this the triangle representation is Figure 9. This is isosceles but not equilateral.

3. The minimum ultrametric distance between lexical categories

3.1. The minimum distance principle

We assume that it is the minimum distance between lexical categories that is im-
portant, and refer to this as the   . In part this is motivated
by the discussion in Section 1.4. A current psycholinguistic model of sentence produc-
tion is the garden path model, see for example Frazier (1987). Part of this model re-
quires the minimal attachment principle, which is “do not postulate unnecessary nodes.”:
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Figure 9: The triangle representation of X structure
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Figure 10: The correct tree for the example in Section 1.

this can be thought of as a minimum principle. The    im-
plies that the correct tree for equation (6) illustrated by Figure 1 is Figure 10, so that
all entries occur at the lowest possible height.

Thus in particular tree A is preferred to tree B. This assumption does not effect
the matrix U (16) given and described below, but will have an effect when the anal-
ysis is extended to θ-theory, see Haegeman (1994, §3.2.3). From the above d(N,D) =
1, d(N,V) = d(D,V) = 2. Similarly from Figure 11, d(V,A) = 4.

Constructing other examples gives the ultrametric distance matrix

U =

• D N V A P

D 0 1 2 2 2

N . 0 2 2 2

V . . 0 4 3

A . . . 0 3

P . . . . 0

(16)
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Figure 11: The distance between verbs and adjectives.

Ignoring the determiner D (‘a’ or ‘the’) and ordering the matrix NPVA (noun, pro-
noun, verb, adjective) suggests the pattern

I =

0 i i i . . .

. 0 i+ 1 i+ 1 . . .

. . 0 i+ 2 . . .

. . . 0 . . .

(17)

which is compatible with the X matrix of the last section; however it does not follow
by necessity as the X case holds for a single sentence and U is constructed from the
syntactical representations of several sentences.

4. Features

4.1. A matrix representation of features

This section investigates whether there is a general framework which can describe
both the preceding and also “features”. An objective is to reduce the large number
of objects that can be ’spec’ and so on by using the objects features: in other words to
introduce a type of atomic theory. Roughly speaking the idea behind features is that
adjectives and prepositions have qualities in them that are associated with verbs and
nouns, as can be seen from (18) adjectives have +N & +V and prepositions have -N &
-V. Haegeman (1994, p.146) gives the following (18) diagram for features:

Features diagram =

Noun +N −V

Verb −N +V

Adj. +N +V

Pre. −N −V

(18)
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in words nouns have features of +noun and -verb, adjectives have features of +noun
and +verb, and so on. This can be represented by the matrix

Features matrix = F =

· Noun Verb

Noun +1 −1

Verb −1 +1

Adj. +1 +1

Pre. −1 −1

(19)

The Pauli matrices (see for example Bjorken and Drell (1965, p.378) ) are

I =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (20)

A square matrix can be constructed by assuming that the matrix is symmetric. This
leaves only one unknown F(A, P). Taking F(A, P) = −1 gives equal number of positive
and negative entries in the matrix

F completion = FC =

• N V A P

N +1 −1 +1 −1

V −1 +1 +1 −1

A +1 +1 +1 −1

P −1 −1 −1 +1

(21)

which is singular as its determinant vanishes. There appears to be no relation between
matrix FC (21) and matrix U (16). FC can be expressed as

FC =

(
I− σ1 −iσ2 + σ3

+iσ2 + σ3 I− σ1

)
. (22)

However this does not correspond in any straightforward way to any of the Dirac
matrices (see for example Bjorken and Drell (1965, p.378) ) in standard representations.

4.2. Pseudo-inverse of the features matrix

Another way to proceed is to use pseudo-inverses which can be calculated using
the program Octave, then

pinv(F) =
1

8

(
1 −1 1 −1

−1 1 1 −1

)
, (23)

then in terms of Pauli matrices (20)

F =

(
I− σ1

σ3 + iσ2

)
, pinv(F) =

1

8
(I− σ1, σ3 − iσ2) , (24)
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giving products

pinv(F) ∗ F = I, F ∗ pinv(F) = 1

2

(
I− σ1 0

0 I− σ1

)
. (25)

Having got an inverse (23) one would hope to be able to use it to predict properties of
nouns, verbs and so on, but it is not yet clear how.

4.3. Truth features matrix

The above approach is not unique; consider instead of objects having ±N,±V hav-
ing truth values

Features truth diagram =

Noun T F

Verb F T

Adj. T T

Pre. F F

(26)

with corresponding matrix

Features truth matrix = T =

· Noun Verb

Noun 1 0

Verb 0 1

Adj. 1 1

Pre. 0 0

(27)

with inverse

pinv(T ) =
1

3

(
2 −1 1 0

−1 2 1 0

)
, (28)

giving products

pinv(T ) ∗ T = I, T ∗ pinv(T ) = 1

3


2 −1 1 0

−1 2 1 0

1 1 2 0

0 0 0 0

 , (29)

which do not simplify in terms of Pauli matrices (20).
The structure of the two approaches does not seem to be the same as can be seen

by looking at (19) and (27); and so far it is not clear which is better. It is possible
that the above features approach can be extended using more features; for example
introducing D=determiner one has the 23 = 8 objects {D = (1 ± 1)/2,N = (1 ±
1)/2, V = (1 ± 1)/2}, and one could take {1, 0, 0} to be a determiner {1, 1, 0} to be a
noun phrase and so on, then there is the question of how many features have to be
introduced to represent all tree objects.
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Smith                     will            eat            the            elephant.

   Det            N

     N                                V                  NP

  NP           AUX       VP

  S

Figure 12: Illustration of 

5. Ultrametric Approach to Government

Recall the following definitions in Haegeman (1994):

5.1. Definition of .

Definition Haegeman (1994, p.85) Node A  node B iff:
i) h(A) is higher up or at the same height on the tree as h(B) i.e.h(A) ≥ h(B)
ii) it is possible to trace a path from A to B going only downward,
or at most going to one higher node.
Remarks
The first requirement is that A is at a greater height than B. The second requirement
restricts the possible downward route from A to B so that it contains at most one
upward segment.
Example (compare Haegeman (1994, p.83) )The phrase tree in Figure 12 gives the
‘dominates’ matrix:
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D =

• S NP(S) N(S) AUX VP V NP(E) Det N(e)
S 1 1 1 1 1 1 1 1 1

NP(S) 0 1 1 0 0 0 0 0 0

N(S) 0 0 1 0 0 0 0 0 0

AUX 0 0 0 1 0 0 0 0 0

VP 0 0 0 0 1 1 1 1 1

V 0 0 0 0 0 1 1 1 1

NP(E) 0 0 0 0 0 0 1 1 1

Det 0 0 0 0 0 0 0 1 0

N(E) 0 0 0 0 0 0 0 0 1

(30)

where 1 indicates “A dominates B” and 0 indicates that it does not.

5.2. Definition of C-

Definition Haegeman (1994, p.134)
Node A - (constituent-commands) node B iff:

i) A does not dominate B and B does not dominate A,
ii) The first branching node dominating A also dominates B.
Remarks
The first requirement is that there is no direct route up or down from A to B passing
more than one higher node. The second requirement restricts A and B to be ’close’.
Haegeman’s first criterion for dominance needs to be adjusted: if it is correct then
h(A) > h(B) and h(B) > h(A) so that the set of all - is empty, therefore
greater than or equal ≥ is used here instead of greater than >. Haegeman’s second
criterion for dominance also needs to be adjusted: if no higher node is allowed the set
of - is again empty. Chomsky (1986a, p.161) approaches the subject in a
different manner using maximal projections.

For example, in Figure 13, 0 < j < k < l. The corresponding ultrametric matrix is

U =

• A B C D

A 0 k k l

B . 0 j l

C . . 0 l

D . . . 0

(31)

The - matrix CM is

CM =

• A B C D

A 1 1 1 0

B 0 1 1 0

C 0 1 1 0

D 1 1 1 1

(32)
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..H.

F

.

A

.

E

.

B

.

C

.h=i+l .

h=i+k

.

h=i+j

.
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Figure 13: Example of -.

where 1 indicates A - A, and 0 indicates that it does not, similarly for B,
C, D.

5.3. Definitions of C-D & G

Definition Haegeman (1994, p.134)
The total of all the nodes - by an element is the - of that element.
Definition Haegeman (1994, p.135)
A  B iff:
i) A is a ,
ii)A - B and B - A.
Remarks:
The first requirement is a restriction on the set A (in linguistic terminology the cate-
gory A). A  is a part of speech which generalizes the notion of a verb gov-
erning an object; unfortunately there does not seem to be a formal definition of it. The
second requirement is that A and B should be sufficiently ‘close’.

5.4. Definitions of CU-D & CU-C

Now let D(A) be the set of all the ultrametric distances to other nodes at the same
height and let M(A) be the set of these which have the smallest value.
Call M(A) the - of A and say A - all BεM(A) (in words B is a
member of M(A). This is illustrated by Figure 14.

5.5. Theorem showing the identity between C-D & CU-D

Theorem:
The sets A - B and A - B are identical, likewise the -
and the -.

Proof:
From the i) part of the definition of - h(A) = h(B), so that we are only

125



PBML 103 APRIL 2015

h=i+k    F

h=i+l    H

h=i      A           B            C           D

h=i+j                  S

Figure 14: Illustration of the Theorem.

concerned with nodes at the same height h(A) = i. Let the first branching node above
A be F, with h(F) = i+k. Let H be any node dominating F, with h(H) = i+ l. Let E be
the subsidiary node dominating B and C and dominated by F, with h(E) = i+ j. The
closest nodes to A are B and C both with an ultrametric distance k. The sets D(A) and
M(A) are D(A)={A,B,C,D}, M(A)={A,B,C}. A both - and -
itself and B and C. The actual integer values i, j, k, . . . are arbitrary and thus the result
holds in general.

5.6. A New Definition of Government

This allows a new definition of . A  B iff:
i) A is a .
ii) both AεM(B) and BεM(A) (in words A is a member of M(B) and vice versa).
This definition of  is the same as the previous definition of ,
but with the - requirement replaced by an ultrametric requirement that
distances be minimal.

6. Conclusion

The definition of government in Section 5.6 might at sometime in the future allow
the five points in Section 1.3 to be addressed.
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SU > DO > IO > OBL > GEN > OCOMP

Figure 15: The accessibility hierarchy

7. Appendix: Other Linguistic Hierarchies

7.1. The Accessibility Hierarchy

A   (RC) is a clause that modifies a noun or pronoun that occurs
elsewhere in a sentence. The accessibility hierarchy (AH) for relative clauses is given by
Keenan and Comrie (1977) and illustrated in Figure 15.

Noun phrases (NP) occurring to the left of “>” are more accessible than those on
the right. SU is short for subject, DO for direct object, IO for indirect object, OBL for
major oblique case NP, GEN for genitive NP, OCOMP for object of comparison. The
properties of the accessible hierarchy are contained in two sets of constraints.

The accessible hierarchy constraints (AHCs) are:
AHC1) A language must be able to relativize subjects.
ACH2) Any RC forming strategy must apply to a continuous segment of the AH.
ACH3) Strategies that apply at one point of the AH may in principle cease to apply

at any lower point.
The primary relativization constraints (PRCs) are
PRC1) A language must have a primary RC-forming strategy.
PRC2) If a primary strategy in a given language can apply to a low position on the

AH, then it can apply to all higher positions.
PRC3) A primary strategy may cut off at any point on the AH.

For a given language a deployment that can be used to relativize a clause at a specified
place on the AH can also be used to relativize all more accessible clauses. The type of
relativization varies from language to language. There appears to be nothing known
on how the skill to deploy a relativization develops in an individual. One would
expect that when a given method is applied the less accessible would take longer to
process. There seems to be no psycholinguistic tests done to see if this is indeed the
case.

7.2. The Berlin-Kay Universal Colour Partial Ordering

The perception of colour often involves the deployment of a colour name strategy.
The effect of this is to alter the way the colour is perceived. The five principles of
colour perception are:

CP1) The communicability of a referent in an array and for a particular community
is very closely related to the memorability of that referent in the same array and for
members of the same community.
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Figure 16: The Berlin-Kay Universal Colour Partial Ordering

CP2) In the total domain of colour there are eleven small focal areas in which are
found the best instances of the colour categories named in any particular language.
The focal areas are human universals, but languages differ in the number of basic
colour terms they have: they vary from two to eleven.

CP3) Colour terms appear to evolve in a language according to the Berlin and Kay
(1969) universal partial ordering illustrated by Figure 16.

CP4) Focal colours are more memorable and easier to recognize than any other
colours, whether or not the subject speaks a language having a name for the colour.

CP5) The structure of the colour space determined by multi-dimensional scaling
of perceptual data is probably the same for all human communities and it is unrelated
to the space yielded by naming data.

Again there is a culturally determined linguistic partial ordering (or hierarchy). On this
occasion it determines the semantic content of individual words rather than syntax
rules. Again there appears to be nothing known on how the skill develops in an indi-
vidual, or any timing tests on the possession of a colour name strategy. The existence
of two separate hierarchical partial orderings suggests that there is a general mecha-
nism for there construction. Most members of a community seem to develop these
culturally determined skills suggesting that the capacity to develop them is usually
innate but their manifestation depends on environment.
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