Linguistic Structure in Deep networks (LSD)

Searching for Linguistic Structures in Neural Networks

David Mareček

■ University of Helsinki, September 12th, 2019

Outline

My Research Story

Inspecting Word Embeddings using PCA

Looking for Syntax in Transfomer's Self-Attentions

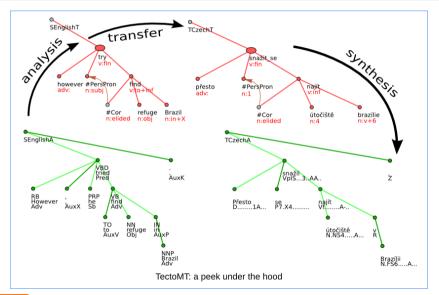
My Research Story

Well, I am from Prague ...

I started with tree-based MT

2008 - 2011

- TectoMT system
- English → Czech syntax-based MT system
- source language parsing
- alignment of syntactic trees



Supervised Dependency Parsing

2008 - 2011

- I believed that parsing of a natural language is the key element for every NLP application (machine translation, question answering, natural language understanding).
- But even though we worked hard and kept improving our syntax-based MT system, the phrase-based MT system Moses was still better and was improving faster.
- Why? Where was the problem? Maybe the annotations based on linguistic theories were not suitable for MT?
- Moreover, there were substantial differences in annotation styles of various language treebanks (before Universal Dependencies).

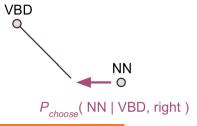
Unsupervised Dependency Parsing

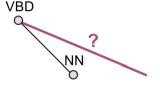
2011 - 2016

- What about unsupervised learning of trees?
- It was very popular in that time to make anything in unsupervised fashion.
- Parsing without any manually annotated treebanks.
- Not burdened by any linguistic theories, language universal.
- And maybe the tree structures learned by unsupervised parsers are more suitable for NLP tasks.

Unsupervised Dependency Parsing

- Dependency model with Valence (DMV)
 - generative model, which is able to generate all possible projective dependency trees
- Gibbs sampling
 - random initialization of the trees
 - select one sentence, and train the model (collect counts) on all other trees in the corpus
 - sample a new tree on that sentence based on the model
 - repeat until convergence
- This produced quite nice dependency trees.
- But it didn't worked well when used directly in NLP tasks.

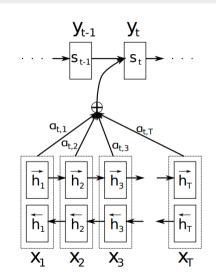




Advance Neural Machine Translation

since 2014

- Moses system outperformed by NMT
- RNN based NMT use "memory" that could keep information about any other word in the sentence. It is therefore able to learn syntactic relations.
- Transformer NMT uses self-attentions, in which any word can look anytime at any other word in the sentence.
- These approaches can easily learn a kind of latent unsupervised structure of the sentence tailored exactly for the machine translation task.



LSD project

since 2018

Linguistic Structure representation in Deep networks

- National Science Foundation of Czech Republic
- **2018 2020**

Goals:

- Word embeddings and DNNs perform great.
- They do not have any explicit knowledge linguistic abstractions.
- How do they work? What abstractions can we observe in them? How do we interpret them?
- Are the emergent structures similar to classical linguistic structures?

LSD team

Jindřich Libovický

Rudolf Rosa

Tomáš Musil

Selected LSD results

Inspecting Word Embeddings using Principal Component Analysis (Musil, 2019)

• What features are important for word embeddings of various NLP tasks?

Derivational Morphological Relations in Word Embeddings (Musil et al., 2019)

Unsupervised clustering of word-embedding differences captures derivational relations.

Neural Networks as Explicit Word-Based Rules (Libovický, 2019)

• We interpret a convolutional network for sentiment classification as word-based rules.

Looking for Syntax in Transformer Self-Attentions (Mareček and Rosa, 2019, 2018)

• Building constituency trees from multi-head self-attentions.

Inspecting Word Embeddings using

PCA

Idea

- Assume a word-embedding vector space learned by a neural network solving some NLP task (machine translation, sentiment analysis, NLU, word2vec)
- Question: Do the embedding vectors encode linguistic features like part-of-speech, gender, number, tense, named entities, derivational relations, etc?
- We would like to get something like: 2nd position encodes grammatical number, 14th position encodes abstractness, 138th position encodes colours of objects, etc.
- Not as simple:
 - Each training ends up with complete different embeddings.
 - Possible linguistic features may correlate with any linear combination.

Probing

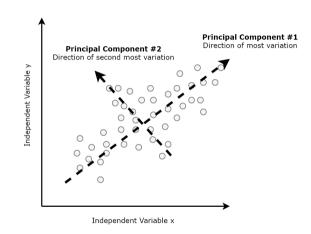
- Multilayer perceptron predicting POS from word-embeddings
- Supervised training on annotated data
- Disjoint train and test vocabularies

model	accuracy	dev.
NMT RNN encoder	94.69 %	\pm 0.93 $\%$
NMT RNN decoder	97.77 %	$\pm~1.16\%$
NMT Transformer encoder	96.37 %	$\pm~1.49\%$
NMT Transformer decoder	93.36 %	\pm 3.86 $\%$
word2vec	95.01%	$\pm~1.94\%$

- But does the network really needs part-of-speech?
- Or it only learns it somehow form many other more important features?

Principal Component Analysis (PCA)

- Transformation to another orthogonal basis set
- 1st principal component has the largest possible variance across the data
- Each other principal component is orthogonal to all preceding components and has the largest possible variance.
- If something correlates with the highest principal components its possibly very important for the NLP task.

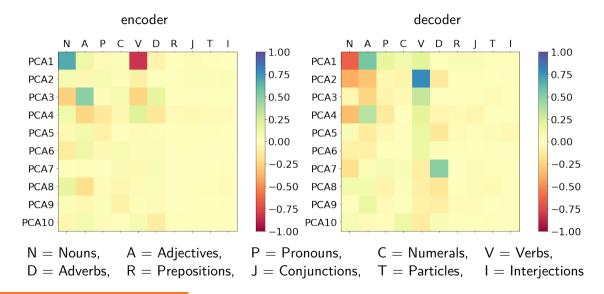


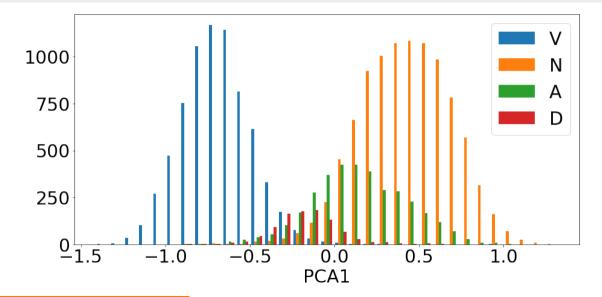
Experiment setting

We experiment with several different Czech word-embeddings spaces:

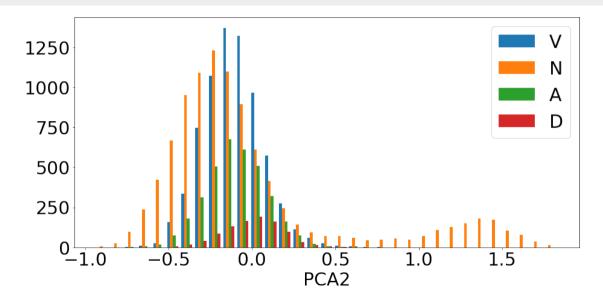
- Neural machine translation (Sutskever et al., 2014), with LSTM cells with hidden-state size of 1024, word-embedding dimension 512, trained on English ↔ Czech fiction data. We examine both Czech encoder and Czech decoder embeddings.
- Word2Vec (Mikolov et al., 2013), with dimension 512, trained on the Czech side of the same parallel corpus, window size 11, negative sampling 10
- Sentiment analysis on Czech, CNN trained on ČSFD database of movies user comments and rankings

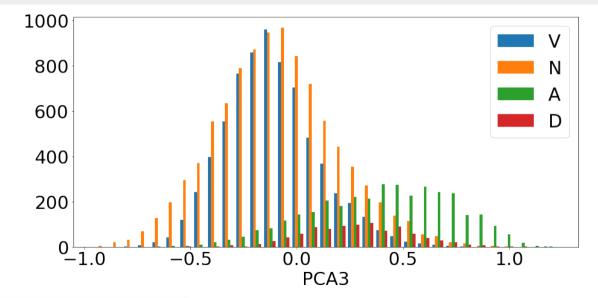
Word-embeddings learned by NMT, correlation with POS tags



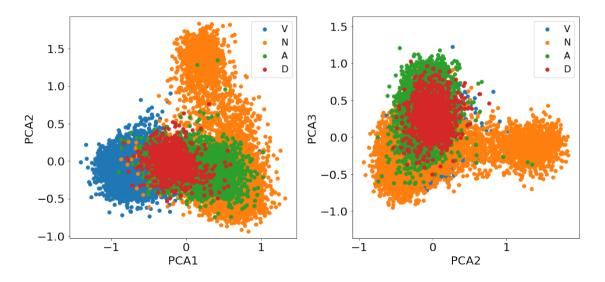


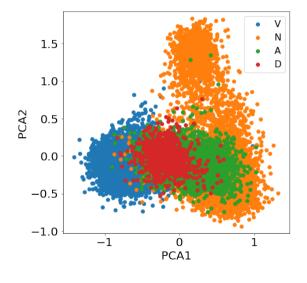
16/43





18/43



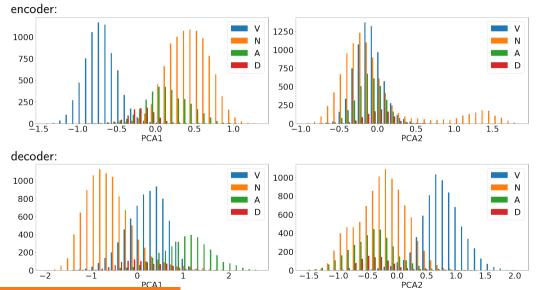


What is the separated island of Nouns visible in PCA2?

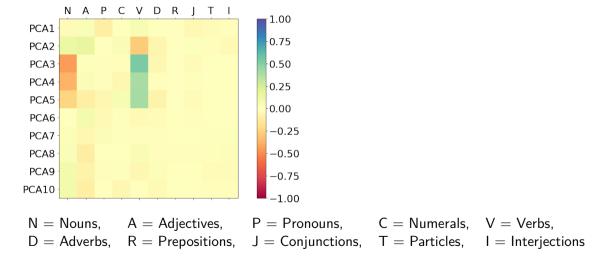
When we take a sample of words from this cluster, it contains almost exclusively named entities:

Fang, Eliáš, Još, Aenea, Bush, Eddie, Zlatoluna, Gordon, Bellondová, Hermiona

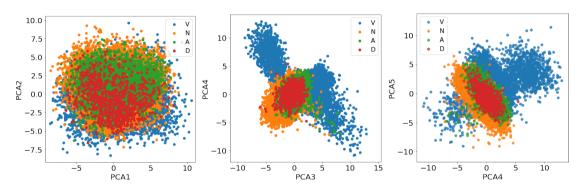
Differences between NMT encoder and decoder



Word-embeddings learned by Word2Vec, correlation with POS tags



Word-embedding space learned by Word2Vec



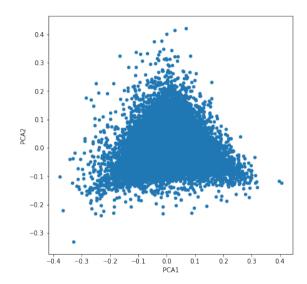
- Different structure than the NMT embeddings.
- PCA4 distinguishes infinitives and modal verbs.

Word-embedding space learnt by Sentiment Analysis

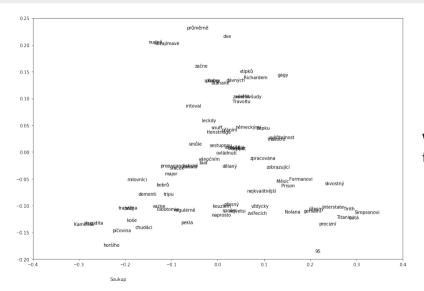
- Task: deciding whether a given text is emotionally positive, negative, or neutral.
- Trained on Czech ČSFD database (https://www.csfd.cz/), data were obtained from user comments and rankings of movies.
- Architecture: Convolutional neural network based on Kim (2014).

Neg: "Very boring. I felt asleep."

Pos: "Great movie with super effects!!!"

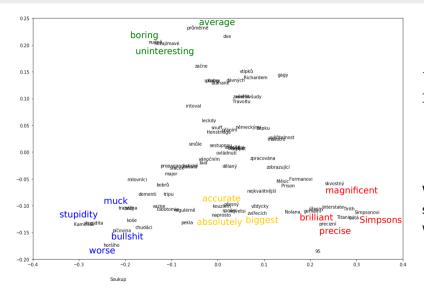


Word-embedding space learnt by Sentiment Analysis



We sampled some words from the vector space...

Word-embedding space learnt by Sentiment Analysis



- \leftrightarrow ... polarity of the word
- $\updownarrow\dots$ intensity of the word

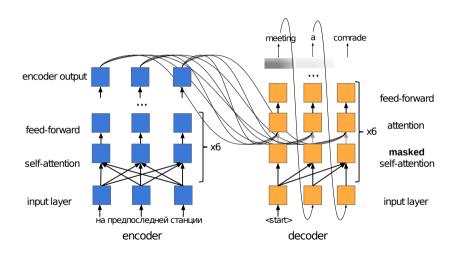
Word embedding space is shaped by the task for which it is trained.

Summary

- Examining histograms of classes along the principal component is important to understand the structure of representation of information in embeddings.
- NMT models distinguished verbs from nouns and adjectives very well and also represent named entities separately in the embedding space.
- word2vec distinguishes infinitive forms and modal verbs from the rest of the verbs.
- CNN sentiment analysis naturally models emotional properties of words in the shape of the embedding space.

Looking for Syntax in Transfomer's Self-Attentions

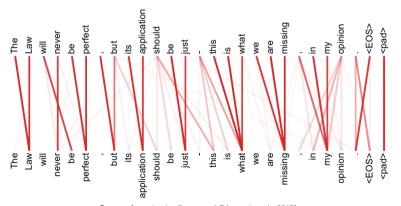
Transformer NMT



Source: https://research.jetbrains.org/files/material/5ace635c03259.pdf

Multi-headed self-attention mechanism

- Encoder has 6 layers, each one with 16 attention heads, i.e. 96 heads in total
- Each head may possibly look at all the positions (contextual representations of words) on the previous layer and returns a distribution of weights across the positions.
- But usually it looks at just one position.

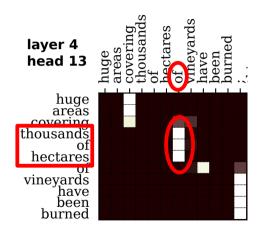


Observation

We visualize the (softmaxed) attention heads using matrices.

In many attention heads, we observe the following pattern:

- Continuous sequences of words attends to the same positions.
- They resemble syntactic phrases.
 - To what extent?
 - ullet o That's our research question!



Experiment setup

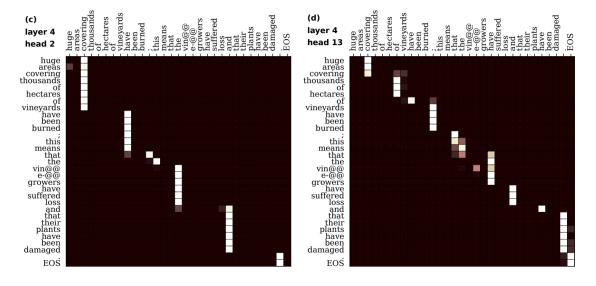
Transformer NMT system (Vaswani et al., 2017)

- Encoder: 6 layers x 16 heads
- Data from Europarl, 6 translation pairs
- French \leftrightarrow English, German \leftrightarrow English, French \leftrightarrow German

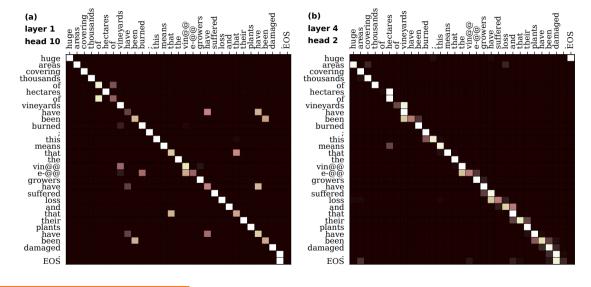
Test sentences are parsed by Stanford parser into contituency trees

- Penn Treebank, French Treebank, Negra Corpus
- used only for evaluation

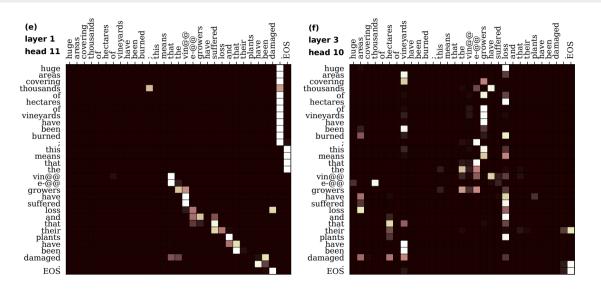
Balustrades (70% of the attention heads)



Diagonals (especially 1st layer)



The rest: attend to end, mixed, scattered...



Our Approach

- 1. We collect the obtained phrases across all the heads and layers ightarrow phrase candidates
- 2. Using the phrase candidates, we build constituency trees
 - Linguistically uninformed algorithm
- 3. We compare our trees with the standard syntactic trees obtained by Stanford parser

Phrase candidates

We take all phrases (balusters) of length ≥ 2 from all 96 heads across layers.

For each possible phrase, we compute its score:

- Average attention weight
 - individual "pixels" of the phrases may have different weight
- Sum over all heads
 - the same phrase may appear in more attention heads
- Equalize over different phrase lengths
 - shorter phrases are more frequent



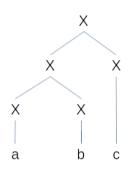
Parsing algorithm - CKY

We find the best binary constituency tree

- Tree score = the sum of scores of phrases used in the tree
- CKY algorithm (dynamic programing)
 - Finds constituency tree (set of phrases) with maximal score

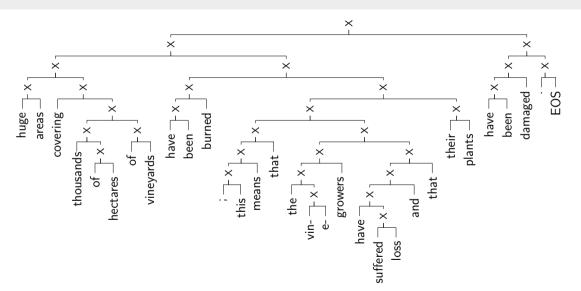
We measure F-score of the resulting trees against the "gold" trees obtained by Stanford parser.

We compare them with "balanced binary tree" baselines.

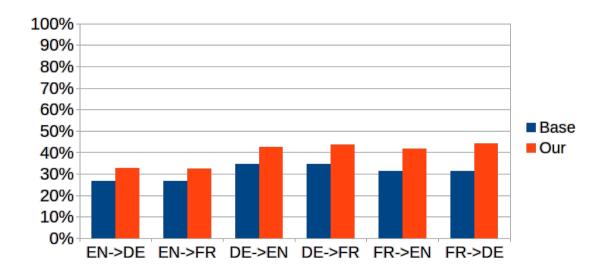


$$s(T) = s(ab) + s(abc)$$

Results



Comparison to standard syntactic trees



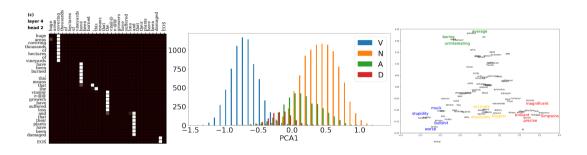
Summary

- Some syntax is learned.
- Significantly better scores than baselines.
- Still very far from the gold annotations.
- Shorter phrases very often well recognized.
- Sentence clause also very well recognized.

Future Work

- The encoder is probably affected by the target language.
- The idea is to train the translation into more languages (e.g. multiple decoders), so that the encoder representation is more universal.
- This could result in more syntactic behavior of the encoder.

Thank you for your attention!



http://ufal.mff.cuni.cz/david-marecek

marecek@ufal.mff.cuni.cz