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Introduction
The field of robotics is evolving. With more and more advanced robots, the

question how to effectively control them and communicate with them is getting
more important. For humans the most natural way of controlling robots is using
the natural language. This opens up an important and interesting problem:
creating robots who understand and follow natural language commands.

The first step to solve this task is being able to control a robot using natural
language in a simple simulated environment.

This thesis describes a neural network approach for interpreting natural lan-
guage commands in such a simple simulated environment. Our environment con-
sists of a board with square blocks, with commands describing how these blocks
should be moved. The set of commands is static and also contains a formal de-
scription of the correct action. Thus the problem can be viewed as a supervised
machine learning problem with a static dataset.

There was already an attempt to solve this problem by Bisk et al. [2016b].
The main goal of this work is getting a better results than the ones described in
Bisk et al. [2016b]. To do this we are going to use neural networks.

The second goal of this work is to create a rule-based model using language
parsing and compare its results with the neural networks solution. This can open
a ways for novel solutions.

Our third goal is to create an interactive demo for visualizing the environment
and the actions.

This thesis is divided into 7 chapters. In the first chapter “Related work” we
describe the work of Bisk et al. [2016b] and shortly discuss other similar datasets
and corresponding solutions.

The second chapter “Theoretical background” introduces the reader to neural
networks with focus on recurrent networks and methods used in our models.

The third chapter “Data and evaluation” describes the dataset used in this
work and how we are measuring performance of predictive models in our envi-
ronment.

The fourth chapter “Tokenization” describes the process of identifying words
in the commands, which is a necessary preprocessing step before using the models.

The fifth chapter “Models development” discusses rule-based models, neural
network models and hyperparameter values of our models.

The sixth chapter “Advanced data preprocessing” describes data augmenta-
tion, correcting errors in the commands and other approaches of improving the
data or getting additional data.

The last seventh chapter “Evaluation and discussion” discusses our results
and analyzes our best models.
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1. Related work
Bisk et al. [2016a] created a dataset for translating commands in natural

language to actions in a simulated world with square blocks. The block have
logos or digits on them for an easy identification. The world is represented by a
grid, and the actions are movements of blocks to some location.

In another article Bisk et al. [2016b] described a few neural models for under-
standing the commands in the dataset and predicting the actions. They found
out that recurrent neural networks work better than feed forward neural networks
for this task. They also tried three different architectures of the networks. The
first one consisted of three classification networks, which predicted which block
should be moved, a reference (the block closest to the target destination) and a
direction to the target destination from the reference. Based on this triple they
then computed the final predicted action. The second model learned to compute
the final location based on the triple predicted by the first model. The last model
was a regression neural model, which directly computed the coordinates of the
block which should be moved and where it should be moved. With the first model
they reached their best results - 98% accuracy when predicting the source block
and 0.98 distance between the gold and the predicted location.

Robot Commands Treebank is another dataset with similar commands, which
was created by Dukes [2013]. It also contains instructions for a virtual robot in a
simulated world, which here consists of a grid and blocks of different shapes and
colors. But in this dataset the target value is not a single action but a command
or a sequence of commands in a formal Robot Control Language. Dukes [2014]
compared six systems designed for solving this task. The systems are mainly
using semantic parsers and hand designed rules, none of the systems uses neural
networks. The best solution presented by Packard [2014] is based on the English
Resource Grammar (Flickinger [2000]), whose results are than converted to the
Robot Control Language by a manually created rule based system.

A similar dataset was created by MacMahon et al. [2006]. The task here is to
predict a sequence of actions which will navigate a virtual robot to the correct
location in a simulated world. As far as we know, nobody used neural networks
for this dataset, the solutions are mainly based on semantic parsers, for example
Artzi and Zettlemoyer [2013]. Another similar dataset and solution based on
bigrams was described by Han and Schlangen [2017].

A similar system used in the real world was described by Tellex et al. [2011]
and Walter et al. [2015]. They created a robotic forklift which should be able to
understand simple natural language commands. For creating the system for un-
derstanding the commands, they first created a small dataset by using Amazons
Mechanical Turk and manually annotated the data. Then they used a model in-
vented by them specifically for this task, which is based on probabilistic graphical
models.

To our knowledge, the only application of neural networks in similar problems
was the one described by Bisk et al. [2016b]. We find this surprising, because
neural networks are the most promising approach in many NLP tasks. One of the
reasons likely lies in the sizes of the datasets - the one created by Bisk is much
bigger then the other ones.
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2. Theoretical background
This chapter gives a general introduction to artificial neural networks with

focus on recurrent neural networks and techniques used in following chapters.

2.1 Neuron
Artificial neural networks are a widely used family of machine learning models

inspired by the human brain. The basic building blocks of neural networks are
neurons. Each neuron computes a simple function of its inputs based on an
activation function, threshold and parameters which are called weights. The
number of weights is the same as the number of inputs of the neuron. The
output is then the result of the activation function applied on a dot product of
the weights and the inputs.

More formally let us denote the inputs of a neuron x1, x2, ..., xn = ~x, the
weights w1, w2, ..., wn = ~w, the threshold θ and the activation function f . The
output of the neuron y is then computed as:

y = f(~x · ~w − θ) (2.1)

The function f is typically the sigmoid function:

f(z) = 1
1 + e−λz

(2.2)

or the ReLU function:

f(z) =

z, if z ≥ 0
0, otherwise

(2.3)

2.2 Perceptron
The simplest neural model, which has only a single neuron, is called percep-

tron. It was first described by Rosenblatt [1957]. It classifies inputs into two
classes with an activation function:

f(z) =

1, if z ≥ 0
0, otherwise

(2.4)

The learning process is described in Algorithm 1.
The perceptron is seldom used in practice. One of the reasons is that it is a

linear classifier and it searches for a hyperplane dividing the training instances
into two classes. However, in many cases, the classes are not linearly separable,
the most trivial example is when the features are inputs of a XOR function and
the classes are its outputs.
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Algorithm 1 Perceptron learning algorithm. D is a set of training examples,
which are feature vectors of length l together with labels
1: procedure learn(Training set D, Iterations n, Number of features l)
2: Randomly initialize weights w1, ..., wl = w and threshold θ
3: for k in [1, ..., n] do . For each interation
4: for (x, y) in D do . For each feature vector X and label y
5: o← f(x · w − θ) . Compute output
6: for i in [1, ..., l] do
7: wi ← wi + (y − o) · xi . Update all weights
8: end for
9: θ ← θ + (y − o) . Update threshold
10: end for
11: end for
12: end procedure

Figure 2.1: A simple multilayer perceptron with two inputs X1, X2, two hidden
neurons H1, H2 and a single output neuron O1.

2.3 Multilayer perceptron
To overcome the limitation of a single perceptron we can create a network

consisting of layers of neurons. Such a network works in following way. The
inputs of the network are first transformed by the first layer and the results of
this transformation are used as inputs of the second layer. This happens until
the last layer is reached, which produces the prediction.

The predictions of a multilayer perceptron are not limited to 0 or 1 as it was
for the perceptron. Instead they are vectors of real numbers with same dimension
as the number of neurons in the last (output) layer. Predictions of the network
can and often are further transformed. For example for a classification to n
classes, we predict n real numbers, where i-th is interpreted as the probability
that the instance belongs to the i-th class. Then we choose the class with the
highest probability.

The major learning method of a multilayer perceptron is the backpropaga-
tion algorithm together with some optimization algorithm and a loss function.
Sometimes these three entities are described together as the backpropagation
algorithm, but we will discuss them separately.
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Figure 2.2: A computational graph of the multilayer perceptron showed in Figure
2.2. The network has two inputs, two neurons in the hidden layer with a RELu
activation function, one output neuron with a linear activation function and a
mean square error loss. The input of the network has features X1, X2 and a
target value Y , the j-th weight of the i-th neuron is Wi,j, the threshold of the
i-th neuron is θi, id denotes an identity function and x2 denotes a square function.

2.3.1 Loss function
In supervised training, we have a correct target for each instance. As was

described in the Section 2.3, the neural network produces a vector of real numbers.
A loss function takes the vector of real numbers and the correct target and outputs
a single real number - the loss. As in the other areas, the loss is a measure of
how bad the prediction is and during training we are trying to minimize it.

Often used loss function is the mean square error function (MSE) and the
cross entropy loss (Golik et al. [2013]).

2.3.2 Backpropagation algorithm
The backpropagation algorithm is the major learning algorithm used not only

in multilayer perceptron networks, but almost in every kind of neural network.
Therefore we describe it using not a multilayer perceptron, but a more general
structure - a computational graph.
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A computational graph is a directed acyclic graph, where the nodes with n ≥ 1
parents contain an n-ary function and nodes with 0 parents contain a constant
(which can be viewed as a constant function). For simplicity, we assume all the
functions use real numbers: Rn 7→ R. In most implementations there are tensors
of real numbers instead. A computational graph for the network depicted in
Figure 2.2 is in Figure 2.2.

In a computational graph, an input nodes are the nodes without any parents
and the loss node is the node without any children. We assume that the graph
has only one loss node, which computes the value of the loss function.

The backpropagation algorithm computes the derivatives of the loss function
with respect to the network parameters. To be able to do this, the functions in
all the nodes must be differentiable.

Since the computational graph is directed and acyclic there is a topological
ordering of its nodes. Therefore all the nodes can be numbered 1, ..., n such that
there are no edges uv with u > v. We use this numbering of nodes in the following
text. Note that the last n-th node is the loss node.

Algorithm 2 Forward phase
1: procedure forward(Computational graph G)
2: for i = 1, ..., n do . In topological order
3: p1, ..., pj ← Parents of i
4: oi = fi(op1 , ..., opj

) . Compute output value of i-th node
5: end for
6: return (o1, ..., on)
7: end procedure

Algorithm 3 Backward phase
1: procedure backward(Computational graph G, Node outputs (o1, ..., on))
2: gn ← 1
3: for i = n− 1, ..., 1 do . In reversed topological order
4: gi ←

∑
j∈Child(i) gj ·

∂oj

∂oi
. gi is equal ∂on

∂oi
= ∂loss

∂oi

5: end for
6: return (gj1 , ..., gjk) where j1, ..., jk are nodes corresponding to network

parameters
7: end procedure

The algorithm works in two phases: the forward and the backward phase,
described as Algorithms 2 and 3. In the forward phase the outputs of all the nodes
are numerically evaluated, starting from the input nodes. Then in the backward
phase, the derivatives with respect to the network parameters are computed. This
is done in the other direction, starting from the last node back to the input nodes.

The most important part of both algorithms is on the line 4 of Algorithm 3.
The analytical formula for the expression ∂oj

∂oi
is found by some automatic differ-

entiation system or by hand, before the the backpropagation algorithm starts. It
is a function of oi. Then during the run of the backpropagation algorithm, this
expression is numerically evaluated by the assignment of oi to this function.

It holds that gi = ∂loss
∂oi

. For i = n it holds because for each x ∂x
∂x

= 1. For
i < n it can be derived by using the chain rule of calculus.
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2.3.3 Optimizer
The optimizer in a neural network is trying to find the minimum of the loss

function by changing the parameters of the network. Basically it uses the steepest
descent method - it is decreasing the weights by their gradient and therefore
moving in the direction of the steepest descent of the loss function.

Most often used optimizers use only the derivatives computed by the back-
propagation algorithm, but some optimizers use also additional information for
updating the weights such as the second derivatives.

The basic algorithm is called stochastic gradient descent, which is described
as Algorithm 4.

Algorithm 4 One epoch of the stochastic gradient descent. For simplicity we
assume that the number of training examples is divisible by the batch size.
1: procedure SGD(Computational graph G, Training data T , Batch size b,

Learning rate α)
2: i← 0 . Training data index
3: while i < length(T ) do
4: ~g ← (0, ..., 0)
5: for j = i, ..., i+ b do . For instances in the batch
6: (xj, yj)← Tj . Update feature and target

nodes with next instance
7: o1, ..., on ← forward(G)
8: ~g ← ~g + backward(G, o1, ..., on)/b . Computing average gradient
9: end for
10: for each network parameter wi do
11: wi ← wi − α · gi . Update input node repre-

senting the weight wi
12: end for
13: i← i+ b
14: end while
15: end procedure

It works with batches of training examples. If the batch size is as large as
the whole training dataset, the algorithm is changing the weights in the exact
direction of the steepest descent of the loss function. But such a large batch
is in most cases not possible because of the large training times. With smaller
batches the algorithm only estimates the steepest direction based on the average
gradient over training examples in the batch. It can be proved that the estimate
is unbiased (Goodfellow et al. [2016]).

Many improvements of the stochastic gradient descent were suggested such as
the use of momentum (Qian [1999]). In this approach the weights are changed
not only by the current gradient, but also by an exponentially weighted average of
all the previous gradients. Based on the improvements of the stochastic gradient
descent, new algorithms were proposed. The most widely used one is the Adam
optimizer, first described by Kingma and Ba [2014]. It rescales the sizes of updates
based on the sizes accumulated over past updates and also uses the momentum.
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2.4 Recurrent neural networks
Feed forward neural networks were successfully applied to tasks with a fixed

length of an input and an output. But in some tasks the length is variable. For
example in machine translation, we want to map a sentence of a variable length
in one language to a sentence of a possible different length in another language.
For such tasks feed forward networks do not work well. For this reason a new
type of neural networks was invented - recurrent neural networks (Medsker and
Jain [1999]).

Recurrent neural networks are similar to the feed forward ones with one im-
portant difference. Some neurons in recurrent networks contain a state (memory)
which changes over time. These neurons are called recurrent units. When the
network processes an input, it reads it one part (e.g. one word in machine trans-
lation) at a time. It processes the part of the input and produces an output the
same way as feed forward network does, with the only difference that the state
of recurrent units changes. Then it processes next part of the input, produces an
output and the state of recurrent units changes again. This is happening until
all the parts of the input are processed. Because of this, the network can return
for the same input different outputs based on the state of its recurrent units.

If the network should produce an output with a fixed length but has a variable
length input, then all the outputs over time are somehow added together (e.g.
averaged) and used as an output. A second option is that the state of the recurrent
units after whole input was processed is used as an output.

If the network should produce an output with a variable length different than
the length of the input, an encoder-decoder architecture is used. This means that
the variable size input is encoded into a fixed sized vector, which is then used
for generating the the final variable size output. A precise description of this
architecture can be found in an article by Cho et al. [2014].

The main advantage of recurrent networks over the feed forward ones in se-
quence processing is a better generalization in case the same information is ap-
pearing in a different parts of the sequence. For example if we want to extract
the age of John from a sentences such as: “John is 9 years old and likes football”,
“John likes football and is 9 years old”, the recurrent network can learn to find
the sequence “x years old” and extract the age from this. A feed forward net-
work on the other hand cannot learn a simple rule like this, because the words in
different parts of the sequence are using different parameters of the network.

2.4.1 Recurrent units
The simplest recurrent unit uses its hidden state and an input to compute

a new hidden state and from the new hidden state the output of the unit is
computed (Pascanu et al. [2012]). Formally in time t with an input vector xt and
a previous hidden state ht−1 the unit updates its hidden state:

ht = f(Wxt + V ht−1 + b) (2.5)

and computes the output vector:

ot = Uht + c (2.6)
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where U, V and W are matrices with learned parameters, b and c are learned
thresholds and f is the activation function.

This unit is not widely used, because it does not work well with long range
dependencies in the sequence and suffers from the exploding/vanishing gradient
problem. But there are two other widely used recurrent units, which do not suffer
from these problems as much: the long short-term memory (LSTM) (Hochreiter
and Schmidhuber [1997]) and the gated recurrent unit (GRU) (Cho et al. [2014]).

LSTM contains a hidden state and three gates: a forget, an input and an
output gate. These gates use the previous output yt−1 and the current input xt
and their output vectors ft, it and ot in time t are computed as follows:

ft = σ(Wfyt−1 + Vfxt + bf ) (2.7)

it = σ(Wiyt−1 + Vixt + bi) (2.8)

ot = σ(Woyt−1 + Voxt + bo) (2.9)

where σ is the sigmoid function Wf , Vf ,Wi, Vi,Wo, Vo are the learned parameter
matrices and bf , bi, bo are the learned thresholds. Note that the sigmoid function
is applied separately on each vector component.

The input is multiplied by the input gate and added to the previous hidden
state multiplied by the forget gate, which gives us the new hidden state:

ht = ftht−1 + itσ(Whyt−1 + Vhxt + bh) (2.10)

Finally the output is computed as the hidden state transformed by a hyper-
bolic tangent and multiplied by the output gate:

yt = tanh(ht)ot (2.11)

GRU is similar to LSTM but it contains only two gates - a reset and an update
gate. Their values rt, ut are computed in a similar way as in LSTM. The hidden
state ht update is following:

ht = ht−1ut + (~1− ut)σ(Wh(rtht−1) + Vhxt + bh) (2.12)

Note that in the equations 2.7 through 2.12 all the multiplications and appli-
cations of tanh and σ are done by components. The lower letters denote vectors,
~1 is a vector of ones and the capital letters denote matrices.

It is not clear why these recurrent units should look exactly the way they are
and whether there are any other units with a similar or better performance. This
is true especially for LSTM, which is more complicated and where the motivation
behind some elements (e.g. input gate) is not clear.

Jozefowicz et al. [2015] tried to answer these questions. After an evolutionary
exploration and testing of many different architectures of recurrent units, they
found other architectures with a similar or maybe even better performance than
LSTM and GRU. They also found that a simple addition of bias 1 to the forget
gate makes LSTM better than both the original LSTM and GRU and that LSTM
without output gate works almost as good as the original one.

11



2.4.2 Backpropagation through time
Recurrent neural networks are trained similarly as the feed forward ones -

using the backpropagation algorithm. The only difference is in the creation of
the computational graph.

In case of the recurrent networks the computational graph is unfolded. Sup-
pose the input sequence has length t, which means that for processing the input
once, the original computational graph G with a single hidden unit (for simplic-
ity) is used t times with hidden states h0, ..., ht and inputs i1, ...it. The unfolded
computational graph then consists of n graphs G1, ..., Gn same as G but with
inputs i1, ..., it and with edges between the hidden states:

∀i = 1, ..., n : (hi−1, hi) ∈ E (2.13)

On this unfolded graph the backpropagation algorithm is used. When up-
dating parameters, which appear multiple times in the unfolded graph, but only
once in the original one, the updates from all the times are summed together and
used as the final update to a given parameter.

2.4.3 Bidirectional networks
The recurrent networks as described above can easily deal with forward de-

pendencies but not with the backward ones. Given a problem where we are
generating a sequence from another sequence of the same length and the i-th
desired output yi is a function of the next part of the input xi+1: yi = f(xt+1),
the recurrent network cannot learn this mapping at all.

To solve this problem, bidirectional networks were introduced (Schuster and
Paliwal [1997]). They have one layer of recurrent units which works exactly the
same way as for the regular recurrent networks. But they also have an additional
layer of recurrent units which processes the same input in reversed order. The
bidirectional network produces two outputs for each of the inputs, these outputs
are then added together, concatenated or processed by another layers, possibly
feed forward ones.

The bidirectional recurrent networks are often better than the unidirectional
and are widely used in practice (Lipton et al. [2015]).

2.5 Dropout
Dropout is a regularization technique whose efficiency was shown for example

by Srivastava et al. [2014]. In each training step each neuron is ignored with some
probability p. This can be viewed as implicitly training not only a single neural
network, but an ensemble of networks. Each of the networks of the ensemble is a
subnetwork of the original one. They share their weights, but each one has only
a subset of the neurons of the original network. Thus we have one set of weights
which represents multiple subnetworks.

During testing, we want to average the outputs of all the subnetworks. This
is done by using all the neurons, but their outputs are multiplied by 1− p, since
they are not in one p-th of the subnetworks.
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2.6 Embeddings
Word embeddings is a method of encoding words as a vectors of real numbers,

which is widely used when processing text by machine learning algorithms. There
are many possibilities how the vectors will look like.

The simplest variant is the one-hot encoding. Let V be the vocabulary. In
the one-hot encoding the word wi ∈ V is encoded as a vector ei ∈ R|V | with
ei,i = 1 and ∀j 6= i : ei,j = 0. In other words the i-th word is encoded as a vector
containing zeros except for the i-th place, which contains one. The advantage of
this approach is its simplicity, but the disadvantage is that with a big vocabulary
the embeddings become too large.

Second variant are randomly initialized word embeddings. Here for each wi ∈
V random vector of some dimension (typically 50 - 500) is generated, where
each element is from a continuous uniform distribution with bounds -1 and 1.
Formally ei ∈ R50, ∀j = 0, ..., |e| − 1 : ei,j ∼ U([−1, 1]). It is possible to change
these embeddings during the training of the network by the backpropagation
algorithm, in which case we call them trainable word embeddings.

Another approach is the usage of pretrained embeddings. This means that the
embeddings are trained by unsupervised learning on some large general natural
language dataset, for example on Wikipedia articles. Two common methods of
computing the pretrained embeddings are the Continuous Bag-of-Words Model
(CBOW) and the Skip-gram Model described by Mikolov et al. [2013].

The idea of the CBOW is that similar words which should have similar embed-
dings often appears in similar contexts. The model for training the embeddings
is predicting i-th word of the data from its context - words i− k, i− k+ 1, ..., i−
1, i+ 1, i+ 2, ..., i+ k. The order of the words does not matter, which is why this
method is called Bag-of-Words. The model used for generating the embeddings
consists of two weight matrices W ∈ Rd×|V | and U ∈ R|V |×d, where V is the
vocabulary and d is the embedding dimension. The output of the model is given
by:

~oi = U(
∑

j∈i−k,...,i+k,j 6=i
W · ~ewj

), (2.14)

where ~el is the one-hot encoding of the l-th word from the vocabulary and wj is
the j-th word in the training data. The model is trained to predict ~oi = ~ei. k
has typically value between two and four. The final embeddings of the i-th word
is the i-th column of the matrix W .

The skip-gram model is similar to CBOW but it predicts a context of a word
from itself.

Another variant are the character embeddings (Ling et al. [2015]), in which
each character has it’s own randomly initialized trainable embedding. The final
word embeddings are then computed from them using a recurrent layer.

13



3. Data and evaluation
We use the dataset created by Bisk et al. [2016a]. Our world consists of

20 square blocks distributed on a board. Their positions are described by 2-
dimensional coordinates. The dataset contains two types of information: the
coordinates of square blocks and commands (sentences in English) describing
how these blocks are moved.

We call the positions of all blocks currently on the board a world state. The
world states in the dataset form 100 sequences of length 9-21 (with an average
length 19.63) and therefore there are 1,963 world states. A part of one sequence
is shown in Figure 3.

The first world state in each sequence was generated randomly and the last
one forms a digit taken from the MNIST dataset (LeCun [1998]). Each two
consecutive world states differs from each other in just one block, which is moved
to its final position in the MNIST digit. There are 8-20 blocks (with average
18.63) in each world state. To be easily distinguished among each other, the
blocks are not blank. They have digits or logos of companies (see Figure 3) on
them, where one half of the sequences contains blocks with digits and the other
half with logos.

The block coordinates in the first state in each sequence are randomly gener-
ated real numbers between -6.6 and 6.6. In the last state the block coordinates
are always divisible by 1.0936. Apparently 1.0 is the block size and 0.0936 is the
distance between blocks. It would be possible to scale these numbers so that they
are divisible by 1.0, but that would make it harder to compare our results with
the results of Bisk et al. [2016b], which is the reason why we have not done it.

Each change in the world states (block move) is described by nine commands,
all of them describing the same action. This gives us 16,767 commands in the
whole dataset. The 100 sequences are divided into 70 train sequences, 10 de-
velopment sequences and 20 test sequences, with the same amount of sequences
with logos and digits in them. Because the sequences does not have the same
length, there are 11,871 commands in the train data, 1,719 commands in the
development data and 3,177 in the test data (see Table 3).

The commands were written by people from the Amazon Mechanical Turk,
who saw two consecutive world states and were asked to write instructions for an-
other human how to get the latter state from the former one. The nine commands
describing each change in the world were always written by three different people,
where each wrote three commands. In total, 126 people wrote some commands,
but some contributed much more than others. The most productive author con-
tributed with 4,269 commands - approximately a quarter of the whole dataset
- and the four most productive authors together contributed with 8,787 com-

Sequences Commands Tokens Average command length
Train 70 11871 176401 14.86
Development 10 1719 30781 17.91
Test 20 3177 47877 15.07

Table 3.1: Division of data to the training, development and test dataset
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Figure 3.1: Sequence of world states

mands, which is a little bit over one half. For some authors, all their commands
are in only one subset (for example the development data), for others the com-
mands are in all the subsets. This is a little bit problematic, because the style of
the commands differs between authors, which together with how the blocks were
generated and the data divided between the train, test and development subsets
leads to inequalities in these subsets. It would be possible to divide the data in
a different way, but then we would have difficulties with comparing our results
with Bisk et al. [2016b].

On the other hand the unequal division of the commands between the authors
better corresponds to a potential real world application, where the system will
have to understand people who did not participate in creating the data.

Because the authors were ordinary people who were payed for writing the
commands, they contain a lot of mistakes and typos, for example:

place the Mecedes box so that a vertical line read from top to bottom
reads Mconalds, blank space, Mercedes Benz, Nvidia

Note wrong spelling of Mercedes and McDonald’s, an unusual capitalization of
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Figure 3.2: Command and world example - the model should predict that the
Toyota block should move to the green location

NVIDIA, no capitalization of the first letter and a missing full stop in the end of
the sentence.

The longest command with 83 tokens is:

The 9 box is in the top right corner. Slide it left at least two block
widths. Then slide the 20 box between the 9 and 16 boxes. Then slide
the 20 box between the 15 and 18 boxes. Line the 20 box so that that
top edge of the box is halfway down the 13 box to the right. The 20
box will also be about a half of a box length away from box 13.

It does not make much sense, because two blocks (9 and 20) should be moved
according to it. The second longest with 79 tokens is correct:

Push the 3 block over until it is just above the 2 block, then slide it all
the way down, then slide it all the way right, then slide it all the way
down until it touches the 2 block, then move it left until it touches the
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Token the block . of to left and right place
Count 18597 14823 8702 7887 5024 4356 4234 4003 3781

Table 3.2: Most frequent tokens

four block, then move it up until it clears the 4 block, then move it left
until it is directly above the 4 block.

The shortest commands have 4 tokens (for example “put adidas above bmw”).
The average number of tokens in a command is 15.2.

Figure 3.3: Histogram of command lengths

Without any error correction, the training commands contain 1,016 distinct
tokens, from which 377 are there only once (ignoring casing of letters).

3.1 Types of commands
We tried to analyze the data by finding words denoting blocks (i.e. 1,2,

..., one, two, ..., adidas, bmw, ...), words denoting directions (i.e. left, west,
southwest, bottom, top, under, above, ...) and words denoting distances (i.e.
Move BMW five spaces left) in the commands. Unfortunately we were not able
to find all the words which denote blocks or directions, because there are many
different possibilities how to describe them. For example in a sentence:

Put the block that looks like a taurus symbol just above the bird.
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Number of blocks 0 1 2 3 4 5 6 > 6
Number of commands 23 394 13746 2208 292 66 20 18

Table 3.3: Approximate number of blocks mentioned in commands

where the first mentioned block is Toyota and the second is Twitter we do not
recognize neither of them. Also sometimes the context is necessary to determine
the meaning of a word, for example numerals can describe blocks as well as
distances. Thus the numbers in this section are only approximate.

Based on the words we find in them, we divide the commands in the following
categories (first number in the parentheses means the total number of commands
in the category, the second number is the percentage):

• Source, reference, direction (7799, 47%)
These commands contain a noun denoting which block should be moved
(which we call a source), then a word describing a direction (west, above,
left, ...) and finally a reference block. These commands also contain other
words, but these three words are the distinctive features. This structure of
commands was previously described by Bisk et al. [2016b].
Examples:

11 should be east of 6

move toyota just to the right of stella

Move the Toyota block around the pile and place it just to the
right of the SRI block.

• Source, reference, 2 directions (2611, 16%)
These commands are similar to the previous category except they have two
direction words instead of one. Often these two direction words are used to
describe a diagonal position from the reference block:

Move block 19 diagonally below and to the right of block 14.

or the first direction word describes direction from the source and the other
from the reference:

Move Nvidia to the southeast until it’s on top of Pepsi.

• Source, reference, more than 2 directions (706, 4%)

Slide 16 down and to the left until it is slightly above and left of
13.

• Source, reference, no direction (296, 2%)
Without any information about the world state these commands are often
ambiguous.

Place 7 next to 9
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• Source, reference, distance (1400, 8%)
The commands of this category have a source, a reference and a word deter-
mining distance in them (e.g. five spaces left). Almost all of them contains
some direction words.

move 1 three spaces to the left of 19.

• Block mentioned multiple times (934, 6%)
These commands also have two distinct blocks in them, but at least one of
them is mentioned multiple times. Their structure is complicated. More
than one third of these commands is composed of two or more sentences.
Commands with a single sentence almost always use a compound sen-
tence. For comparison only 4% of the commands in the other categories are
composed of multiple sentences, therefore multiple sentence commands are
about ten times overrepresented in this category.

Take the 5 block and place it so that the top left of the 5 block is
touching the top right of the 2 block and the bottom left of the 5
block is touching the bottom right of the 2 block.

• More references (2604, 16%)
The commands in this category contain more than two block words, where
one is a source and the others are references. Their structure is complicated
and more diverse than the structure of commands in the other categories.
They often use two references to describe the location between them:

Pick up box 5 and place is directly between and lined up with boxes
4 and 6.

or use one reference for the horizontal and one reference for the vertical
positioning:

Move block 10 to the same horizontal line as block 8 and same
vertical line as block 5

Multiple references are also used when the location is described with geo-
metric figures:

move block 13 such that it continues the diagonal created by 20,
19, 15

Also commands with multiple sentences and compound sentences often ap-
pear in this category:

Move Adidas above Coca-Cola, slide right until hitting SRI, slide
up until almost touching Mercedes, then slide left until just clear-
ing Burger King, so the King’s left lower corner is almost kissing
Adidas’ upper right corner. Ta-da!

• No reference (417, 2%)
The commands without reference describe the location in two ways. They
use either an absolute position:
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Move the Stella block down to the very bottom of the square.

or a position relative to the source:

move the pepsi bolck three block widths to the left

Some of the commands in this category actually contain two blocks, but we
are not able to automatically detect one of them, because they are described
in an unusual way. For example:

Put the pepsi block directly below the one with the spiral.

We estimate that approximately 1 out of 5 commands of this category has
this problem.

Although high number of the commands are simple and straighforward, some
of them are very creative and need advanced reasoning to understand them:

Put block 16 in the empty space at the top of the column of two blocks
that have numbers on them that when added to 16 equal 51.

Consider a grid with 3 rows and columns, numbered 1,2,3 then 4,5,6
then 7,8,9. If SRI is at 3, Shell is in 5, then place HP in 7.

3.2 Two tasks
The problem we are trying to solve is given an initial world state and a com-

mand we should generate a world state after the execution of the action described
in the command. Each action consists of moving one of the blocks on the board
from one 2-dimensional position to another. The naive approach for solving this
task is to create a model, which gets an initial world state and a command as
input and which produces the target world state. Because there are at most
20 blocks in each world state and each has two dimensional coordinates, such a
model has 40 real valued outputs. It is possible to try solving the problem this
way, but we decided to use the fact that in our data only a single block changes
its location between an initial and a target world state. So we can divide the
problem into two subproblems:

• Source prediction: Predict which block should be moved.

• Location prediction: Predict the target location of the source.

For example given the world in Figure 3 the source block is the Toyota block
and the location is the green square. Predicting the source block is a classification
problem in which one of the 20 classes is outputed - one for each block. For
location prediction we use regression model, which outputs 2 numbers - x and y
coordinates of the location, where source should be moved.

From the initial world, the source and the location we can compute the target
world by simply changing the location of the predicted source block in the initial
world to the predicted location. So regarding our data this representation is as
expressive as the naive one and we think it is easier to train models for this one.
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Note that models using this representation can be trained separately, because for
each instance we can compute which block was moved and where, because we
have both the world state before the command was executed and after.

The reasoning behind this division is that in the naive approach the model
which would be able to solve the task, would have to internally decide which
block should be moved and where and also copy all other blocks from input
to output. This is harder than just deciding which block should be moved or
deciding where it should be moved. Also the later approach prevents mistakes
such as moving many blocks at a time, which is something that the model using
the naive approach would have to learn. Based on these arguments we used the
approach with two tasks.

Bisk et al. [2016b] go even further in the division of the task. They found out
that the most common structure of sentences contains three distinctive features:
source, reference and direction. Based on this, they divide the task into three
subtasks predicting these three features and computing the target world from
them. Source and reference are blocks and direction represents shift to one of the
eight neighbouring tiles. However this representation has two problems. First,
we do not know what is the correct reference and direction. This can be solved
by some rules, which in most cases find the correct reference and direction, but
which are sometimes wrong. This is what Bisk et al. [2016b] use. Second, this
representation cannot describe some of the commands, for example the command

Move Stella Artois down til it is at the bottom edge.

does not contain reference.
Fortunately for evaluating their results Bisk et al. [2016b] use the two tasks

approach, so we can easily compare our results with theirs.

3.3 Evaluating model performance
As was written in Section 3.2, we divide our task in problems of predicting

source and location. And we also test these two components independently.
For the source prediction, we use standard accuracy (ratio of correctly pre-

dicted instances to all instances) as the metric for comparing performance. For
evaluating the location performance, we use the average Euclidean distance be-
tween the predicted and correct location over all instances. The unit of measure-
ment is the size of the block edge.

All the models are trained on the train set and does not see any instances
from development and test set. Development set is used for tuning hyperparam-
eters, comparing different models, analysis of models and for tuning components
programmed for this task (such as rule-based tokenization or benchmark model).
Test set is used only for final evaluation of some of the models.

The results of training neural network depends on the random initialization
of weights. To compare different settings, architectures and hyperparameters of
different networks we want to minimize the impact of randomness. The easiest
way to do this is to train same network multiple times with different random
seed.

Based on results of ten network trainings each with same network but differ-
ent seed, we estimated the standard deviation of the source prediction accuracy
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as 0.17%. Similarly we estimated standard deviation of the location prediction
distance as 0.017.

To achieve standard deviation of approximately 0.1% for the source prediction
and 0.01 for the location prediction we decided that the best way of comparing
different networks is to train each of the networks in comparison three times
with different seed and use the average result of these three trainings. Then the
probability of difference of two results (averages of three) being 0.2% for source
or 0.02 for location just by chance is less than 95%. Unless written otherwise,
this method of computing results is used in whole thesis.

The results also depend on number of epochs we train the network. In all
experiments we use the same setting: if the development error has not decreased
in 20 epochs we end the training and use weights which had the best development
result. This technique called early stopping is useful in preventing overfitting
(Prechelt [1998]).
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4. Tokenization
The very first step of data preprocessing is tokenization - dividing the input

sentences into words. This process is often considered to be a trivial (Straka et al.
[2016]). However for our task the tokenization is more difficult because of errors
(e.g. missing space between words) in the sentences and because the logo names
are unusual words in general text.

For example in the command:

Slide the Adidas block upwards, until it is directly beneath the Burger
King block. Slide it to the left, so it’s right edge is lined up with the
BurgerKing blocks left edge. Slide it up so the bottom and top edges
of the BurgerKing block and the Adidas block are parallel, and the two
blocks are directly next to each other.

the logo Burger King is spelled two times without space and one time with space.
Other difficult example is the command:

Move Burger King so it is belowBMW

where the space is missing between the last two words.

4.1 Rule-based tokenization
First we created rule-based tokenization system which is tuned manually.

Since the amount of data is not very big, we want the system to produce low
amount of distinct tokens, because otherwise many tokens would be in the data
just once and learning would be difficult. To achieve this, the system first changes
all upper-case letters to lower-case. Then, in this order:

• It separates commas by spaces.

• It removes posessive ’s, quotation marks and parentheses.

• It substitutes semicolons with spaces.

• It adds space before each full stop followed by space. If there is not space
after full stop, it does nothing, because we want to prevent changes in
floating point numbers (e.g. 1.5 should stay as it is).

• It removes apostrophes.

• It substitutes dashes with spaces.

• It adds a space between letter and digit and between digit and letter if
there is not space already between them. This is useful for separating block
numbers from other words e.g. block6.

Then as a final step, the sentences are split to tokens according to spaces.
In majority of cases it works well, but in some specific cases it is wrong. For

example, the system ignores slash, because it is in rational numbers (e.g. 1/2 )
which should stay as they are, but in command:
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Slide the Shell block left until its left edge is in a vertical line with
the right edge of the Heineken (and HP/McD/Mercedes) block, then
slide it downward until its lower left corner is touching the Heineken’s
upper right corner.

it would be better to remove the slash or treat it as standalone token.
We tried to make the system better by adding more rules but it was becoming

more and more complex and the tuning was getting harder. Also because this
system was tuned manually based on training dataset, there was a danger of
creating tokenizer which is good for the training data but which is much worse
on the testing data.

4.2 UDPipe tokenization
To overcome the problems with rule-based tokenization we decided to use

a software for general tokenization. We decided to use UDPipe1 (Straka et al.
[2016]), which is a easy-to-use tool for tokenization, lemmatization, tagging and
parsing. It is composed of several neural models which perform these individual
tasks. Models for many languages including English are available for UDPipe.
They were trained on Universal Dependencies data (Nivre et al. [2016]), but it
is possible to train models with UDPipe for different datasets. On the English
Universal Dependency dataset the model has F1-score 98.7% for tokenization.

It works relatively well, but it has some problems, especially with the logo
names, which are the most important words. For example word “BMW’s” is
tokenized as “B”, “MW”, “’s” or “20,19,18,17” is tokenized as single word, be-
cause the spaces between numbers are missing. Also unlike the rule based system
UDPipe does not remove special characters and makes mistakes because of it.
For example while most fractions are denoted as single token, sometimes UDPipe
divides them to two tokens (e.g. 1/2 becomes 1 and /2 ). Similarly for paren-
theses in most cases they are a single separated token, but sometimes they are
joined together with other word.

Since we have no gold data for tokenization, we cannot automatically evaluate
which approach is better. But we can at least test our prediction algorithms,
which are described in following chapters, on data tokenized by both approaches.
The results suggest that the rule-based approach is better, but the difference is
very small.

1Online demo: http://lindat.mff.cuni.cz/services/udpipe/run.php
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5. Models development
In this chapter we present the models for solving the task, from the simplest

one to the more complicated. Also we discuss hyperparameter optimization. Note
that all results in this chapter are measured on development set, test set results
are in Chapter 7.

5.1 Baseline
We created two baseline models - random one and deterministic one. The

random baseline predicts a random block as the source and a random location
within the board as the target location. On development set it has source predic-
tion accuracy 5.8% and average distance between correct and predicted location
of 5.96.

The deterministic baseline predicts the block 1 as the source, which (together
with other blocks) is the source most often. For the location prediction this
baseline always predicts the middle of the board.

Source accuracy of this baseline is 5.2% and the average distance between
predicted and correct location is 3.55.

Note that results of random baseline depends on random seed. It happened
only by chance that the random baseline has better result then the deterministic
one for predicting source.

Similar baselines were measured by Bisk et al. [2016b].

5.2 Benchmark model
Before trying models based on neural networks we created a benchmark model

based on finding words in the command. Specifically it searches for words which
would denote

• blocks

– digits 1, 2, ..., 20
– numerals one, two, ..., twenty
– logo names adidas, bmw, burger, king, ..., ups

• directions west, north, east, south, left, above, right, below

If the logo name contains more words (for example burger king), this model
searches for each part of the word and for concatenation of both words (for
example for logo name burger king it would search for three words burger, king,
burgerking). If the blocks have digits on them, then the model searches only
for digits and numerals when looking for words denoting block. Similarly if the
blocks have logos on them, the model ignores digits and numerals and looks for
logo names. The model receives information whether logos or digits are used in
the command as part of its input.
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Source Location
Random baseline 5.8% 5.96
Deterministic baseline 5.2% 3.55
Basic benchmark 98.2% 1.45
Improved benchmark 98.2% 1.10

Table 5.1: Results of benchmark on development set

For predicting the source (which block should be moved), the model predicts
the block corresponding to the first word in the sentence which could denote a
block. For predicting the location (where the source should be moved), the model
predicts position of the last word describing block, if there are at least 2 blocks in
the sentence. Otherwise it predicts the middle of the board. If there were some
words describing directions, the last one is chosen and the position is changed by
one in the direction corresponding to the word.

For example given blocks with logos and sentence:

Put the UPS block in the same column as the Texaco block, and one
row below the Twitter block.

The model would “see” the bold words, from which three can be describing blocks
and one - below - is describing a direction. The predicted source would be the
first block word - UPS. The predicted location would be the current location of
Twitter block (last block word) moved one tile down, because of the below word.
If the blocks had digits on them, then only one word - one - could be denoting
block and would be predicted as source.

We tested this model on development set. It has source accuracy 98.2% and
average distance between predicted and correct location 1.45.

After analyzing the locations predictions of this model, we found out it often
makes following three mistakes:

• It uses source as reference if source is mentioned in the end of sentence
again.

• It mistakes a number describing distance between blocks with reference (e.g.
In Slide block 13 to sit directly under block 15. Move over one block space
to the left. the model thinks that one is reference instead of 15.).

• It ignores all but the last reference.

Based on these problems we improved the model. To overcome the first prob-
lem, we changed the model so that it ignores the blocks predicted as the source
(first block in the sentence). To solve the second problem, we do not recognize
as block names those words which are followed by space, row or column, because
these three words indicate that the previous word is describing distance (e.g. “one
row”, “two spaces“). Also if there are digits in the command, we do not recog-
nize as block names the numerals, because in most commands digits are used to
denote blocks and numerals to denote distance. And for the third problem the
model predicts the center of gravity of all recognized block names except the first
one, which is assumed to be the source.
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We also started to recognize diagonal directions (e.g. southeast) and more
direction words such as underneath and downwards.

These changes improve the performance of the location prediction from 1.45
to 1.10 on development set. In 44.3% of predictions the error is less than 0.5. The
source prediction accuracy remains the same after these changes. Comparison of
benchmark results with baselines is in Table 5.2.

The improved benchmark model makes mistakes mostly in sentences without
reference block:

Move Stella Artois down til it’s at the bottom edge.

and in sentences where first block is not source:

To the left of Target block, put the Shell block

Solving these problems needs at least understanding of many more words and
their order in the sentence.

5.3 Neural models with the world on input
The first models we tried are relatively straightforward. They use both world

state and command as input and predict source or location, as was described in
Section 3.2. To be comparable with other architectures we tried, we will describe
them using the best hyperparameters, which are discussed in Section 5.6.

Figure 5.1: Multiple world architecture

The model for predicting source block uses randomly initialized trainable word
embeddings to encode the command. Each embedded word is concatenated with
the world state and used as an input into the bidirectional recurrent layer. We
use only the two last states of this layer, the outputs are ignored. The last states
are concatenated and fed into single feed forward layer with linear activation
function. This layer has dimension 20 and its outputs are then used as logits to
predict the source block. The architecture is illustrated in Figure 5.3.
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Source Location
Random baseline 5.8% 5.96
Deterministic baseline 5.2% 3.55
Basic benchmark 98.2% 1.45
Improved benchmark 98.2% 1.10
Multiple world architecture 97.8% 3.96
Single world architecture 98.5% 2.87

Table 5.2: Results of architectures with world on input

For predicting the location the network is similar except for the feed forward
output layer. This layer in location predicting model has dimension 2 instead of
20 and its outputs are directly interpreted as the predicted location.

The main problem of this architecture, which we call “Multiple world archi-
tecture”, is overfitting. We think, that the reason why it is happening is, that
the model receives the world state many times, but each word in the sentence
appears only once. And the words are more important for the predictions than
the world state itself.

Figure 5.2: Single world architecture

Based on this, we tried another architecture for predicting both source and
location, which is similar to the previous one but with a single difference. The
world state is not concatenated to each word, but it is instead concatenated to
the outputs of the recurrent layer, which is illustrated in Figure 5.3. We call this
architecture “Single world architecture”.

The results of these two architectures are in shown Table 5.3. Except for pre-
dicting source with the “Single world architecture”, the models failed to surpass
the benchmark. And for predicting location the “Multiple world architecture”
was also worse than middle of the board baseline.

The main reason behind the failure of the “Multiple world architecture” for
predicting the location is overfitting. After epoch 2 this model reaches best result
on development dataset. At this time, the difference between development and
training error is big - the development error is 3.83 and training is about 2.2.
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Figure 5.3: Both architectures with world on input have problems with overfitting
when predicting location

And from then the development error is increasing while the training error is
decreasing. The reason why this happens is probably in the dataset. As it is
written in Chapter 3, each change of a world state is described by 9 commands,
which means that during the training the network receives same combination of
world and target location 9 times, each time with different command. Therefore,
the network probably learns to predict the location based on the current world
and ignores the command. And this is probably also the reason why the network
for predicting source does not work well.

For predicting location with the “Single world architecture” the overfitting is
also a problem, but not as much as for the “Multiple world architecture”. After
few initial epochs, the training error is steadily decreasing, but the development
error is staying about the same.

The reason why the “Single world architecture” does not predict location well
might be that the task we want the network to learn is too hard. To work at least
as good as the benchmark, the network has to understand the sentence, identify
reference block and direction words, identify the location of reference block and
change this location based on the direction words. For learning this many tasks
in one network we would probably need bigger network and more data to prevent
overfitting. We can also reduce the number of tasks the network has to do.
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5.4 Predicting block weights and direction
The network for predicting the source block does not need the world state at

all, because all the information needed for identifying source are in the command.
For predicting the location it is more complicated.

Figure 5.4: Predicting weights and direction

In most cases, for understanding the command, world state is not needed.
But it is needed after the command was understood, to interpret it and to com-
pute the final location. For example, given the command “Move block 3 above
block 8”, people can understand it without knowing anything about the world,
but to predict the correct location, they need to know where the block “8” is.
Our architecture is similar, it does not predict directly the location, but some
representation of the meaning of the command, which is then interpreted based
on the world state to get the final predicted location.

Our representation is composed of 20 weights, which represent how much each
block is used as reference, and 2-dimensional vector representing how far and in
which direction from the reference the predicted location should be. The neural
network outputs these 22 numbers. Let w = (w1, w2, ...w20)T represent the 20
weights, d = (d1, d2)T represent direction and

S =
(
s1,1 s1,2 . . . s1,20
s2,1 s2,2 . . . s2,20

)

be the state of world, where s1,1 and s2,1 are x and y coordinates of first block
(Adidas or block with digit 1), s1,2 and s2,2 are coordinates of second block and
so on. Then the final location l ∈ R2 is computed as l = Sw + d.

In most commands location is described in one of the following ways:

• by reference and direction: Move BMW above Adidas
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• by reference, distance and direction: Move BMW 3 spaces above Adidas

• by absolute location: Move BMW to the middle of bottom edge of the table

• by direction relative to source: Move BMW 3 spaces down

• by two references: Move BMW between Adidas and UPS

Our representation can express the meaning of all of these. Assume that the
weight w1 is associated with the Adidas block and the weight w20 with the
UPS block. Then for example the first command can be represented as w =
(1, 0, 0, ..., 0)T , d = (0, 1)T , and last one as w = (0.5, 0, 0, ..., 0, 0, 0.5)T , d = (0, 0)T .

The architecture of the network for location prediction is in Figure 5.4. For
predicting the source, the network is much simpler. It has only one feed-forward
layer with dimension 20, whose outputs are used directly as logits for identifying
the right block. It is similar to the “Single world architecture” network in Figure
5.3, but it does not uses world in any way.

5.4.1 Location prediction error analysis
The model for location prediction achieves average distance of 1.26 on devel-

opment set. This is better than our previous models and also better than our
basic benchmark, but worse than our improved benchmark which has average
distance 1.10.

Also the best model of Bisk et al. [2016b] is better1. They reported distance
of 1.05 on with his End-to-End model, which is not described in their article
precisely, but is probably similar to our model. Also they achieved distance of 0.98
with their discrete model, which contains two neural networks, one for predicting
reference block and the other for predicting one of eight possible directions.

Given these results, it would be possible to try to improve our location pre-
diction performance by using architecture similar to the discrete model of Bisk
et al. [2016b]. But their proposed architecture has significant disadvantage in
that it cannot work well for complicated sentences, as we noted in Section 3.2.
And because we want our model to work with these sentences, we decided to not
use their architecture and rather analyse why our model does not work better.

ca
We let the model predict locations for all instances in the development data

set. Then we selected 100 instances, where the model made the biggest mis-
takes and manually classified them according to the subjective cause of the bad
prediction. The major causes of problems in predictions are in Table 5.4.1.

The most common problem are relatively simple sentences without any ob-
vious features which makes the correct prediction hard. The hyperparameters
of our network were already optimized (hyperparameter optimization will be de-
scribed in Section 5.6) so we came to the conclusion that the problem have to lie
in the architecture.

1Note that we are here presenting our results on development set and comparing them to
the results Bisk et al. [2016b] reported on test set. But even after testing our model on test set,
our model is still worse, so the conclusions presented here are still correct. Our test set results
will be discussed in Chapter 7.
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Mistake type Count Description & Example
Learning mistake 22 Relatively simple example, yet still bad prediction

Block 4 should be moved almost straight down un-
til it is resting on block 5.

More references 15 2 or more references in the command
Place block 20 parallel with 8 block slightly to the
right of the 6 block.

Grounding error 13 Unusual description of blocks
Put the block that looks like a taurus symbol just
above the bird.

Missing reference 11 No reference block in the command
Move the Stella block down to the very bottom of
the square.

Source same as
reference 11 Network predicts the source as reference. Typi-

cally the last block mentioned in the sentence is
source.
Move block 10 above block 11, evenly aligned with
10 and slightly separated from the top edge of 10.

Large direction 10 Distance between reference and gold location is
more than 1 block.
move the texaco block 5 block lengths above the
BMW block

Exchanged source
and reference 6 First block in the sentence is reference followed by

source.
THE MCDONALD’S TILE SHOULD BE TO
THE RIGHT OF THE BMW TILE. MOVE
BMW

Others 12

Table 5.3: Worst predictions analysis: Probable reasons behind bad predictions
in 100 worst instances of development set.
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Other problems such as “More references”, “Missing reference”, “Source same
as reference” and “Large direction” have in common that the structure of the
command is complicated, but the network can theoretically learn it. But in our
opinion there are not enough examples of such commands in the data, which
causes the high errors.

Some of the instances in the “Grounding error” category are in our opinion
unsolvable without very specific rules, because the way in which the blocks are
described is very unusual. Examples of such commands are:

Put the block with the spiral directly below the one with the circle and
three lines.

Move the Esso block left until it’s in line with the delivery company
block.

However, some of the problems are caused by bad sentence preprocessing,
which can be improved.

All the sentences with “Exchanged source and reference” problem are probably
written by a single author, who has a specific way of giving instructions. Because
of this and because of higher amount of wrong sentences caused by other problems,
we decided to ignore this problem.

The “Other” category contains problems in which the command do not de-
scribe the action, some very long commands and problems where it is not clear
what is the cause of bad prediction.

5.4.2 Source prediction error analysis
For the source prediction the results are better after removing world as input

of the network. The accuracy on development set improved from 98.5% to 98.8%.
This improvement just by removing part of input confirms our hypothesis, that
the main problem of the previous architecture is overfitting.

As was written in Section 3.3 we test each setting three times with different
random seeds. To better understand the source prediction, we analyzed the
best of these three models on develoment set. It makes only 18 mistakes there.
The sentence structure which causes most errors - seven - is the “Exchanged
source and reference” problem which is described in Table 5.4.1 and which also
causes problems to the location predictions. Other sentence structures where the
network makes errors are:

• Three sentences with “switching”:

The 16 and 17 block moved down a little but switched places.

• Three sentences with typos (Note that the third word here should be three.):

slide block the to the space above block 4

• Two sentences with sequence:

Continue 13, 14, 15...
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• Two sentences with Grounding error (see Table 5.4.1)

• One sentence which denoted a wrong block as a source.

The major improvement of the source accuracy could be achieved by solving
the “Exchanged source and reference problem”. However we cannot find any
sentences with similar structure in the train dataset and since the structure is
unusual, it is hard to come with solution. It is possible to generate commands
with similar structure, but it would likely cause overfitting and not generalize
at all. The other solution is having a model with deeper understanding of the
commands, but it is unlikely to come with such a model with our dataset.

Similar case are the sentences with word switch, because this word appears
only once in the train dataset.

Methods for typos corrections are already used when preprocessing the data
for these models. The exact methods are described in next Chapter 6, but we do
not think they can be significantly improved.

Overall, we think that for the source prediction we reached the limitations
given by the dataset we are using and without usage of another data it is very
hard to get significant improvements.

5.5 Removing feed-forward conversion layer
Based on the analysis in the previous Section 5.4.1 we decided to revise our

architecture. We identified the usage of feed-forward layer to get the right dimen-
sion of the output as a possible cause of the inefficiency in the network. Thus we
replaced the feed-forward layers by another recurrent layers. The architecture for
location prediction is in Figure 5.5.

For the source prediction, the network is similar but it does not have the
bidirectional layer with dimension 2 and the last states of the second bidirectional
layer with dimension 20 are the final output - no multiplication with world is used.

5.5.1 Distinct predictions of block coordinates
We also try to work with the output layer. There are some command struc-

tures, which cannot be accurately represented by the representation described
in Section 5.4. One example are sentences with distinct vertical and horizontal
reference:

Move BMW so that it is vertically in line with Adidas, and horizon-
tally in line with UPS.

Here the best the model can do is to predict the location between the Adidas and
the UPS blocks, which is not the correct solution.

We tried to solve this problem by using two weights instead of one for each
block, one is multiplied by the block x coordinate and the other by y coordinate.
Therefore the dimension of first output recurrent layer is 40, where the second
output recurrent layer remains the same with dimension 2.
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Figure 5.5: Using recurrent layer instead of feed-forward one. Arrows from bot-
tom side of LSTM denote usage of LSTM output, arrows from left and right side
denote usage of LSTM state.

5.5.2 Results
For predicting location the architecture with recurrent output layer is much

better than the previous one. On the development set it has average distance
between predicted and gold location 0.94. This is much better than the rule-based
benchmark. The major difference between predictions of this architecture and the
previous one with feed-forward layer (see 5.4) is that the previous architecture
makes mistakes in relatively simple commands, which does not happen with the
new one.

The distinct prediction of x and y coordinates works better then the simple
prediction of one weight per block for commands with multiple references. But
for simple commands it is worse. This leads to overall worse performance because
there are more simple commands than commands with multiple references.

For source prediction the previous architecture with feed-forward layer is bet-
ter, it has accuracy 98.8% and the one with recurrent layer only 98.4%.

All the results are in Table 5.5.2.
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Source Location
Random baseline 5.8% 5.96
Deterministic baseline 5.2% 3.55
Basic benchmark 98.2% 1.45
Improved benchmark 98.2% 1.10
Multiple world architecture 97.8% 3.96
Single world architecture 98.5% 2.87
Feed-forward output layer 98.8% 1.26
Recurrent output layer 98.4% 0.94
Distinct predictions - 0.98

Table 5.4: Results of models without any feedforward layers and their comparison
with the previous models: “Recurrent output layer” refers to architecture on 5.5,
“Distinct predictions” refers to the same architecture with the distinct prediction
of x and y coordinates described in Section 5.5.1 and “FF output layer” is the
architecture described in the Section 5.4.

5.6 Hyperparameters optimization
All the experiments in this section were conducted using our best architectures

- for the source prediction “Feed-forward output layer” architecture was used and
for the location prediction “Recurrent output layer” architecture was used. We
did not use a grid search, when tuning one hyperparameter all the others were
fixed to their best founded values. The best founded values are in Section 5.6.6.

5.6.1 Reccurent units
There are three widely used types of recurrent units: traditional non-gated

recurrent units, Long short-term memory units (LSTM) and Gated recurrent
units (GRU). It is unclear whether LSTM or GRU are better, but non-gated
units generally perform worse (Chung et al. [2014]). Thus we tested both LSTM
and GRU in our task.

We find out that for source prediction GRU units work better than LSTM.
They reached accuracy 98.8% on development set when LSTM units have only
98.4% accuracy.

For location prediction it is the opposite. LSTM units are better with 0.94 av-
erage distance between correct and predicted location, compared to 1.23 average
distance for GRU units.

5.6.2 Embeddings
We tried many variants of encoding the words in the command. We used one-

hot encoding, randomly initialized trainable embeddings, two variants of char-
acter embeddings and pretrained embeddings. The formal description of these
methods can be found in Section 2.6.

As for the pretrained embeddings we used Glove embeddings (Pennington
et al. [2014]), because they are easily accessible2. These are general embeddings

2They can be downloaded from https://nlp.stanford.edu/projects/glove/
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Source Location
One-hot encoding 98.0% 0.94
Random trainable embeddings (dimension 50) 98.8% 1.42
Random trainable embeddings (dimension 500) - 2.71
Trainable Glove embeddings 98.7% 1.76
Static Glove embeddings 97.6% 2.38
Character embeddings (GRU, single direction) 98.4% 1.32
Character embeddings (LSTM, bidirectional) 98.5% 1.23

Table 5.5: Token encoding comparison on development set

trained on 6 billions of tokens from Wikipedia and news. They show state-of-the-
art or near state-of-the-art performance on embeddings benchmarks. These are
tasks such as word analogies, which is answering questions “a is to b as c is to
_?” (e.g. “Athens is to Greece as Berlin to _?”) or word similarity (e.g. words
“cash” and “money” should have similar embeddings).

The available embeddings have dimensions 50, 100, 200 and 300. Since our
dataset is small, we used the dimension 50. We tried to use these embeddings in
two different ways - with and without updating them during training our model.

We also use two variants of character embeddings. One bidirectional with
LSTM units, because this is the model that Ling et al. [2015] used to achieve
state-of-the-art results in part-of-speech tagging (basically predicting whether
word is noun, verb, ...) on English. Second setting uses only single forward
direction and GRU units.

It should be noted that all these settings except of the character embeddings
are tested with data preprocessed by spellchecker. We do not use it for character
embeddings, because we think that the model with character embeddings can
learn to deal with spelling errors. Error in a single letter changes just one of the
inputs of the embedding layer whose result shouldn’t be very different.

The results of experiments using different embeddings are in Table 5.6.2. The
most interesting findings are the differences between what works for the source
prediction and what works for the location prediction. The one-hot encoding has
the best results for the location prediction but for the source prediction it has
the second worst results. On the other hand the random trainable embeddings
with dimension 50 has the best results for the source prediction but don’t work
for the location prediction.

We thought that the reason why one-hot encoding works much better than
other embeddings for location prediction is the different dimension of vectors
encoding single token. With one-hot encoding each token is encoded as vector
of size |V | which is between 500 and 1000 depending on the spell checker used,
but with the other encodings each word is represented as vector of dimension 50.
Because of this we tried random embeddings with dimension 500, but they do
not work at all. The optimizer is unable to lower the error on training set under
the distance 2.5.

After seeing this result, we also inspected the errors on training sets for other
embedding variants. It is the case that for one-hot encoding the optimizer is
able to lower error on training set under 0.3, but it is unable to do so for other
embedding variants. For character embeddings with LSTM the training error
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Source Location
No dropout 97.8% 0.94
Dropout input 0.5 98.6% 3.11
Dropout hidden 0.1 97.5% 0.95
Dropout hidden 0.2 97.7% 0.96
Dropout hidden 0.5 98.0% 1.00
Dropout input 0.5 + hidden 0.5 98.8% 3.10

Table 5.6: Dropout comparison

goes as low as 0.9. For other embeddings the training error is even worse, with
the training error being approximately proportional to the validation error in
Table 5.6.2.

It is also obvious from the results that the pretrained embeddings do not work.
The trainable variant, which worked, is essentially equivalent to trainable ran-
dom embeddings, thus its success for the source prediction cannot be interpreted
as success of the pretrained embeddings. The reason why they do not work is
probably that the embeddings are not designed for our task. Words which have
very different meaning in our task often have similar embeddings, because they
are in the same category of words. For example embeddings of numerals are very
similar, but we have to distinguish them efficiently in our task. Also embeddings
of west and east are much closer to each other than west and left.

5.6.3 Dropout
We applied dropout to both the input layer (embeddings) and the hidden

layer. For the location prediction we used the dropout as described in Section
2.5. For the source prediction we used slightly modified version of dropout where
during testing we use all the neurons but do not multiply their outputs by any
1 − p, where p is the probability of not using the neuron. We use this version,
because it has slightly better results on our dataset than the regular dropout for
the source prediction.

The results of models with different dropout setting are in Table 5.6.3. The
models for source and location prediction reacts to dropout differently. The source
prediction model achieves best results with dropout 0.5 applied to both input and
hidden layer.

The location prediction model on the other hand performs best without any
dropout. The reason why dropout in input layer decreases performance of location
prediction model is that for this model we are using one-hot encoding. With this
encoding and 0.5 dropout the model in 50% cases receives vector of only zeros
instead of the one-hot encoded word.

Hidden layer dropout might decrease the performance of location prediction
model because it makes optimizing the weights more difficult. But it improves
the performance of source prediction model, because optimization in this case is
likely not a problem.
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Unit dimension Source Location
32 98.7% 0.99
64 98.8% 0.95
128 98.5% 0.94
256 98.6% 0.95

Table 5.7: Comparison of recurrent units dimensions

Hidden layers Source Location
1 hidden layer 98.8% 0.94
2 hidden layers 98.6% 0.93
3 hidden layers 98.6 % 1.53

Table 5.8: Results of additional layers

5.6.4 Recurrent unit dimension
We tested how the dimension of recurrent units influences the model perfor-

mance. We tried four different settings: recurrent units with dimension 32, 64,
128 and 256. We found out that the model for source prediction works better
with lower dimension 32 and 64, when the model for location prediction needs
higher dimension. Based on the results in table 5.6.4 we are using dimension 64
for source prediction and 128 for location prediction.

5.6.5 Adding layers
In many tasks deeper networks offer better performance (He et al. [2016], Wu

et al. [2016]).
All the networks presented until now had only a single hidden layer. Here

we try networks with more hidden layers. The new layers are exactly the same
as the original hidden layer, therefore for example dropout is used on the ad-
ditional layers in the source model. They have recurrent architecture and use
all the inputs from the previous layer, which is also recurrent. All the layers
are bidirectional, but the two outputs from forward and backward run are con-
catenated and both given to the forward and backward cell of the next layer,
the forward and the backward directions are not isolated. Precisely given a se-
quence of length l, the outputs of the first forward layer f1,1, f1,2, ..., f1,l and
the outputs of the first backward layer b1,1, b1,2, ...b1,l are first concatenated:
c1,1 = f1,1b1,1, c1,2 = f1,2b1,2..., c1,l = f1,lb1,l. Then both the first LSTM cell of
forward layer and the last LSTM cell of backward layer are given c1,1 as their
input. More generally, the i-th forward cell and the l − i backward cell of j-th
layer are given cj−1,i as input and produce fj,i and bj,i respectively as output.
For better understanding see Figure 5.5, where additional layers can be added by
simply stacking the “Bidirectional RNN” box multiple times under the original
one.

The results on development set of models with different number of layers
is in 5.6.5. As in all other results the numbers in the table are averages over
three runs. The three different runs of the model with 3 hidden layers have very
different results. Two runs have the average distance between the correct and the
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predicted location 0.98 and 1.08, while last run had distance 2.52. Because of the
learning curves (see Figure 5.6.5), we thought that the bad result can be caused
by exploding gradient.

To prevent it, we introduced model with gradient clipping. We changed each
element of gradient vector lower than -1 to -1 and similarly each element greater
than 1 to 1. But the result of deep networks with gradient clipping are similar
to the ones without it - for example the 3 hidden layer network with gradient
clipping has average location distance 1.72.

This suggest that there might be other optimization problems or that the
clipping thresholds -1 and 1 are not chosen well.

Figure 5.6: Exploding gradient problem - performance on training data of three
different runs of model with 4 layers.

5.6.6 Used hyperparameters
Unless stated otherwise, we used for all the source prediction experiments

following hyperparameters: GRU with dimension 64, random trainable embed-
dings, dropout 0.5 on both input and a single hidden layer. As for the location
prediction we used: LSTM with dimension 128, one-hot encoding, no dropout
and also a single hidden layer.

In all the experiments, we used batch size 8 and Adam optimizer. We did not
try tuning these.

As for the learning rate we used 0.001 for the source prediction, while for
the location prediction we used learning rate 0.01. These values were found by
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a manual hyperparameter search. But we did this search in the very beginning
of our experiments with a different architecture than the one used when search-
ing for other hyperparameters and also with different method of conducting the
experiments (e.g. using single run instead of average of three runs).
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6. Advanced data preprocessing
6.1 Correcting errors and word normalization

At first we simply tried to create vocabulary directly from tokens without
any error correction and feed the encoded sentences to the model, which worked
without problems. But we saw that there was a space for improvement because
of high amount of typos in the tokens.

This leads to having more tokens in vocabulary which all represent single word
misspelled in many different ways. For example the word “Mercedes” was spelled
correctly only in 94.35% cases (Table 6.1) and even if we allow the “Mercedez”
variant then there is 1.75% of mistakes. And each of these mistakes very likely
causes error in predicting source block. Given that Bisk et al. [2016b] reached
accuracy of 98% in predicting the source block without any error correction we can
conclude that correcting typos is important part of the task, because it probably
causes large amount of mistakes.

6.1.1 Levenshtein distance
Levenshtein distance between two strings is the minimal number of operations

“remove character”, “add character” and “change character” needed to get one
string from the other. Typos can be also viewed as these operations, which makes
Levenshtein distance usable for error correction.

If we know that some word is spelled wrong, we could correct it by changing
it to the another correct word, such that their Levenshtein distance is minimal.

The problem with this approach is that we often do not know if a word is
correct or not. So as a first attempt of error correction we tried to correct only
words whose Levenshtein distance to logo names were 1, because logo names are
correct and important words and because we think that it is unlikely that another
correct word has Levenshtein distance only 1 to logo name. This does not work
very well, because it corrects only small fraction of words and because we do not
know whether the word which we are changing is really wrong.

mercedes 647 94.35%
mercedez 26 3.80%
merceds 3 0.44%
mecedes 3 0.44%
merecedes 2 0.29%
mecerdes 1 0.15%
mnercedes 1 0.15%
merces 1 0.15%
nercedes 1 0.15%

Table 6.1: Variants of ’Mercedes’ token
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6.1.2 Hunspell
Hunspell1 is a widely used spellchecking software, which comes with already

created dictionary for many languages including English. Given a word it can
return whether the word is in its dictionary and also a list of suggestions how
to correct spelling of a given word. The suggestions are computed based on
difference between the original word and the suggestion and on the number of
occurrences of the suggestion in the text from which the dictionary was created.
We used it to correct spelling of all words which were not correct according
to its dictionary. The problem is, that the dictionary was created on general
language data which does not contain words often used in our text, especially
the logo names. Fortunately, it is possible to manually add words to the created
dictionary. We add all the logo names, since they are important for our task.

This works, however there is a theoretical problem with this approach. The
distribution of words in our text is very different then the distribution of words on
texts on which Hunspell is trained. For example our data contains only approxi-
mately 1000 tokens but in general English there are orders of magnitude more of
them. This lead to situations where Hunspell suggests a correction which never
appeared anywhere in our text and thus it is often incorrect.

It is not possible to train Hunspell on our data since we have no golden data
without any mistakes, so we try the following approach.

6.1.3 Using task-specific data
We can use our task-specific data with mistakes to select the most probable

correction:

Algorithm 5 Error correction using task-specific data
1: procedure correct(Word w, Text t)
2: A← {a|levenshtein_distance(w, a) ≤ 1}
3: return a ∈ A such that number of occurrences of a in t is maximal
4: end procedure

Note that we correct only words with less than 30 occurrences in our text,
because it is unlikely that a single word is spelled in the same incorrect way more
times.

The reasoning behind this algorithm is that given a correct word, it is unlikely
that there is another more frequent word with Levenshtein distance = 1, so the
correct word likely stay the same. If the word is incorrect, then probably the
correct variant appeared in text more times then the incorrect one, so the word
is changed. And it is likely changed the right way, because it is more probable
that it is a variant of a more frequent word than the less frequent word.

We tried this algorithm, but we saw that it can be improved, because it
changes too many already correct words. We decided to change how A is gener-
ated. It is possible to use Hunspell which returns a set of alternative spellings
instead of Levenshtein distance. Based on our subjective analysis, this variant
works well. It is able to correct even words when the Levenshtein distance from

1http://hunspell.github.io/
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the correct word equals two (for example: merces is corrected to mercedes). And
it changes word incorrectly only in the hard cases, where the context is needed
for the right decision. For example in the sentence:

Move SRI so it si to the right of Esso
our algorithm changes si to so, while the right correction is probably is.

The only problem with this algorithm is that some words are not corrected,
for example witter is not corrected to Twitter and tow to two.

6.1.4 Synonyms and lemmatization
Besides the spelling errors in the sentences, another big problem are out-of-

vocabulary words and words with a very low number of occurrences. It is almost
impossible for model to learn their meaning, because they appeared in the data
only few times or not at all. Thus if they appear both in the testing and training
data, they will be ignored during testing or worse they will cause overfitting and
decrease the model performance.

To solve these problems we tried to encode the less frequent words in the
same way as some other words if possible. To do this we used two approaches:
lemmatization and dictionary of synonyms.

Lemmatization is a process where different forms of some word are all changed
to the same basic form called lemma. For example the word forms write, writes,
wrote, written would all be changed to lemma write. Given the lemma of each
token, we can than encode in the same way all the tokens with the same lemma.
With this encoding, rare words which do not have rare lemma are encoded as the
lemma and thus are not rare anymore. The problem with this encoding is, that
we are losing the information about the exact form of the word. Because of this,
we decided to encode only groups of forms where at most one is not rare. We set
the rare threshold to 30 occurrences.

For example, suppose that the word “write” has 500 occurrences, the word
“wrote” 300 and the word “writes” 20 occurrences. Then “writes” is rare and is
encoded the same way as “write”, but “wrote” is not rare and is encoded in a
different way.

With this rule, we are losing some information only about rare words, which
is not a problem, because without this encoding we would probably lose all the
information of such words.

The lemmas, which we use here, are generated by UDPipe (Straka et al.
[2016]).

We also use dictionary with synonyms from Wordnet (Oram [2001]). We use
it in similar way as the lemmatization - words which are synonyms according to
the dictionary are encoded in the same way. The reasoning behind it is that rare
words which are synonyms to some unrare words are no longer rare with this
encoding.

To compute encodings with synonyms and lemmas we change the “Error cor-
rection algorithm 6.1.3” in such way that the set of alternatives A contains also
synonyms and lemma of the given token. By this approach if there are more ways
how to encode some word, for example if word might be misspelled or it might
be unusual synonym to some other word, the most frequent variant in our data
is chosen, which should be the most probable option.
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6.2 Other preprocessing
By analysing the results of data preprocessing we found out that the previ-

ously described architecture have problem with one specific error - missing space
between words. Hunspell can often recognize this type of error and suggest divid-
ing the token into two words. But because the Error correction algorithm 6.1.3
needs already tokenized text, it is to late to further divide tokens when Hunspell
is used. Because of this we decided to use Hunspell twice: first time during the
tokenization when the words are corrected only if the suggestion is to divide them
into two tokens and second time to correct all the other mistakes.

Some tokens were in the data just once or few times, even after using
spellchecking, synonyms and lemmas. We thought that the network cannot
understand the word from a single appearance and would overfit because of
these words. Therefore we decided to replace all these words by a single token
“<unk>” which would represent unknown words. The out-of-vocabulary words
are represented as this token “<unk>” also during the testing.

We also think that some tokens are useless in the prediction and remove them.
Specifically, we ignore tokens “the”, “to”, “so”, “s”, “a”, “e”, “.”, “,”. The “s”,
“e” tokens appear mainly as a result of other preprocessing methods.

6.3 Analysis
For comparing different preprocessing strategies we use two models: rule-

based benchmark model and our best architecture neural model with tuned hy-
perparameters. In short the rule-based benchmark model identifies words denot-
ing block names (BMW ) and directions (left). It predicts the first block name
in the command as the source and the location of the last block name in the
command as the location possibly moved by one if a direction word is present.
Detailed description is in Section 5.2.

Results of the benchmark model are useful because they are relatively easy to
interpret and because the benchmark model is deterministic. On the other hand,
results of the neural model are stochastic - they depend on random initialization
of the weights - and therefore it is possible that worse preprocessing looks better
just by chance. But in the end we want to know which preprocessing works for
neural networks, which is why we used this model for comparing preprocessing
too.

Also note, that results in this section are measured on the development dataset
not on the test set. Because of differences between these two sets, the results of
neural model when predicting location are much better on the test set (approx-
imately by 0.15) and similar when predicting the source, while the benchmark
is worse on the test set (approximately 2% worse for source and 0.08 worse for
location).

All the preprocessing strategies are listed in Table 6.3.
The most obvious observation is that using Levenshtein distance for the spell-

checking does not work. By looking at the results of benchmark model, we can
also see that Hunspell works only if it is used inside the proposed Algorithm
6.1.3 for error correction, at least when correcting block names. Then it is quite
effective - improvement from 97% to 98.2% is by more than one third.
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Error correction Source Location
Neural Benchmark Neural Benchmark

Only tokenization 98.3% 97.0% 0.97 1.19
Hunspell 98.5% 98.2% 0.95 1.10
Hunspell, lemmatization 98.5% 96.9% 0.94 1.16
Hunspell first choice 98.2% 97.0% 0.96 1.19
Hunspell, synonyms 98.5% 98.1% 0.95 1.15
Hunspell, ignore tokens 98.4% 98.2% 0.95 1.10
Hunspell, levenshtein 71.6% 48.2% 1.76 3.27
Hunspell, unknown 4 98.8% 98.2% 0.94 1.10
Hunspell, unknown 6 98.6% 98.2% 0.95 1.10
Hunspell, unknown 8 98.5% 98.2% 0.91 1.10
Hunspell, unknown 10 98.5% 98.2% 0.94 1.10
Hunspell, unknown 12 98.5% 98.1% 0.94 1.10
Hunspell, unknown 20 98.4% 98.1% 0.93 1.10
Combination 1 98.6% 96.9% 0.96 1.16
Combination 2 98.6% 96.8% 0.94 1.21

Table 6.2: Preprocessing method comparison: Usage of synonyms and lemmati-
zation was described in Section 6.1.4, ignoring tokens was described in Section
6.2, Hunspell first choice refers to Hunspell without the usage of our task-specific
data, unknown N means that all tokens with less than N occurrences are replaced
with <unk> token. Note that default N was 2. Combination 1 uses Hunspell,
token ignoring, lemmatization and unknown 4. Combination 2 is the same but it
also uses synonyms. All results use rule-based tokenization and are measured on
development data.
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Lemmatization is decreasing the performance of the benchmark model. The
reason is that the UDPipe in some cases lemmatizes UPS as up, which the bench-
mark of course does not recognize as a word describing block. Ignoring rare tokens
have almost no effect on benchmark, probably because it uses almost only the
frequent tokens.

Based on these results on the development set, we tested the benchmark
model on the test set without error correction and with Hunspell. Without error
correction the model has accuracy 94.8% for predicting source and distance of
1.27 for predicting location. With Hunspell and our error correction algorithm
which uses the task specific data the accuracy is 96.3% and the distance is 1.20.

The results of neural model are not affected by preprocessing as much as the
results of the benchmark model. The neural model can understand the sentence
even if there are some mistakes in it.

For example, unlike the benchmark, the neural model performance is not
decreased by the lemmatization. It is able to learn that the same token up
sometimes represents UPS and sometimes the direction. On the 1719 instances
of development set, out of which 27 have the correct source UPS, the model for
source predictions makes only 2 mistakes related to this block.

Still, better error correction improves the performance of the neural model.
Except of Levenshtein distance, worst results of neural model appears without
any error correction or if the task-specific data are not used. Also relatively bad
result of distance 0.96 appears for Combination 1, but this might have happened
just by chance, because the accuracy is very good for the source prediction.

The accuracy of the source prediction model on preprocessing with replacing
rare words by single <unk> token (rows with “unknown N”) decreases when more
words are considered rare. Based on this, we might conclude that it can learn
some useful information even from words with as few as 4 appearances in the
data. On the other hand the location prediction model is not worsened, so it is
probably not able to use the rare words.

For the rare word limit 8 the location model has very good result of 0.91. But
we think this happened just by chance, since results for limit 6 and 10 are not
very good.

Therefore we decided to use the Hunspell with our task specific data and rare
word limit 4 as the default preprocessing. Unless written otherwise this prepro-
cessing is used for all our experiments, including the one previously described in
Chapter 5.

6.4 Additional information

6.4.1 Tags and logos
Using the UDpipe (Straka et al. [2016]) analysis, we have also other informa-

tion available besides the word forms and lemmas. One of them are part-of-speech
tags, which can be generated by UDPipe. We can also work with information
whether the particular sentence contains blocks with logos or with digits.

Universal part-of-speech tags, which we are using, are categories of words
which are similar to word classes (i.e. noun, adjective, verb, ...). There are 17
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Source Location
No additional information 98.8% 0.94
Tags 98.7% 0.93
Tags one-hot - 0.95
Logos 98.6% 0.94

Table 6.3: Results of models with additional information on development set

classes. Besides the standard ones, there are also classes for example for symbols
and punctuation.2 Therefore we can have one tag for each token.

We tried to append both the tags and logos/digits information to embeddings
of each token. Tags are represented by randomly initialized trainable embeddings
of dimension 10 and information whether logos are used is represented as single
boolean value. Because one hot encoding is better than embeddings for location
model (see 5.6.2), we also tested tags encoded by one hot encoding. But their
results are slightly worse (0.95).

Results of models with and without this information are in Table 6.4.1. The
differences are small and might have happened just by chance.

6.4.2 Language parser
We wanted to use language parser for improving the benchmark model. Since

we were already using UDPipe, which also contains language parser, we decided
to test it. Unfortunately the parser do not work very well for our sentences. The
reasons were probably following:

• Logos are unusual words.

• There are imperatives, whose the parser cannot handle.

Because of such a bad performance on our data, we did not implement any model
which would use the parser outputs.

6.4.3 Predicted source as input of location model
When analysing the results of location predictions (see Section 5.4.1 notably

Table 5.4.1), we find out that in some cases the network incorrectly uses source
block as the reference. Since the model for predicting source is very accurate we
speculated that this mistake can be avoided by using the source block predicted
by the source model as another input for the location model.

Our best source model with test accuracy 98.8% trained on the training data
is used to generate predictions for all the data - training, development and test
set. we have many possibilities how to encode this information. We can use
simple one-hot encoding for numbers 1-20 denoting which block is the source in
the command. Given a command with logos we use the same encoding, but the
first element of the one-hot vector indicates the Adidas block, the second element
the BMW block and so on. But since we use recurrent networks it would be

2See http://universaldependencies.org/u/pos/index.html for details.
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Figure 6.1: Parse tree of command Slide UPS right then up until it is at BMW
and then one more block generated by UDPipe.

necessary to append this information behind every word, or somehow encoded it
in the initial state of the recurrent units. This is not an elegant approach.

Better approach to append single bit of information to each word embedding
signifying, whether this word is the source in the current command. With this
approach the network can very easily learn to ignore source blocks when comput-
ing the location. However, we have to somehow identify words denoting blocks.
For this we use the benchmark model.

This information improved the average distance between correct and predicted
location on development set from 0.94 to 0.89. This improvement happens almost
only on commands where at least one block is mentioned multiple times (see
Section 3.1 for example and description of this type of commands).

6.5 Data augmentation

6.5.1 Generating new commands
When analyzing the predictions of our models, we find out that they perform

badly on some types of commands, such as commands with more than one ref-
erence (see Table 5.4.1 for details). We also find out that there are not many
training commands of these types in the training data, which may be causing the
bad performance. Therefore we decided to generate new training commands.

The generator use sentence skeletons, which are sentences where some words
are replaced by another words from a specified set. Then, during sentence gener-
ation, one of the words from the set is chosen randomly to form the final sentence.
For example we have following sentence skeletons:

move block Adidas 1 spaces up and 2 spaces left

move block Adidas so it is horizontally aligned with block BMW
and vertically aligned with block Coca-Cola
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The bold words can be replaced by similar words, phrases or in some cases
removed from the sentence. For example following sentences can be generated
from them:

Put cube Target 3 block lenghts up and 4 spaces right

Position block Toyota such that it is horizontally aligned with block
Mercedez Benz and vertically in line with block Adidas

Place block thirteen so it is horizontally in line with cube 15 and ver-
tically in line with 3

The generated sentences are not always grammatically correct but in our
opinion there are even worse sentences in the training data.

We also randomly generate world state and correct prediction of both location
and source for each generated sentences. Given that we know the meaning of the
skeleton and which words are used there, it is simple to generate these. To prevent
invalid instances, the generator also enforces some simple rules:

• Each block appears only once in single sentence.

• Positions of the blocks do not collide with each other.

• The correct location do not collide with blocks positions.

• Blocks in one sentence are never denoted with both logos and numbers.

• The predicted location (and the blocks obviously) are within bounds of the
board.

The generated sentences focused mainly on commands, where first block is
not source and where location is described using 2 references, relative distance
from source and absolute position on board.

We than tested location prediction model trained on the original 11,871 train-
ing commands and 5,000 generated commands. This model is with 1.01 develop-
ment error worse than the original one, which had 0.94 development error.

The reason for this might be that the generated commands are too hard for
the model, because the training error on the set of generated commands is 0.97
which is much more than 0.25 on the original training set.

We tried to make the generated commands simpler by using digits (i.e. 1, 2,
3 ) to denote blocks and not distances and numerals (i.e. one, two) for distances
but not for blocks. After this change the model has 0.97 development error, which
is a small improvement.

6.5.2 Block swapping
It is possible to generate new commands similar to the existing ones by per-

muting block coordinates and blocks names in the command the same way. Given
a permutation p1, ..., p20 of numbers 1, ..., 20, we can substitute words denoting
i-th block by the word denoting pi-th block and coordinates of i-th block by co-
ordinates of pi-th block. For example if p1 = 10, p2 = 11 and we have command
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“Move block 1 to the left of block 2”, this method gives us sentence “Move block
10 to the left of block 11”. In our world the 10th block will be in the original place
of 1st block, 11th in the place of 2nd block and similarly for the other blocks.

Since the source prediction accuracy is good even without block swapping, we
tested it only for location prediction. However, the model performance remains
similar, the development error is 0.95 using the swapping and 0.94 without it.
But on the training set the models with block swapping have higher training
error (approximately 0.4 vs 0.25).

This can be caused by the worse optimization or by some errors in our block
swapping method. The method relies on detecting all words denoting blocks,
which is done by simply searching the logo worlds in the sentence. But this
method does not find some unusual words describing blocks such as coke instead
of Coca-Cola or circle with three lines which should mean Mercedez Benz. If these
words appear in the command, the corresponding block is swapped with another
block, but the word remains the same, which causes generation of erroneous
commands.

We think there are approximately 50-100 commands with these words, which
is 0.5%-1% of the training dataset.
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7. Evaluation and discussion
7.1 Objective evaluation

Here we present results of some of our models on the test set. In contrast with
the previous chapters, where we averaged performance of three runs to evaluate
architectures, hyperparameters or other settings, in this chapter we are selecting
only the single run with best performance on development set.

The results of source prediction models are in Table 7.1, models for predicting
location are in Table 7.1.

There are large differences between development and test results in both these
tables. This is caused by differences in the two datasets. It was already discussed
in Chapter 3 and notably in Table 3 from which we can see that the average
length of command in the train set is 14.86, in the test set it is 15.07 but in
the development set it is 17.91. Also 26.6% of the development dataset are the
commands of the most complicated category “More references” (see Section 3.1
for more information about this category), when only 15.5% of the test set and
13.9% of the train set fall into this category. Thus we can conclude that the test
set is simpler than the development set, especially for the location prediction.

However we can see that the benchmark model performed better on the de-
velopment set, both for the source and the location prediction. This happened
because we tuned the benchmark model on the development set and therefore it
overfits this dataset.

For the source prediction our benchmark achieves accuracy 96.3% which is
better than the feed-forward network implemented by Bisk et al. [2016b], but
worse than his recurrent network.

As for our neural networks, it is unclear whether our “Single world architec-
ture” network is better then the recurrent model of Bisk et al. [2016b]. They
reported accuracy of 98% for their best recurrent network. Unfortunately it is
unclear how this number was rounded, therefore it is possible that their network
is better than our “Single world architecture” network with 98.2% accuracy. But
our best source prediction network is clearly better with prediction accuracy of
98.8%.

When analyzing our location prediction results we find out, that the average

Development Test
Random baseline 5.8% 5.1%
Deterministic baseline 5.2% 5.7%
Basic benchmark 98.2% 96.3%
Improved benchmark 98.2% 96.3%
Bisk et al. [2016b] FFN - 93%
Bisk et al. [2016b] RNN - 98%
Single world architecture 98.5% 98.2%
Feed-forward output layer 99.0% 98.8%
Recurrent output layer 98.6% 98.6%

Table 7.1: Final source prediction results
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Development Test Correct
Random baseline 5.96 5.92 0.9%
Deterministic baseline 3.55 3.44 1.4%
Basic benchmark 1.45 1.54 35.0%
Improved benchmark 1.10 1.20 46.2%
Bisk et al. [2016b] FFN - 1.81 -
Bisk et al. [2016b] RNN - 0.98 -
Multiple world architecture 3.77 3.79 2.5%
Single world architecture 2.85 2.84 5.9%
Feed-forward output layer 1.24 1.08 49.0%
Recurrent output layer 0.93 0.73 66.6%
2 hidden layers, source flags 0.87 0.71 68.9%
Human - 0.53 -

Table 7.2: Final location prediction results. The “2 hidden layers, source flags”
row refers to model similar to Recurrent output layer model (see Figure 5.5)
with one more hidden layer and with usage of source predicted by source pre-
diction model. The row “Bisk et al. [2016b] FFN and RNN” refers to the best
feed-forward and recurrent model in the article by Bisk et al. [2016b]. Human
performance was measured by Bisk et al. [2016b]. All other models were described
in Chapter 5. Column “Development” and “Test” contain average Euclidean dis-
tance between predicted and correct location on these datasets, “Correct” column
contains percentage of predictions with Chebyshev distance less than 0.5468 from
correct location.

Euclidean distance between predicted and correct location is not very accurate
metric, because very small number of badly predicted instances has very big
influence on the average distance. Thus we decided to measure another per-
formance metric for our location prediction models - percentage of instances,
where the Chebyshev distance1 between correct and predicted location is less
than 0.5 ∗ (block_edge+ distance_between_blocks). The block_edge = 1 is the
length of block side and distance_between_blocks = 0.0936 is the distance be-
tween two adjacent blocks in the final world state. Thus our proposed metric
measures the percentage of instances with Chebyshev distance less than 0.5 *
1.0936 = 0.5468.

In our opinion this metric is more stable and is easily interpretable. After
rounding the predicted location to multiples of 1.0936, the instances with Cheby-
shev distance less than 0.5468 are in the correct position, while those with higher
distances are not. Also with this metric the problem can be easily reframed as
classification problem, when each square on the board will be represented by one
class. The results of our models measured by this metric and by the standard
average distance are in Table 7.1.

From the table we can see that the location prediction models with world on
input - “Multiple world architecture” and “Single world architecture” - are about
as good as the baselines, which is very bad result. Our rule-based benchmark
performs much better. On the test set both the “Improved benchmark” and
“Basic benchmark” models with 1.20 and 1.54 average distance between correct

1Chebyshev distance is defined as DChebyshev(p, q) = max(|pi − qi|).
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and predicted location outperforms the best feed-forward network of Bisk et al.
[2016b].

Our neural architectures without world on input are better than the rule-
based models and also better than the ones which uses the world state. The
“Feed-forward output layer” architecture reaches average distance of 1.08 on the
test set.

For “Recurrent output layer” architecture, which is our best location pre-
diction architecture , we tested two different settings. The first one has a single
hidden layer and no input other than the command and can be seen in Figure 5.5.
This one has the average distance between correct and predicted location 0.73.
The second one is similar but has one more hidden layer and also uses source pre-
dicted by the source prediction model (see Section 6.4.3). This network achieves
average distance of 0.71 on test set, which is much better than the best model of
Bisk et al. [2016b] with 0.98. Considering that human performance as measured
by Bisk et al. [2016b] is 0.53, we more than halved the previous difference between
the previous state-of-the-art model and the human performance.

7.2 Source prediction analysis
We manually analyzed bad predictions of our best source model. There were

only 18 mistakes made on the development set:

• Two-sentence commands (7 mistakes). In the first sentence, it looks like the
first mentioned block is the source, but the second sentence states other-
wise.2 “The McDonald’s tile should be to the right of the BMW tile. Move
BMW.”

• Block switching (3 mistakes): “The 16 and 17 block moved down a little but
switched places.”

• Commands with typos (3 mistakes): “Slide block the to the space above
block 4” (Note that the third word here should be three.)

• Commands including a sequence (2 mistakes): “Continue 13, 14, 15. . . ”

• Grounding error (2 mistakes), see Table 5.4.1.

• Annotation error (once, not a mistake).

Major improvement of the source accuracy may be achieved by solving the
problem where second sentence changes the meaning of the first one. However,
there are no similar commands in the training data, so it is hard to come up with
a solution. Similarly, the word switch appears only once in the training set.

Methods for typos corrections are already used when preprocessing the data
for these models.

Overall we think that for the source prediction we reached the limitations
given by the dataset we are using and without usage of another data it is very
hard to get significant improvements.

2All these seven sentences were likely written by single author.
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Category Commands Neural Benchmark
Distance Correct Distance Correct

Source, reference,
direction 1312 0.16 91.0% 0.48 84.5%

Source, reference,
two directions 483 0.36 82.0% 0.90 36.6%

Source, reference,
more directions 127 0.64 77.2% 1.32 11.8%

Source, reference,
no direction 64 1.06 42.2% 1.55 0.0%

Source, reference,
distance 418 1.29 43.1% 2.17 6.2%

Block mentioned
multiple times 207 0.68 71.0% 1.31 29.5%

More references 492 1.77 26.4% 2.04 15.6%
No reference 74 2.41 20.3% 4.10 1.3%
Overall 3177 0.71 68.9% 1.20 46.2%

Table 7.3: Location prediction on individual command categories. In the “Neu-
ral” columns there are the results of our best neural network model, in the “Bench-
mark” columns there are the results of “Improved benchmark” model (see Section
5.2 for details). “Distance” refers to average Euclidean distance, “Correct” refers
to predictions with Chebyshev distance less 0.5468.

7.3 Location prediction analysis

7.3.1 Neural model
As is written in Table 7.1, our best location prediction model has average

distance between correct and predicted location 0.87 on the development set and
0.71 on the test set. On the test set the predictions of this model has Chebyshev
distance of less than 0.5468 in 67.9% cases, which means that with rounding the
model predicts the correct location in this percentage of instances.

To better understand the behaviour of this model, we compute the average
distance and percentage of the correctly predicted instances (less than 0.5468
Chebyshev distance) on the command categories described in Section 3.1. Note
that the division of commands into categories is not perfect, as was already dis-
cussed. The numbers can be found in Table 7.3.1. There are also results of
Improved benchmark for comparison in the table.

We can see that the quality of the predictions widely differs across the com-
mand categories. As for the simplest category “Source, reference, direction” our
model succeeds in 91.0% cases and the average distance is 0.16. Out of five worst
predictions, which in our analysis falls into this category, two of them contain
wrong command (error of the annotator), two of them are in a wrong command
category and only one is a real mistake of the network. This suggest that the
performance of our best neural model on “Source, reference, direction” commands
is even better than the numbers in Table 7.3.1.

On the other hand, for the most difficult command categories “More refer-
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Mistake type Count Description & Example
More references 31 Two or more references in the command

Line up the Texaco cube with the Target cube but
one row lower than the Starbuck’s cube.

Large distance
from reference 17 Distance between reference and gold location is

more than 1 block.
McDonalds moves right until it is on top of Esso,
then down to the bottom of the screen.

Annotator error 17 The command does not describe the action cor-
rectly
Move the Starbucks cube so that it’s upper left cor-
ner touches the lower left corner of the right cube.

World depen-
dence 13 The world state is needed to interpret the sen-

tence, our representation with weights is insuffi-
cient for these commands
place block 1 right above all of the blocks for a full
sequence

Other 22

Table 7.4: Worst predictions analysis: Probable reasons behind bad predictions
in 100 worst instances of test set.

ences” and “No reference” the model succeeds only in 26.4% and 20.3% cases
respectively with average distance of 1.77 and 2.41. The model fails on the com-
mands of these categories mainly because of two reasons:
• low amount of commands in these categories,

• more diverse sentence structure.
For example only 2% of the dataset (417 commands) falls into the “No refer-

ence” category compared to 47% in the “Source, reference, direction” category.
The analysis of 100 worst predictions (Table 7.3.1) shows similar results with

31 out of 100 worst predictions likely caused by multiple references in the com-
mand. The model is not able to understand such commands. We looked at the
predictions of commands of this category and find out, that even if the prediction
is very good the model uses only one reference. For example consider commands:

In the space to the right of block 7 and below block 9, place block 10.

place box 10 so that box 6 is between it and box 4

In both of them, the model uses as a single block as a reference - 9 in the first
command, 6 in the second one. In other words, if you consider the representation
described in 5.4, for the first sentence w9 = 0.88 and all other weights are 0. For
the second sentence w6 = 1.00 and all other weights are also 0. Only in few cases
the model sets uses weights of more blocks mentioned in the command. Even
then one block is clearly preferred and its weight is much bigger than the other
weights.

Besides the “More references” problem, other large source of errors are com-
mands with distances such as:
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Take block 1 and place it so it is 6 spaces above and 1 to the left of
block 8.

To better understand this problem we try to change the numerical distance
(i.e. word “four”) in the sentence:

place box 16 four places below box 15

We find out, that the model understands distances up to approximately 4
blocks. For larger distances the predictions are not accurate. This is likely
caused by the number of occurrences of the numerals in the training data. The
token“four” has 99 occurrences, when “five” and “six” have 33 and 32 occur-
rences. For higher numerals the number of occurrences is even lower (“ten” has
6 occurrences) and lower numerals have more occurrences (“two” has 423 occur-
rences).

It should be noted, that not all these occurrences are describing distances,
some of them are used to describe blocks. Therefore conclusion that the model
cannot learn a word with 33 or fewer occurrences is not true. For example, the
model understands word “coke” which appears in the training data only 16 times.
Also it understands word “nine” (13 occurrences) when it is used to describe
block, but “seven (11 occurrences) in similar context is not understood.

The third big source of errors in location prediction of our best neural model
are annotator errors. Most often the badly annotated command describes action
which is needed to get i-th world state of the sequence from i+1-th, but it should
be the other way around. Some of the badly annotated commands also miss very
important information such as command:

Place the Shell box so there are two empty spaces between it and the
SRI box

does not specify the direction, or some are plain wrong. Obviously the model
is not able to predict them. But this is not the only problem they are causing.
Even if there were no other badly annotated instances then the 17 we found out,
which is unlikely, it is 0.5% of the test dataset. If there is similar percentage
of such commands in the training data, the training process is likely negatively
influenced by them.

Last large source of location prediction errors are commands where the lo-
cation depends on the world state. An example of such a command is in Table
7.3.1. These commands cannot be represented by our chosen representation, be-
cause they often refer to some geometric figures the blocks form or work with the
world state in another way which do not fit the “block weights and direction”
representation.

7.3.2 Rule-based model
For the rule-based model the differences between command categories are even

bigger than for the neural model. The rule-based model is relatively successfull
only on the simple “Source, reference, direction” commands, while showing bad
performance on the other categories. This is not very surprising, because the
model was designed mainly with the “Source, reference, direction” commands
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in mind. On the “More references” category, the performance of the rule-based
model is not very far behind the neural model. This shows, that for such com-
mands, predicting the center of gravity of blocks mentioned in the command is a
good heuristic.
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Conclusion
In this work we presented various neural network architectures for interpreting

natural language commands in a simulated world. We also discussed rule-based
models and compared them to the neural ones. We find out that the neural
models with wisely created architecture work better, but the performance gap is
not very wide.

We developed and compared various preprocessing strategies which improved
our predictive performance. We tested two forms of data augmentation - gener-
ating new commands and switching blocks in the existing commands - but did
not observed significant improvement of prediction accuracy with them.

Lastly we discussed the performance of our models, analyzed their behaviour
and proposed another metric for measuring location prediction performance.

This work had three main goal:

1. To create models with better performance than the ones described by Bisk
et al. [2016b].

2. To create rule-based model which uses language analysis and compare its
performance to the neural models.

3. To create an interactive visualization of our problem.

The best models of Bisk et al. [2016b] have source accuracy 98% and average
distance between the correct and the predicted location 0.98. Our best models
have 98.8% accuracy and the average distance 0.71. Thus we created better
models for both the source and the location prediction and thus we accomplished
our first goal.

We created a rule-based model, but did not use a language parser in it. The
reason why we did not use the language parser is that the performance of UDPipe
parser (Straka et al. [2016]), which we tested, was in our opinion bad on our
dataset and using it would not improve our rule-based benchmark. Since Straka
et al. [2016] reports competitive parsing performance we did not tested other
parsers. We compared our rule-based benchmark to neural models, thus the
second goal was partially accomplished.

The visualization tool was created and is described in the Attachment.

Future work
In our opinion the source prediction performance is satisfying and it is hard

to improve. But for the location prediction we think there is a space for improve-
ment, namely in the following areas:

1. Optimization - many approaches, such as embeddings, deeper networks and
new command generation failed mainly because we were not able to find
good enough network parameters. However we know that such parameters
exists. This is the case, because we were able to optimize networks with one-
hot encoding, which is a subset of random trainable embeddings with big
enough dimension, but we could not optimize networks predicting location
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with embeddings. We were also able to optimize shallower networks, which
are a subsets of deeper networks, which we were unable to successfully
optimize.

2. Data augmentation - we think that there are many other possibilities for
data augmentation than the ones we tried. Because the dataset size is
relatively small, some form of data augmentation is very likely to help.

3. Novel neural architectures

4. Model ensembles

Since there are many errors in the dataset, it might be more useful to improve
the dataset itself or create a new and better dataset than trying to create better
performing models for the current data. Trying to create such a system in the
real world would be even more useful, because even if it does not work it will
improve our understanding of the requirements for a module for understanding
commands.
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Attachments
The DVD attached to this thesis contains this document in file thesis.pdf and

folder blockworld_commands with source code used for conducting experiments
described here. Copy of the blockworld_commands folder can also be obtained
from https://github.com/bedapisl/blockworld_commands.git.

The folder contains:

• A readme file README.md with installation instructions and description
of the application.

• A folder src with the source code and the best models.

• A folder data, which contains, among other things, file basic_database.db
with data preprocessed by our best preprocessing method.

• A file requirements.txt which lists needed Python libraries.
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