# 12 Years of Unsupervised Dependency Parsing

#### <u>David Mareček</u>

Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

SloNLP 2016, September 18th, Tatranské Matliare, Slovakia



O dalších podmínkách této záležitosti odmítl hovořit .

O dalších podmínkách této záležitosti odmítl hovořit . ADP ADJ NOUN PRON NOUN VERB VERB PUNCT



**PDT style** 



**Universal Dependencies style** 

# Outline

- POSSIBILITIES OF PARSING LANGUAGES WITH LIMITED RESOURCES
- From completely supervised to completely unsupervised
  - Completely Supervised
  - Semi-supervised
  - Projection
  - Delexicalization
  - Minimally supervised
  - Unsupervised using POS
  - Completely unsupervised
- Results comparison
- Conclusions

# **Motivation and Resources**

Motivation 1: We want to parse a language, for which no or very small annotated treebanks exists.

Motivation 2: The structures we want to get are different from that we have in the treebank.

Resources for parsing:

- Tagger (manually tagged corpus)
- Dependency treebank
- Only a few annotated sentences
- A parallel corpus with another language, for which we have a treebank
- Shared tagset with another language, for which we have a treebank
- Grammar rules (based on tags)

[en] He declined to discuss other terms of the issue. [cs] O dalších podmínkách této záležitosti odmítl hovořit.

## **Different degrees of supervision**

|                          | Tagger<br>for X | Treebank<br>for X | Grammar<br>rules<br>for X | Parallel<br>corpus<br>X - Y | Shared<br>tagset X<br>- Y | Treeban<br>k for Y | Raw text<br>corpus<br>for X |
|--------------------------|-----------------|-------------------|---------------------------|-----------------------------|---------------------------|--------------------|-----------------------------|
| Completely supervised    | 0               | 0                 |                           |                             |                           |                    |                             |
| Self-training            | 0               | small             |                           |                             |                           |                    | Ο                           |
| Projection method        | 0               |                   |                           | 0                           |                           | 0                  |                             |
| Delexicalization method  | 0               |                   |                           |                             | 0                         | 0                  |                             |
| Minimally supervised     | 0               |                   | 0                         |                             |                           |                    | Ο                           |
| Unsupervised using POS   | 0               |                   |                           |                             |                           |                    | Ο                           |
| Unsupervised without POS |                 |                   |                           |                             |                           |                    | Ο                           |

# **Projection methods**

Motivation: We want to parse language (X), for which no treebank exists.

Resources: tagger, parallel treebank (X-Y) with another language (Y), for which we have a parser.

- 1. Parse the Y side of the parallel treebank X-Y
- 2. Do the word alignment between X and Y.



# **Projection methods**

Motivation: We want to parse language (X), for which no treebank exists.

Resources: tagger, parallel treebank (X-Y) with another language (Y), for which we have a parser.

- 1. Parse the Y side of the parallel treebank X-Y
- 2. Do the word alignment between X and Y.
- 3. Project the dependency edges from Y to X.
- 4. Attach somehow the remaining nodes.
- 5. Train a parser on the projected trees X.



## **Delexicalization methods**

Motivation: We want to parse language (X), for which no treebank exists.

Resources: tagger, shared tagset with another language (Y), for which we have a treebank.



# **Delexicalization methods**

Motivation: We want to parse language (X), for which no treebank exists.

Resources: tagger, shared tagset with another language (Y), for which we have a treebank.

1. Delete wordforms from the treebank Y and train a supervised parser only on its POS tags.



## **Delexicalization methods**

Motivation: We want to parse language (X), for which no treebank exists.

Resources: tagger, shared tagset with another language (Y), for which we have a treebank.

- 1. Delete wordforms from the treebank Y and train a supervised parser only on its POS tags.
- 2. Use such parser for language X, use only the POS tags of X. The tagsets must be shared between X and Y.



# **Unsupervised methods with POS**

Motivation: We want to parse language (X), for which no annotated treebank exists. We do not want to initate any treebank, we want to infer structures only from POS-tagged texts.

- Not burdened by linguistic rules (what to do with coordinations, appositions, complex verbs forms, punctuation, ... ), everything is learned directly from the corpus
- The structures obtained by unsupervised parsers can be tuned (fitted) to particular applications, while the supervised parsers always simulate the treebanks

Resources: tagger, raw corpus

# **Unsupervised methods with POS**

#### **DEPENDENCY MODEL WITH VALENCE**

- generative model
  - **choose** probability for generating labels of nodes
  - stop probability for generating dependency edges
- introduced by Klein and Manning (2004)
- improved by Smith (2007), Headden (2009), Spitkovsky (2010-2012), ...

 $P_{choose}(c_d|c_h, dir)$ 

 $P_{stop}(STOP|c_h, dir, adj)$ 





P<sub>stop</sub>(¬STOP | VBD, right, 0)

## **Unsupervised methods with POS**

#### **BAYESIAN INFERENCE - GIBBS SAMPLING**

- 1. initialization random projective trees
- 2. *sampling* In many iterations, we choose one sentence and

- compute probability of each possible projective dependency tree using dynamic programming

- sample a new tree according to the computed probability distribution

3. *finalization* - an averaged trees during the sampling are outputed

$$P_{choose}(c_d|c_h, dir) = \frac{\frac{1}{|C|}\alpha_c + count^-(c_d, c_h, dir)}{\alpha_c + count^-(c_h, dir)}$$
$$P_{stop}(STOP|c_h, dir, adj) = \frac{\frac{2}{3}\alpha_s + count^-(STOP, c_h, dir, adj)}{\alpha_s + count^-(c_h, dir, adj)}$$

# Minimally supervised methods

We add a couple of linguistic rules to guide the unsupervised parsing, e.g:

- function words (tags ADP, DET, AUX, CONJ, SCONJ, PUNCT, ...) have no children
- ADJ dependens often on NOUNs
- VERBs are in roots.

The structures are then much closer to the gold dependency trees.

## **Unsupervised methods without POS**

If we do not have any tagger:

We can run a word-clustering tool to induce a class for each word.

And then run an unsupervised parser on these classes instead of POS tags.

O dalších podmínkách této záležitosti odmítl hovořit . 44 22 15 41 23 7 25 48

## **Unsupervised methods without POS**

If we do not have any tagger:

We can run a word-clustering tool to induce a class for each word.

And then run an unsupervised parser on these classes instead of POS tags.



## **Different degrees of supervision**

|                          | Tagger<br>for X | Treebank<br>for X | Grammar<br>rules<br>for X | Parallel<br>corpus<br>X - Y | Shared<br>tagset X<br>- Y | Treeban<br>k for Y | Raw text<br>corpus<br>for X |
|--------------------------|-----------------|-------------------|---------------------------|-----------------------------|---------------------------|--------------------|-----------------------------|
| Completely supervised    | 0               | Ο                 |                           |                             |                           |                    |                             |
| Self-training            | 0               | small             |                           |                             |                           |                    | Ο                           |
| Projection method        | 0               |                   |                           | 0                           |                           | 0                  |                             |
| Delexicalization method  | 0               |                   |                           |                             | 0                         | 0                  |                             |
| Minimally supervised     | 0               |                   | 0                         |                             |                           |                    | Ο                           |
| Unsupervised using POS   | 0               |                   |                           |                             |                           |                    | Ο                           |
| Unsupervised without POS |                 |                   |                           |                             |                           |                    | Ο                           |

# Results

Unlabelled attachment score on selected languages from CoNLL 2006 and 2007 datasets

|                          | bg   | CS   | de   | el   | en   | es   | hu   | it   | pt   | SV   | AVG  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Completely supervised    | 87.4 | 86.3 | 87.3 | 84.0 | 90.1 | 82.3 | 83.6 | 87.9 | 87.6 | 84.6 | 86.1 |
| Projection method        | 56.3 | 62.3 | 50.1 | 65.2 |      | 58.2 | 51.2 | 59.3 | 62.9 | 55.8 | 57.9 |
| Delexicalization method  | 60.3 | 57.5 | 51.7 | 58.5 | 62.4 | 55.6 | 58.0 | 56.8 | 67.7 | 58.3 | 58.7 |
| Minimally supervised     | 58.1 | 54.8 | 53.9 | 53.2 | 56.6 | 62.7 | 57.4 | 54.8 | 69.8 | 59.5 | 56.9 |
| Unsupervised using POS   | 54.9 | 52.4 | 52.4 | 26.3 | 55.4 | 61.1 | 34.0 | 39.4 | 69.6 | 54.5 | 50.0 |
| Unsupervised without POS | 47.9 | 38.0 | 41.2 | 39.7 | 47.9 | 60.1 | 24.1 | 41.4 | 31.4 | 54.9 | 42.6 |

# **Conclusions - 1**

Unlabelled attachment score on selected languages from CoNLL 2006 and 2007 datasets

|                          | bg   | CS   | de   | el   | en   | es   | hu   | it   | pt   | SV   | AVG  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Completely supervised    | 87.4 | 86.3 | 87.3 | 84.0 | 90.1 | 82.3 | 83.6 | 87.9 | 87.6 | 84.6 | 86.1 |
| Projection method        | 56.3 | 62.3 | 50.1 | 65.2 |      | 58.2 | 51.2 | 59.3 | 62.9 | 55.8 | 57.9 |
| Delexicalization method  | 60.3 | 57.5 | 51.7 | 58.5 | 62.4 | 55.6 | 58.0 | 56.8 | 67.7 | 58.3 | 58.7 |
| Minimally supervised     | 58.1 | 54.8 | 53.9 | 53.2 | 56.6 | 62.7 | 57.4 | 54.8 | 69.8 | 59.5 | 56.9 |
| Unsupervised using POS   | 54.9 | 52.4 | 52.4 | 26.3 | 55.4 | 61.1 | 34.0 | 39.4 | 69.6 | 54.5 | 50.0 |
| Unsupervised without POS | 47.9 | 38.0 | 41.2 | 39.7 | 47.9 | 60.1 | 24.1 | 41.4 | 31.4 | 54.9 | 42.6 |

Minimally supervised parsing is always better than unsupervised [Mareček @ SLSP 2016]

# **Conclusions - 2**

Unlabelled attachment score on selected languages from CoNLL 2006 and 2007 datasets

|                          | bg   | CS   | de   | el   | en   | es   | hu   | it   | pt   | SV   | AVG  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Completely supervised    | 87.4 | 86.3 | 87.3 | 84.0 | 90.1 | 82.3 | 83.6 | 87.9 | 87.6 | 84.6 | 86.1 |
| Projection method        | 56.3 | 62.3 | 50.1 | 65.2 |      | 58.2 | 51.2 | 59.3 | 62.9 | 55.8 | 57.9 |
| Delexicalization method  | 60.3 | 57.5 | 51.7 | 58.5 | 62.4 | 55.6 | 58.0 | 56.8 | 67.7 | 58.3 | 58.7 |
| Minimally supervised     | 58.1 | 54.8 | 53.9 | 53.2 | 56.6 | 62.7 | 57.4 | 54.8 | 69.8 | 59.5 | 56.9 |
| Unsupervised using POS   | 54.9 | 52.4 | 52.4 | 26.3 | 55.4 | 61.1 | 34.0 | 39.4 | 69.6 | 54.5 | 50.0 |
| Unsupervised without POS | 47.9 | 38.0 | 41.2 | 39.7 | 47.9 | 60.1 | 24.1 | 41.4 | 31.4 | 54.9 | 42.6 |

Delexicalized parsing is a simple method with reasonable results, if you want to transfer the syntax style from another language.

# **Conclusions - 3**

Unlabelled attachment score on selected languages from CoNLL 2006 and 2007 datasets

|                          | bg   | CS   | de   | el   | en   | es   | hu   | it   | pt   | SV   | AVG  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Completely supervised    | 87.4 | 86.3 | 87.3 | 84.0 | 90.1 | 82.3 | 83.6 | 87.9 | 87.6 | 84.6 | 86.1 |
| Projection method        | 56.3 | 62.3 | 50.1 | 65.2 |      | 58.2 | 51.2 | 59.3 | 62.9 | 55.8 | 57.9 |
| Delexicalization method  | 60.3 | 57.5 | 51.7 | 58.5 | 62.4 | 55.6 | 58.0 | 56.8 | 67.7 | 58.3 | 58.7 |
| Minimally supervised     | 58.1 | 54.8 | 53.9 | 53.2 | 56.6 | 62.7 | 57.4 | 54.8 | 69.8 | 59.5 | 56.9 |
| Unsupervised using POS   | 54.9 | 52.4 | 52.4 | 26.3 | 55.4 | 61.1 | 34.0 | 39.4 | 69.6 | 54.5 | 50.0 |
| Unsupervised without POS | 47.9 | 38.0 | 41.2 | 39.7 | 47.9 | 60.1 | 24.1 | 41.4 | 31.4 | 54.9 | 42.6 |

Fully unsupervised parsing is very interesting problem, however currently without any obvious application.

# Thank you for your attention!

http://ufal.mff.cuni.cz/udp/