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Abstract

Translation equivalence constitutes the basis of all Machine Translation systems including
the recent hierarchical and syntax-based systems. For hierarchical MT research it is important
to have a tool that supports the qualitative and quantitative analysis of hierarchical translation
equivalence relations extracted from word alignments in data. In this paper we present such
a toolkit and exemplify some of its uses. The main challenges taken up in designing this
tool are the efficient and compact, yet complete, representation of hierarchical translation
equivalence coupled with an intuitive visualization of these hierarchical relations. We exploit
a new hierarchical representation, called Hierarchical Alignment Trees (HATs), which is based
on an extension of the algorithms used for factorizing n-ary branching SCFG rules into their
minimally-branching equivalents. Our toolkit further provides a search capability based on
hierarchically relevant properties of word alignments and/or translation equivalence relations.
Finally, the tool allows detailed statistical analysis of word alignments, thereby providing
a breakdown of alignment statistics according to the complexity of translation equivalence
units or reordering phenomena. We illustrate this with an empirical study of the coverage of
inversion-transduction grammars for a number of corpora enriched with manual or automatic
word alignments, followed by a breakdown of corpus statistics to reordering complexity.

1. Introduction

What kind of translation equivalence occurs in the word aligned data of a language
pair? Are the word alignments yielding them correct and what kind of requirements
for effective translation models is implied by their complexity? Most practitioners of
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Machine Translation have some qualitative appreciation of the difference in similarity
across language pairs. For example, it is a well known fact that for Chinese-English
translation long range reordering is the norm, and as a result phrase-based translation
does not work well for this language pair. Similarly it is known, that reordering
is more local for Arabic-English than for Chinese-English, so that phrase-based
translation gives relatively good performance for this language pair. Qualitative
knowledge of the data is much more scarce for less popular language pairs and less
famous but nevertheless valid reordering constructions; and in fact hard statistics
about alignment complexity are mostly lacking for all language pairs. Crucial for the
success of machine translation are the quality of the aligned corpus as operationalized
by induced translation equivalence, and its complexity and compatibility with a
translation model. A tool that facilitates more knowledge of these factors and that
gives better qualitative understanding of translation equivalence occurring in real
data can be valuable. A crucial aspect of such a visualization tool is an efficient
and compact representation of hierarchical translation equivalence coupled with an
intuitive visualization of the hierarchical relations between the translation equiva-
lents. We employ Hierarchical Alignment Trees (HATs) (Sima’an and Maillette de
Buy Wenniger, 2013) as the representation of choice for our HATSs toolkit.

The word alignment in Figure 1 exemplifies the fact that manual or mental
reconstruction of a representation of hierarchical translation equivalence over word
alignments can be impractical for more than a few word long sentences with complex
alignments, which constitutes the actual scenario when doing analysis of word
alignments for representative, large data.

Besides visualization, one other application of the HATs toolkit is search and data
analysis. Based on properties of the HATs representation it is easy to answer a question
like “are their many valid/correct complex alignment constructions that cannot be
covered by Inversion Transduction Grammars (ITG) in big automatically aligned
corpora?”. Previous work on alignment coverage (Zens and Ney, 2003; Wellington
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et al., 2006; Segaard and Wu, 2009; Segaard and Kuhn, 2009; Segaard, 2010) has been
mainly involved with hand-aligned corpora, and as such has not given much direct
insight into the validity of claims like “many of the non-binarizable alignments in
automatically aligned data correspond to alignment errors”. Our toolbox provides
a method for automatically compiling a database of alignment properties for an
input parallel corpus, so that alignments with certain properties can be effectively
queried and retrieved. This makes it very simple to select for example all non-
binarizable alignments. Based on such selections and by a quick visual inspection
of the associated HATSs, researching the validity of claims about the complexity of
word alignments in real data becomes far simpler than building specific tools for
ITG (or any other specific synchronous grammar formalism). Quantitative analysis
in the form of statistics like alignment coverage for different types of permissible
reordering complexity is another important component in the more global analysis
of translation equivalence properties. For such quantitative analysis, keeping track
of the reordering operations at the nodes while at the same time computing the
HATs in an efficient and compact way will prove essential. We will exemplify
this by reporting extensive empirical analysis of the coverage of ITG on a range of
parallel corpora for manual as well as automatic word alignments. To the best of our
knowledge, these results are the first on large, automatically aligned parallel corpora.
In the remainder of this paper we first introduce HATs and discuss some of their
visualization properties, then briefly discuss the methods available in our tool and
move quickly to the empirical study regarding binarizable word alignments that can
be covered by ITG.
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2. Hierarchical Alignment Trees (HATS)

An efficient and compact representation of hierarchical phrase pair translation
equivalence is Hierarchical Alignment Trees (HATs). A HAT (Sima’an and Mail-
lette de Buy Wenniger, 2013) is a hierarchical representation/factorization of the
phrase pairs in a word alignment; A HAT compactly represents a synchronous tree
pair: a source and target tree pair with a node alignment relation between them. The
recursive structure in a HAT shows the build up of phrase pairs from embedded
phrase pairs. Hence, every node in a HAT represents the phrase pair at the fringe
of the subtree under that node.

In Figure 3 we show what a visualization of a Hierarchical Alignment Tree for the
example of Figure 1 looks like. There are actually two HATs displayed here. The
upper tree shows the mapping from source to target while the bottom tree shows
the mapping from target to source. Between the two trees we display the word
alignments, making it directly clear how certain parts of the word alignment yield
corresponding parts in the HATs. The filling and color/shade of the nodes clearly
represents the translation equivalence between the source and target side of phrases.

Like Normalized Decomposition Trees (NDTs) (Zhang et al., 2008), HATs are
minimally branching factorization of word alignments into phrase pairs, i.e., every HAT
node covers a phrase pair and it dominates the smallest number of translation units
(the child nodes) that the phrase pair decomposes into. In Figure 3, the alignment
underlying the phrase pair our citizens unsern burgern decomposes down minimally
to two phrase pair nodes our unsern and citizens burgern. More intricate HATs may
arise due to complex word alignments that involve many-to-many and discontiguous
translation units.

Discontiguous translation units One important property of HATs is their explicit
representation of discontiguous translation units. In Figure 3 the root node on the
English/German side dominates, among others, two terminal nodes: this explicitly
represents the discontiguous unit given by the alignment between sind + schuldig
(positions 2 and 5) on the German side with a single English word owe (position
2). More generally, to differentiate between phrase pairs and separate parts of
discontiguous translation units in the HAT representation, the latter are depicted as
terminal nodes (nodes labeled with words without any children), whereas the former
(phrase pairs) are represented as non-terminal nodes (circles with filling dominating
a subtree).

Reordering operators Crucially, HATs extend NDTs by providing explicit rep-
resentation of the reordering of the children under every node by a transduction
operator, called a set-permutation, as well as the internal word alignments for atomic
(non-decomposable) phrase pairs. Hence, a HAT is a decorated tree where the nodes
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are decorated with set-permutations. A set-permutation decorating a node in source
side HAT is a list of integer sets denoting a transduction operation that applies to the
children of that node to obtain the target side phrase reordering. We will immediately
exemplify HATSs and set-permutations before we proceed further with discussing the
properties of HATSs.

Set-permutations such as [3,{2,5},1,4] (see the root node in Figure 3) denote
reordering operations occurring under these nodes. In this example the source
children1, 2, 3,4 map to target children (relative order) 3, {2,5}, 1, 4 respectively, where
{2, 5} represents the fact that the second child is linked with two on the other side in
positions 2 and 5. In the simpler monotone mapping our citizens | unsern burgern the
set-permutation label is [1,2]. We also see the coarse reordering categories ATOMIC,
MONO and HAT in this figure, which are discussed next.

Complexity categories As mentioned above, every node is decorated with a set-
permutation, specifying the relative mapping occurring directly below it. In the case
of bijective mappings this describes a permutation. In the general case of arbitrary m-
n mappings there are recurring target position in the mapping set of different source
positions and/or multiple target positions occurring in the mapping set(s) of some
source positions. Hence, the set-permutations can be grouped into coarser categories
of mapping complexity. We distinguish the following five cases, ordered by increasing
complexity:

1. Atomic: If the alignment does not allow the existence of smaller (child) phrase
pairs: a subset of alignment positions that is not connected to the other positions
while also forming a contiguous sequence on the source and target does not
exists.

2. Monotonic: If the alignment can be split into two monotonically ordered parts.

. Inverted: If the alignment can be split into two inverted parts.

4. PET (Permutation Tree): If the alignment can be factored as a permutation of more
than 2 parts.

5. HAT (Hierarchical Alignment Tree): If the alignment cannot be factored as a
permutation of parts, but the phrase does contain at least one smaller phrase
pair.

W

Typically there are multiple HATs for a word alignment, corresponding to different
possible minimally branching factorizations into phrase pairs. These alternative HATs
can be efficiently computed and stored as a chart using a CYK-parser like chart parsing
algorithm that parses the alignment and builds a Hypergraph of HATs in the process.!

IThis is exactly what is done by our program. Note that in certain cases the number of HATs
per alignment can become big, in particular for alignments that contain many monotone parts. One
optimization we use in our algorithm is reasoning about null-aligned words outside the main algorithm.
Computation is typically fast, provided enough memory is available. Rendering all HATs is done by
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A categorization of the complexity of the HAT as a whole is determined based on
the complexity categories of the alignment mappings at its nodes. Binary Inversion-
Transduction Trees (BITTs) is the least complex class consisting of only binary HATs that
can be built for binarizable permutations (Huang et al., 2009), any HAT that contains
only Monotonic and/or Inverted nodes belongs to this class. If a HAT contains at least
one PET node but no HAT nodes it belongs to the category called PETs corresponding
to general permutations (Zhang et al., 2008; Satta and Peserico, 2005). Finally the
occurrence of at least one HAT node implies the set HATs which captures all possible
many-to-many mappings.

Having broadly explained what Hierarchical Alignment Trees (HATSs) are about
and what kind of information about hierarchical translation equivalence they give,
the next question is what other things we can do with HATs apart from this most
basic form of visualization.

3. Empirical analysis of word alignments in parallel corpora

In this section we exemplify one use of our toolkit for analysis of translation units
(TUs) and word alignments in parallel corpora. We first look at the percentage of word
alignments covered by Inversion-Transduction Grammar (ITG) (Wu, 1997), which are
the cases of fully binarizable word alignments. Subsequently we provide a breakdown
of word alignments into subclasses of increasing complexity.

Word alignments are considered the initial point for extracting translation units.
In our analysis we differentiate between two cases of translation units (TUs) that can
be extracted from a word alignment:

Contiguous TUs Only phrase pairs (called Contiguous translation units TUs)
Discontiguous TUs All contiguous + discontiguous TUs

When quantifying the coverage of ITG for word alignments, we explicitly make a
difference between these two cases. As expected, it is usually more difficult to provide
ITG derivations for discontiguous TUs in word alignments than for contiguous TUs.
We define ITG coverage as the percentage of word alignments that can be covered by
some ITG. A word alignment is covered by ITG if and only if it is fully binarizable,
i.e., all nodes in the HATs are binary branching. This is a specific class of HATs called
Binarizable Inversion Transduction Trees (BITTs).

Besides BITTs, word alignments can be grouped into subclasses of HATs according
to the complexity of the reordering operators — set-permutations — on the nodes in
these HATs. Apart from the BITT case (derivable by ITGs), we also define two more
subclasses:

enumerating all of them from the Hypergraph and writing their tree structures to a textfile, then reading
this unpacked forest from the textfile by the tree visualization component. As this can become somewhat
slow in case of many HATSs, rendering rendering all HATs can be turned on in the GUI, but only showing
the first one is used as the default option.
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PETs Percentage of word alignments covered by different Permutation Trees (PETs)
that are beyond BITTs, i.e., these are bijective word alignments that are non-
binarizable,

HATs All remaining HATs that are beyond PETs, i.e., non-bijective cases consisting
of many-to-many word alignments and possibly discontiguous TUs.

3.1. Word alignments covered by ITG: BITTs

Data Sets We use manually and automatically aligned corpora. Manually aligned
corpora come from two datasets. The first (Graga et al., 2008) consists of six lan-
guage pairs: Portuguese-English, Portuguese—French, Portuguese-Spanish, English—
Spanish, English-French and French-Spanish. These datasets contain 100 sentence
pairs each and distinguish Sure and Possible alignments. Following Segaard and Kuhn
(2009), we treat these two equally. The second manually aligned dataset (Pad6 and
Lapata, 2006) contains 987 sentence pairs from the English-German part of Europarl
annotated using the Blinker guidelines (Melamed, 1998). The automatically aligned
data comes from Europarl (Koehn, 2005) in three language pairs (English-Dutch,
English-French and English—-German). The corpora are automatically aligned using
GIZA++ (Och and Ney, 2003) in combination with the grow-diag-final-and heuristic.
With sentence length cutoff 40 on both sides these contain respectively 945k, 949k and
995k sentence pairs.

ITG Coverage is defined as the percentage word alignments (sentence pairs) in a
parallel corpus that can be covered by an instance of ITG. Clearly, coverage depends
on the chosen semantic interpretation of word alignments: contiguous translation
units (phrase pairs) or discontiguous translation units.?

Results Table 1 shows the coverage of ITG for the different corpora dependent on
the two alternative definitions of translation equivalence. The first thing to notice is that
there is just a small difference between the Grammatical Coverage scores for these
two definitions. The difference is in the order of a few percentage points, the largest
difference is seen for Portuguese-French (79% v.s 74% Grammatical Coverage), for
some language pairs there is no difference. For the automatically aligned corpora the
absolute difference is on average about 2%. We attribute this to the fact that there are
only very few discontiguous TUs that can be covered by ITG in this data.

2 A note here on the computation of coverage for the different subclasses of HATs such as ITG Coverage
in case of BITTs. As mentioned before every alignment typically yields a set containing multiple alternative
HATSs, corresponding to the different possible minimal factorizations of phrase pairs. Each of these HATs in
the sethowever is by itself sufficient to determine the complexity for the whole set, since it always holds that
all HATs in the set have the same complexity. This property is hence used for the efficient computation of the
coverage statistics, based on just the first HAT from the computed Hypergraph of HATs for an alignment.
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Alignments Set | Coverage contiguous | Coverage discontiguous
Hand aligned corpora
English-French 76.0 75.0
English-Portuguese 78.0 78.0
English-Spanish 83.0 83.0
Portuguese-French 78.0 74.0
Portuguese-Spanish 91.0 91.0
Spanish-French 79.0 74.0
LREC Corpora Average 80.8+£5.5 79.2+6.7
l English-German [ 45.4 [ 453
Automatically aligned Corpora
English-Dutch 45.5 43.6
English-French 52.8 50.0
English-German 45.6 43.7
Automatically aligned corpora average | 48.0+4.20 45.8+3.6

Table 1: The ITG coverage for different corpora dependent on the interpretation of
word alignments: contiguous only or including discontiguous translation units

The second thing to notice is that the scores are much higher for the corpora from
the LREC dataset than they are for the manually aligned English-German corpus.
The approximately double source and target length of the manually aligned English—
German corpus, in combination with somewhat less dense alignments makes this
corpus much harder than the LREC corpora. Intuitively, one would expect that more
alignment links make alignments more complicated. This turns out to not always be
the case. Further inspection of the LREC alignments also shows that these alignments
often consist of parts that are completely linked. Such completely linked parts are by
definition treated as atomic TUs, which could make the alignments look simpler. This
contrasts with the situation in the manually aligned English—-German corpus where
on average less alignment links exist per word.

When we look at the results for the automatically aligned corpora at the lowest
rows in the table, we see that these are comparable to the results for the manually
aligned English-German corpus (and much lower than the results for the LREC
corpora). This could be explained by the fact that the manually aligned English—
German is not only Europarl data, but possibly also because the manual alignments
themselves were obtained by initialization with the GIZA++ alignments. In any case,
the manually and automatically acquired alignments for this data are not too different
from the perspective of ITG. Further differences might exist if we would employ
another class of grammars, e.g., full SCFGs.

One the one hand, we find that manual alignments are well but not fully covered
by ITG. On the other, the automatic alignments are not covered well but ITG. This
suggests that these automatic alignments are difficult to cover by ITG, and the reason
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Kind of HATs English-Dutch | English-French | English-German
BITTs (Binarizable permut.) 45.5% 52.8% 45.6%
PETs (Permut.) 52.6% 56.6% 52.6%
HATSs (Set-permut.) 100.0% 100.0% 100.0%

Table 2: The ratio of the different subsets of HATs in the corpus: BITTs, PETs and
HATs

could be that these alignments are built heuristically by trading precision for recall (cf.
Och and Ney, 2003). Segaard (2010) reports that full ITG provides a few percentage
points gains over ITG.

Overall, we find that our results for the LREC data are far higher than Segaard’s
results but lower than the upperbounds of Sggaard and Wu (2009). A similar
observation holds for the English-German manually aligned EuroParl data, albeit the
maximum length (15) used in (Segaard and Wu, 2009; Segaard, 2010) is different from
ours (40). We attribute the difference between our results and Sogaard’s approach to
our choice to adopt lexical productions of ITG that contain own internal alignments
(the detailed version) and determined by the atomic TUs of the word alignment. Our
results differ substantially from Segaard and Wu (2009) who report upperbounds
(indeed our results still fall within these upperbounds for the LREC data).

3.2. Breakdown according to reordering complexity

Table 2 shows the breakdown statistics of word alignments according to com-
plexity class for three of the automatically aligned EuroParl corpora. The first line
with percentages for BITTs corresponds to the “Coverage Contiguous” scores for the
automatically aligned corpora, at the bottom lines in the middle column in Table 1.
There is an obvious difference between the percentage of BITTs for English-French
vs. English-German and English-Dutch. This difference carries over to PETs, fully
bijective word alignments. The percentages for PETs clearly show that approximately
half of the word alignments in the data are beyond the bijective case.

4. Related Work

General tools have been created for the visualization of basic word alignment
(Smith and Jahr, 2000; Germann, 2008) as well as for the manual annotation of
sentence pairs. For the alignment of syntactic trees another available toolkit is
the Stockholm Tree Aligner (Volk et al., 2007). As a somewhat related problem,
Maillette de Buy Wenniger et al. (2010) take on visualization of the coherence of tree-
based reordering with word alignments.

Normalized Decomposition Trees (NDTs) were introduced in Zhang et al. (2008),
giving an efficient tree-based hierarchical representation of nested phrase pairs.
Combined with these structures a very efficient phrase extraction algorithm with
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linear time complexity was proposed. In these representations, the relative reordering
operations taking place at the nodes is left implicit, as it is not relevant from the
point of view of plain phrase extraction. Indeed for phrase extraction NDTs are a
superior tool. On the other hand, for effective visualization and quick insight into
the structure, explicit reordering labels play an important role. For efficient and
intuitive reordering complexity analysis this is equally true. Hierarchical Alignment
Trees can be seen as an extension of Normalized Decomposition Trees, that makes
the reordering relations between translation equivalents explicit and also keeps track
of the alignment relations within phrase pairs. The latter guarantees that for every
word alignment there is a mapping to a set of HATs, such that the set of HATs truly
captures all information and structure of the word alignment. This is not completely
the case for NDTs.

The array of work described in Zens and Ney (2003); Wellington et al. (2006);
Segaard and Wu (2009); Segaard and Kuhn (2009); Segaard (2010) concentrates on
methods for calculating upperbounds on the alignment coverage for all ITGs, including
NF-ITG. See Maillette de Buy Wenniger and Sima’an (2013) for a more complete
overview. Some of this work also uses alignment parsing to compute more exact
scores (Segaard, 2010), recently extended by Kaeshammer (2013) which adds new
flavor to this discussion by looking at alignment reachability for Synchronous Linear
Context-Free Rewriting Systems.

5. Conclusions

We introduced a toolkit for the visualization, search and analysis of hierarchical
translation equivalence. We have shown how this toolkit can help to get a better qual-
itative as well as quantitative understanding of translation equivalence relations as
induced by word alignments for real big translation data. The software is distributed
under the LGPL license and can be downloaded from:

https://bitbucket.org/teamwildtreechase/hatparsing
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