Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Unsupervised
Dependency Parsing

David Marecek

DOCTORAL THESIS

Prague, 2012

1

Supervisor: Doc. Ing. Zdenék Zabokrtskyy, Ph.D.
Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
Malostranské nameésti 25
118 00 Prague 1
Czech Republic

Opponents: Ing. Filip Juréicek, Ph.D.
Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
Malostranské namésti 25
118 00 Prague 1
Czech Republic

Anders Sggaard, Ph.D.

University of Copenhagen

Faculty of Humanities

Department of Scandinavian Studies and Linguistics
Njalsgade 120

2300 Kgbenhavn S

Denmark

1l

v

Acknowledgements

I would like to thank my supervisor Zdenek Zabokrtsky, for his guidance, en-
thusiasm and encouragement. Without his help, I would probably have been doing
some rather unnecessary experiments and I would never have been able to finish my
dissertation.

I would also like to thank my colleagues Pavel Pecina, Martin Popel and Ondrej
Dusek, who helped me when I was finishing this thesis and gave me many valuable
suggestions how to improve it so that it would be more understandable.

I would also like to thank my parents and my sister. They were always supporting
me and encouraging me with their best wishes.

Finally, I would like to thank my girlfriend Pavlina for her patience. She was
always there cheering me up and stood by me through the good times and bad times.

vi

Abstract

Unsupervised dependency parsing is an alternative approach to identifying rela-
tions between words in a sentence. It does not require any annotated treebank, it
is independent of language theory and universal across languages. However, so far
quite low parsing quality is its main disadvantage.

This thesis discusses some previous works and introduces a novel approach to
unsupervised parsing. Our dependency model consists of four submodels: (i) edge
model, which controls the distribution of governor-dependent pairs, (ii) fertility
model, which controls the number of node’s dependents, (iii) distance model, which
controls the length of the dependency edges, and (iv) reducibility model. The re-
ducibility model is based on a hypothesis that words that can be removed from a
sentence without violating its grammaticality are leaves in the dependency tree.

Induction of the dependency structures is done using Gibbs sampling method.
We introduce a sampling algorithm that keeps the dependency trees projective,
which is a very valuable constraint.

In our experiments across 30 languages, we discuss the results of various set-
tings of our models. Our method outperforms the previously reported results on a
majority of the test languages.

Vil

viil

Contents

1 Introduction 1
1.1 Relation to Language Acquisition 1
1.2 Motivations for Unsupervised Parsing 2
1.3 Dependency and Constituency 3
1.4 Basic Definitionso 5

1.4.1 Corpora e)
1.4.2 Tree Structureo 6
1.4.3 Projectivity 6
1.4.4 Dependency Treebanks 6
1.5 Unsupervised and Semi-supervised Learning 6
1.6 Goals of the Thesis 9

1.6.1 Unsupervised Dependency Parsing using Supervised PoS Tags 9
1.6.2 Unsupervised Dependency Parsing without Supervised PoS Tags 9

1.7 Structure of the Thesis 10

2 Related Work 11
2.1 Beginnings of Unsupervised Parsing 11
2.2 Dependency Model with Valence. 13
2.3 Other Approaches 16

3 Statistical Background 19
3.1 Maximum Likelihood Estimation 19
3.2 Categorical and Dirichlet Distribution 20
3.3 Bayesian Inference 22
3.3.1 Relationship with Chinese Restaurant Process 23

3.4 Gibbs Sampling 23

4 Data and Evaluation 25
4.1 Raw Corpora from W2C 25
4.2 Treebanks 25
4.3 Evaluation Metrics 30
4.3.1 Directed Attachment Score 31

X

4.3.2 Undirected Attachment Score
4.3.3 Neutral Edge Direction
4.3.4 Removing Punctuation L.

5 Dependency Tree Models

5.1 Edge Models.
5.1.1 Naive Edge Model
5.1.2 Conditioning by Head
5.1.3 A switch to Bayesian Statistics
5.1.4 Various Edge Models

5.2 Fertility Models oo

5.3 Distance Modelo

5.4 Reducibility Model oo
5.4.1 Obtaining Reducible Words
5.4.2 Computing Reducibility Scores
5.4.3 Reducibility Model o000

5.5 Combining the Models

5.6 Projectivity

Inference of Dependency Trees

6.1 Basic Algorithm o

6.2 Sampling Projective Trees
6.2.1 Initialization o o
6.2.2 Small Change Operator

6.3 Decoding.

Experiments

7.1 Baselines.

7.2 Preprocessing
7.2.1 Computing Reducibility Scores
7.2.2 Unsupervised Part-of-speech Induction

7.3 Experimental Settings oo
7.3.1 Standard setting oL
7.3.2 Setting the Hyperparameters.
7.3.3 Results on Supervised PoS Tags
7.3.4 Learning and Evaluation Excluding Punctuation
7.3.5 Results on Unsupervised PoS Tags (Word Classes)
7.3.6 Impact of Individual Models
7.3.7 Lexicalized Edge models L.
7.3.8 Comparison of different metrics

74 FError Analysis

7.5 Comparison with Other Systems
7.5.1 Two Other Systems Evaluated on CoNLL Data

7.5.2 Shared Task on Induction of Linguistic Structure

8 Conclusions

Bibliography

A Examples of Induced Trees

B

“UDP” — Software Documentation

x1

81

83

93

101

xii

List of Figures

1.1
1.2
1.3

2.1
2.2

4.1
4.2
4.3

4.4

5.1
5.2
2.3
5.4
2.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5

A constituency tree. 3
A dependency tree. 4
A dependency context-free tree. 5
A lexicalized tree in Dependency Model with Valence. 15
Dependency parsing via word alignment. 17
Three different annotations of coordination structures. 30
Three different annotations of a complex verb form. 30
Two different annotation styles of prepositions and subordinating con-

junctions.o 31
Three different evaluation metrics. 33
The percentage of edge types across treebanks. 36
Fertility distribution in the English treebank.. 41
Fertility distribution in the German treebank. 41
Distribution of edge lengths for various treebanks. 42

Correlation between reducibility and the frequency of them being leaves. 48

Performing a small change operator in basing sampling algorithm. . . 52
Exchangeability.o o 52
Basic sampling algorithm. 53
Projective initializer. o L oo 56
Edge and bracketing notation of a projective dependency tree. 57
Small change operator in a projective tree. 57
Small change in the perspective of dependencies. 59
Percentage of changed edges during the sampling. 60
Increasing treebank probability during the sampling. 61
Examples of baseline dependency trees. 64
Counts of reducible unigrams, bigrams, and trigrams. 66
Attachment scores for different hyperparameters o and 5. 69
Attachment scores for different hyperparameters v and 6. 70
Attachment scores for different numbers of word classes. 74

xiil

A.1 Example of an induced Arabic dependency tree.
A.2 Example of an induced Bulgarian dependency tree.
A.3 Example of an induced Czech dependency tree.
A.4 Example of an induced German dependency tree.
A.5 Example of an induced Greek dependency tree using unsupervised
part-of-speech tags (100 classes).. L.
A.6 Example of an induced English dependency tree.
A.7 Example of an induced Spanish dependency tree.
A.8 Example of an induced Estonian dependency tree using unsupervised
part-of-speech tags (25 classes). L.
A.9 Example of an induced Persian dependency tree.
A.10 Example of an induced Hungarian dependency tree.
A.11 Example of an induced Italian dependency tree.
A.12 Example of an induced Dutch dependency tree.
A.13 Example of an induced Russian dependency tree.
A.14 Example of an induced Slovene dependency tree.
A.15 Example of an induced Swedish dependency tree.

Xiv

93

List of Tables

2.1

4.1
4.2

5.1
5.2
2.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Results of selected approaches to unsupervised dependency parsing.

Statistics of the W2C corpus.
Statistics of treebanks included in HamleDT.

Reducibility scores of the most frequent English PoS n-grams.
Reducibility scores of the most frequent German PoS n-grams.
Reducibility scores of the most frequent Czech PoS n-grams.

Directed attachment scores for individual baselines.
Results using gold part-of-speech tags.
Learning and evaluation excluding punctuation.
Results using unsupervised part-of-speech tags.
Results when distance and/or reducibility model is omitted.
Comparison of results for different models of fertility.
Evaluation of the standard parser setting using different metrics. . . .
Comparison of our parser with other unsupervised parsers.

Results of the PASCAL Challenge on Grammar Induction.

XV

16

26
29

46
46
47

65
71
72
73
5
75
76
79
80

xXvi

CHAPTER 1

Introduction

Inducing linguistic structure of a natural language text is one of the essential tasks
of natural language processing and has received a great deal of attention since the
beginnings of computational linguistics. A solution to this problem is often expected
to bring a significant improvement to variety of linguistic applications, such as ma-
chine translation (Marecek et al., 2010) or question answering (Cui et al., 2005).
However, this problem remains still open and the question is to what extent it is
possible to replace the human world experience by a large number of raw texts for
induction of relations between individual objects in a given sentence.

The current state-of-the-art methods for natural language parsing are based on
supervised machine learning. A supervised learner needs a treebank (a set of training
examples that consists of sentences with manually annotated structures), based on
which it learns a grammar which is then used to parse new (previously unseen)
sentences. The main disadvantage of this approach is that the development of
such treebanks is very expensive and time-consuming. Moreover, one treebank is
connected with a particular language and domain and being able to parse a different
language requires to develop a new treebank.

Unsupervised parsing approaches have received a considerably growing attention
in the last decade. The quality of their results is still far below the supervised
approaches, but their indisputable advantage is the fact that no annotated treebanks
are needed and induced structures are not burdened by any linguistic conventions.
If they were to equal supervised parsers in accuracy one day, they would inherit
all the applications supervised parsers have. Even if their accuracy was lower, they
could substitute the supervised ones because of their language and linguistic theory
independence.

1.1 Relation to Language Acquisition

Unsupervised parsing (or grammar induction) has much in common with several
other areas, including psycholinguistics and cognitive science (Kwiatkowski et al.,
2012). We would like to mimic children in learning their mother tongue. The utter-
ances of their parents provide a set of positive examples, based on which the children

2 CHAPTER 1. INTRODUCTION

can learn grammar and generate new utterances. Parents can correct their errore-
nously generated sentences and thus provide a negative feedback (Marcus, 1993;
Penner, 1987). A weaker form of negative feedback is unsuccessful communication.
If a child does not get what it wants, it tries to reformulate the utterance so that
the listener understands.

The negative feedback is not available for unsupervised parsers. This may be
partially compensated by a huge amount of positive examples. For some languages,
there are text corpora available whose size is measured in “gigawords”, i.e a much
greater amount than what one can read in a lifetime.! In case a particular phe-
nomenon is very sparse in the data, we can assume that it is not grammatically
correct. One approach to such negative-feedback simulation using the large corpus
is also described in this thesis in Section 5.4.

Another, probably more important thing that people have and machines do not
is the experience with entities in the world and imagination. People know that the
phrase “red apples and bananas” does not mean that the bananas are red and the
phrase “a girl with a telephone bought a week ago” does not mean that the girl was
bought a week ago. Here again, we must rely on a large corpus and hope that there
are no “red bananas” in it and the majority of bananas are “yellow” and that there
are much more “bought telephones” than “bought girls”.

1.2 Motivations for Unsupervised Parsing

The first motivation for the development of unsupervised parsing techniques is ob-
vious: They do not rely on the availability of manually annotated data. Although
there are many treebanks,? many more languages remain uncovered. Moreover, since
the treebanks were often developed independently at various places, they differ very
often in underlying linguistic formalisms and data formats and/or use completely dif-
ferent labels for part-of-speech tags, constituents, and dependencies. Consequently,
linguistic tools working on one treebank cannot be easily extended to other lan-
guages simply by adding new treebanks. An experiment on harmonizing all the
available treebanks (Zeman et al., 2012) showed that automatic transformation be-
tween different annotation styles cannot be lossless, as various kinds of linguistic
information expressed in one annotation style often cannot be captured in another
style.> Examples of such discrepancies are given in Section 4.3.

Another problem of treebanks is their specific domain. For example, the English
Penn Treebank (Marcus et al., 1994) consists of newspaper articles. Parsers trained
on Penn Treebank achieve very good results on held-out data from the very same

'Koehn (2009) mentions that people do not read more than 10,000 words per day, which is 300
million words in their lifetime.

2We have collected more than 30 available treebanks of different languages (Zeman et al., 2012)

3For example, annotation of coordination structures belongs to the most problematic issues.
They are expressed at least by ten different ways. See Figure 4.1.

1.3. DEPENDENCY AND CONSTITUENCY 3

domain, but when they are used to parse books, their accuracy goes down.*

The last motivation is the most challenging one. The question how children learn
their mother tongue and how people parse a sentence in their mind has fascinated
many researchers in different fields. What we know for sure is that children do
not study treebanks and annotation manuals when learning their language. This
provokes the following question: What if the structures in the treebanks proposed
by linguists are not suitable for statistical language tools? For example, positions
of function words in a dependency tree, such as prepositions, conjunctions, articles,
or auxiliary verbs, differ across various treebanks. If we want to learn how these
structures should look like from the purely statistical point of view, the only pos-
sibility is to employ a completely unsupervised parser with no language-dependent
prior knowledge.

1.3 Dependency and Constituency

In the world of natural language parsing, there are two main types of linguistic
structures: phrase-structure (constituency) trees and dependency trees.

The phrase structure (Chomsky, 2002) consists of nonterminal symbols repre-
senting particular constituent phrases, e.g. noun phrase (NP) for “a warm climate”
or prepositional phrase (PP) for “for their winter excursions”, and terminal symbols
in leaves representing the individual words. See Figure 1.1. A set of phrase structure
trees can be represented by a context-free grammar.

S

I
ANWAN
JANN

PRP$ NN NNS

Most vacationers still prefer a warm climate for their winter excursions .

Figure 1.1: A constituency tree.

4We could say that linguistic tools trained on Penn Treebank work well mainly on the Wall
Street Journal texts. Stephan Oepen described this phenomenon as “Wall Street Journal science”
at his invited talk at the Unified Linguistic Annotation Workshop 2007 in Bergen, Norway.

4 CHAPTER 1. INTRODUCTION

In a dependency tree (Sgall et al., 1986) (see Figure 1.2), every node represents
one word in the sentence and edges represent dependency relations between the
words. Unlike in constituency trees, we can directly see that the word “warm”
is a modifier of the word “climate”. Another advantage of dependency trees is
the fact that they can easily capture so-called non-projective dependencies (see the
definition in Section 1.4.3). Such dependencies would correspond to discontinuous
phrases in phrase-structure trees, which are not allowed and must be solved in a
rather complicated way using traces (Marcus et al., 1994).

O\
root
prefe
VBP
vacationers st|II cllmate for
jNNS !
Most a warm excursions
JJS DT J) NNS
their winter
PRP$ NN

Figure 1.2: A dependency tree.

The unsupervised parsing approaches have been developed both for phrase-
structure and dependency grammars. However, it seems that the dependency ap-
proaches predominate in the last years even for English, which has a long tradition
of phrase-structure grammars. The main motivation for using sentence structures in
natural language processing is to enable extraction of lexical dependencies. For ex-
ample, we need to detect the arguments and modifiers of a given word. Dependency
trees are more suitable for this purpose. Many unsupervised constituency parsers
induce only phrases (i.e. bracketing). However, the absence of information about the
types of particular phrases causes that head-modifier pairs cannot be extracted, as
we do not know the governing words (heads) of the phrases.

Dependency context-free trees (Klein and Manning, 2004), depicted in Figure 1.3
are a mix between constituency and dependency trees. Their nonterminals have the
same labels as the head terminals in the respective phrases. Thus, instead of inducing
a label for each phrase, we try to find its head, which is the same problem we solve
when we want to induce dependency trees. Each projective dependency tree can be
simply converted to a context-free dependency tree.

In this thesis, we are concerned with the induction of dependency trees only.

1.4. BASIC DEFINITIONS)

A
VAN /\

PRP$ NN NNS

Most vacationers still prefer a warm climate for thelr wmter excursions .
Figure 1.3: A dependency context-free tree.

1.4 Basic Definitions

In this section, we informally define several basic terms that are used throughout
this thesis. Some of them are commonly known, some of them are specific for this
work.

1.4.1 Corpora

Raw corpus: By a raw corpus, we mean an unlabeled collection of texts written
in one language. We suppose that the texts are already automatically tokenized
and segmented into sentences. The tokenization and segmentation are done using
very simple rules in the form of regular expressions, in order to resemble the tok-
enization used in testing treebanks as closely as possible. Section 7.2.1 describes the
tokenization in more detail.

PoS tagged corpus: A PoS tagged corpus is a corpus in which a part-of-speech
(PoS) tag is assigned to every word. Tags can be assigned manually or automatically
by a supervised tagger trained on another manually PoS tagged data. Automatically
assigned word classes induced in an unsupervised way (see Section 7.2.2) can also
be used in place of PoS tags.

Word n-gram: A word n-gram is a continuous sequence of n words in a corpus.
We call it word n-gram instead of a simple n-gram in order to be able to distinguish
it from a PoS n-gram.

PoS n-gram: Analogously, a PoS n-gram is a sequence of n part-of-speech tags.

6 CHAPTER 1. INTRODUCTION

1.4.2 Tree Structure

We use definitions similar as in (Havelka, 2007):

Dependency tree: A dependency tree is a triple (V, —, <), where V' is a finite set
of nodes, — is a dependency relation on V and =< is a total order on V. Relation
— models linguistic dependency, and represents a directed, rooted tree on V. In
surface syntax, V' = W U {root}, where each node in W corresponds to one word in
the sentence and the order =< corresponds to the word order in the sentence. The
root node is an artificial root of the dependency tree. The root is formally the first
node in dependency tree (Yw € W : root < w). Relation —* is the transitive closure
of — and is usually called subordination.

Rooted subtree: A rooted subtree S; of a dependency tree T' = (V,—, <) is a set
of nodes subordinated by i € V including i, i.e. S; = {v € V; i =»* v}U{i}. In other
words, a rooted subtree is a set of all descendants of a node including the node itself.

1.4.3 Projectivity

We will use the definitions of tree projectivity introduced by Harper and Hays (1959):

Projective dependency edge: Let us define a set {i,...,j} as a set of nodes
between i and 7, including 7 and j. A dependency edge i — j is projective if and
only if Vo € V 1 v € {i,...,j} = v € S;. All words between the words ¢ and j
must be descendants of 7.

Projective dependency tree: A dependency tree T' = (V, —, <) is projective if
and only if all its edges are projective. See the example in Figure 7.1.

1.4.4 Dependency Treebanks

Dependency Treebank: A syntactically annotated corpus, i.e. a corpus in which a
dependency structure is provided for each sentence, is called a dependency treebank.

Manually annotated dependency treebank: Manually annotated dependency
treebank is a dependency treebank, in which the dependency trees were build man-
ually by linguists using a common annotation manual.

1.5 Unsupervised and Semi-supervised Learning

The term “unsupervised learning” refers to the problem of finding hidden structures
or patterns in unlabeled data. That is, it does not need any labeled examples —
parse trees in our case. But of course, we cannot just insert any text (sequence of
characters) into a “magic box” and expect that it would return some meaningful
structures. It is necessary to define some basic properties of the structures we want to

1.5. UNSUPERVISED AND SEMI-SUPERVISED LEARNING 7

derive. Ideally, we would like to induce a grammar — a minimal description of a given
language that would be able to generate all possible texts in this language. But this
is a hard problem since we have relatively few examples to derive it. Therefore, we
must go further and introduce our basic assumptions we have about the structures
we want to obtain.

Assumption (a) The structure of a sentence is a dependency tree with nodes corre-
sponding to individual words in the sentence.

This is a very strong assumption. Why not constituency trees? Why do we
not split words into morphemes? What if cycles are needed? We are aware of
all the problems with dependency tree structures, such as capturing coordinations,
complements, or anaphora. However, we do not have any other general structure
that would be simple enough and still reflect the main property of sentences, which
is recursivity.

Assumption (b) Types of dependencies (e.g. pairs of governing and dependent words)
tend to be repeated in the treebank.

This refers to the minimum description principle. A particular word can depend
only on a small subset of all possible words.

Assumption (c) The structure of a sentence is a projective dependency tree (see
Section 5.6).

Assumption (d) Dependency edges between words are rather short than long. Most
dependency relations tend to occur between adjacent words.

Assumption (e) Words that can be removed from a sentence without violating its
grammaticality are often leaves in the dependency tree.

All these statements may serve as the basic assumptions for induction of linguistic
structure. In unsupervised parsing, we do not allow ourselves to use any kind of
linguistic rules, such as

Assumption (f) Roots of dependency trees are often verbs.
Assumption (g) Adjectives very often depends on nouns.

Assumption (h) The English word “the” is always a leaf.

8 CHAPTER 1. INTRODUCTION

Why can we not use rules like this? Such rules are in fact also examples. Imag-
ine that we have thousands of such rules. Then they could have similar power as
treebanks. In supervised parsing, people use linguistic rules for the development of
a treebank, and the rules together with other language properties are then learned
from the treebank. Rule-based parsing applies the same linguistic rules but in a
direct way.

If we have a small number of linguistic rules available, we speak about minimally
supervised or semi-supervised learning. Semi-supervised parsing methods are based
on several basic linguistic rules and big unlabeled data from which more subtle
language features are learned.

The boundary between “not allowed” linguistic rules and “allowed” basic as-
sumptions about dependency trees is very fuzzy. For example, we could say that
the preference of short dependencies (Assumption (d)) is also a kind of rule. We
define the linguistic assumptions allowed for unsupervised parsing as those that are
independent of language and tag set. We cannot apply e.g.a rule which says that
left attachments are more probable than right attachments as it holds only for some
languages and the opposite is true for others.

Similarly, we cannot state that the most frequent part-of-speech (PoS) tag in
the data is the PoS tag for nouns (Marecek and Zabokrtsky, 2011), because it does
not hold generally for all possible tag sets. In some tag sets, nouns could be for
example subcategorized in more detail an such rule would not hold then. Moreover,
the parser should work also on unsupervised PoS tags (word classes), where we
cannot assume any similar characteristics. If we were able to induce some universal,
language-independent PoS tags in an unsupervised way, at least to recognize nouns,
verbs, adjectives, and adverbs, we could directly apply the linguistic rules saying
that adjectives depend on nouns, nouns depend on verbs, etc. However, induction
of universal PoS tags seems to be even harder problem than induction of structures.
It is even questionable whether all languages have these four types of words (Evans
and Levinson, 2009).

Another problem in unsupervised learning is the parser tuning. Assume that we
develop a model, apply it on some data, and look at the resulting trees. Then we try
another model, look at the trees, and see that the trees look better, so we proclaim
the second model as the better one. But what are “better trees”? Probably the trees
we know from a manually annotated treebank. If so, we can directly evaluate our
parser on a testing part of our treebank. This is common practice in unsupervised
parser evaluation if we have no better method® to compare the quality of different
parsers. However, this yields a contradiction since we use manually annotated data
and therefore the parsers become a bit supervised. This would be a problem in case
we report results only on languages on which we have tuned our parser. If we show
that even if the parameters of our parser were tuned only on one language and the

5Some kind of extrinsic evaluation using a final application would be much better. This is
however beyond the scope of this thesis.

1.6. GOALS OF THE THESIS 9

parser had good results on a variety of other languages as well, we can proclaim our
approach as “enough” unsupervised.

1.6 Goals of the Thesis

Our task is to improve the unsupervised induction of dependency structures. Cur-
rent state-of-the-art systems work (Spitkovsky et al., 2011c) quite well for English
and for several other languages. However, there are languages on which they fail
completely. For example, they have problems even with very basic dependencies
such as attachments of adjectives to nouns. Since one of the motivations of unsu-
pervised parsing is its applicability to any language, we will evaluate our parser on
30 different languages.

Our goal is to develop a new approach to the induction of dependency trees.
We will exploit several new features, such as reducibility (dependent word can be
removed from a sentence without violating its grammatical correctness) or fertility
(number of children is determined by the head word). The most probable depen-
dency trees will be induced using the Gibbs sampling technique (Gilks et al., 1996).

1.6.1 Unsupervised Dependency Parsing using Supervised
PoS Tags

A purely unsupervised approach to dependency parsing algorithm should use only
a raw corpus without any annotations or external tools that employ any type of
linguistics annotation. To avoid sparsity issue associated with word forms, we make
use of part-of-speech tags. However, the part-of-speech tags come from manually
annotated corpora and bring in an element of human effort and decision making.
The tagset choice can greatly affect the behavior of the dependency induction tool.
Morphological disambiguation of an ambiguous word (e.g.the decision whether a
word “hits” is a noun or a verb) directly predicts its syntactic position.

Nevertheless, many works show that tag sets developed by linguists are very
useful (Blunsom and Cohn, 2010). The first task of this thesis is to develop an
unsupervised dependency parser for a given language if we have a manually part-of-
speech tagged corpus available for this given language.

1.6.2 Unsupervised Dependency Parsing without Supervised
PoS Tags

Some recent works experiment with unsupervised dependency grammar using no su-
pervised PoS tags. Instead, they make use of unsupervised PoS tags — automatically
induced word classes (Spitkovsky et al., 2011a). Such solution is purer, more flexible,
and tagset independent. The unsupervised methods for inducing word classes are

10 CHAPTER 1. INTRODUCTION

beyond the scope of this thesis, but all the parsing methods developed in the first
task will be tested also on automatically induced PoS tags using a publicly available
word-clustering tool (Section 7.2.2).

1.7 Structure of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 briefly outlines the
history and state of the art in unsupervised dependency parsing and introduces
related work. Chapter 3 describes the theoretical background of methods used in
this work. In Chapter 4, we describe the data used for our experiments and discuss
the possible evaluation methods.

Our own contribution begins from Chapter 5, in which we introduce our method
of modeling dependency trees and its variants. The probability estimates based
on these models are then used in dependency tree sampling and decoding, which is
described in Chapter 6. All experiments and parsing results across various languages
are summarized in Chapter 7. Chapter 8 concludes the thesis.

CHAPTER 2

Related Work

2.1 Beginnings of Unsupervised Parsing

The ability of inducing a grammar (or any relations between words) from a raw
text has been a major goal for many researchers since the very beginning of compu-
tational linguistics. The first simple approaches were based on computing mutual
information between words in the text (van der Mude and Walker, 1978; Magerman
and Marcus, 1990).

There were early efforts in developing tools for the induction of phrase structure
grammar or dependency grammar (Klein, 2005). In phrase structure grammar (Fig-
ure 1.1), we would expect both a tree structure and labels of nonterminal symbols for
individual constituents. However, many reported approaches do not label nonter-
minal symbols and reduce the whole problem to the task of bracketing (Bod, 2006).
The first approach to unsupervised constituents labeling was made by Borensztajn
and Zuidema (2007). Another possibility is to derive names of nonterminal sym-
bols from the heads of the respective constituents (Figure 1.3). Such a constituency
grammar is then equivalent to a projective dependency grammar (Figure 1.2). In the
rest of this chapter, we will be concerned only with these “context-free” dependency
grammars and with the “real” dependency grammars.

The first related work we mention here is an experiment made by Carroll and
Charniak (1992). They induce a probabilistic context-free grammar (PCFG). Their
algorithm worked with word classes instead of words and they use a special PCFG
grammar in a form of a dependency context-free grammar. Each nonterminal symbol
(marked with a bar) corresponds to one word class. Rewrite rules have a nonterminal
symbol X on the left side and the respective terminal symbol X on the right side
together with other nonterminal symbols. An example of such a grammar follows.

S — werb noun — adj noun
verb — Tnoun verb prep noun — noun
prep — prep noun adj — adj

11

12 CHAPTER 2. RELATED WORK

From the perspective of dependencies, the second rule says that a verb can have
two children: a noun on the left and a preposition on the right. The last two rules
say that adjectives and nouns can be leaves. Such a grammar could be also called
projective dependency grammar.

Carroll and Charniak split their training corpus into two parts. From the first
part, all possible rewrite rules were extracted and for each of them, the initial
probability was computed. The probabilities were then tuned on the second part of
the corpus using the inside-outside algorithm (Baker, 1979; Lari and Young, 1990).
It is an iterative expectation-maximization (EM) algorithm, which can be described
in the four following steps:

1. initialization: Assign initial probabilities to the rules.

2. expectation: Count how many times each rule could be used in the generation
of the training corpus.

3. maximization: Update the probability estimates based on these counts.

4. Repeat the steps 2 and 3 until convergence.

The convergence of this EM process is guaranteed because after each iteration,
the new estimated cross-entropy is lower than (or equal to) the previous one.

Experiments showed that the quality of the inferred grammar is very poor and
it is very different from what the authors had expected. In addition, they found
out that EM tends to converge to local maxima and that the outcome depends very
much on the initial probabilities. When trying different random initializations, the
algorithm converged to different results for each of them.

In another experiment, Carroll and Charniak introduced various restrictions on
the rules, for example, the rules for rewriting adjectives or determiners to a noun were
disabled. With these constraints, the inferred grammar improved. However, it is im-
portant to note that using such constraints is not a genuinely unsupervised approach
and belongs rather to the category of semi-supervised or minimally-supervised ap-
proaches.

Besides the bad convergence to a global optimum, a further disadvantage of the
inside-outside algorithm is its inherent computational complexity, which is O(n®t3),
where n is the total number of nonterminals and ¢ is the length of the processed
sentence. Although we have a big amount of data available for unsupervised meth-
ods, the inside-outside algorithm cannot exploit them. Paskin (2002) suggests a
stronger assumption of independence for modeling dependencies. He assumes that
all children (dependents) of a particular word are mutually independent and also
their relative ordering is independent on their parent word. This approximation then
allows a much simpler algorithm able to process a larger corpus. The time complex-
ity of the respective simplified EM algorithm decreases to O(n?). Paskin uses only

2.2. DEPENDENCY MODEL WITH VALENCE 13

word forms in his experiments. Unfortunately, the results were also unsatisfactory.
They were only slightly better than random dependency trees.

Similarly, Yuret (1998) assumes a mutual independence of edges. He computes
the probability of a dependency tree as a product over all nodes’ conditional proba-
bility given their parents. Maximizing such product is then equal to maximizing the
product of the point-wise mutual information between parent and child in individual
dependency edges. Unfortunately, this approach was also not very successful.

2.2 Dependency Model with Valence

Klein and Manning (2004) argue that conditioning the generation of a dependent
only on its parent, as Paskin did, is not enough. There should be a notion of distance
and valence included in the dependency model. The valence in their work is modelled
very simply: the generation of a new dependent in a given direction is conditioned
by its parent and by the fact whether it is the first dependent in this direction or
not. They introduce a special STOP symbol, which is a virtual last dependent on
each side of the head, denoting that no other dependent in the particular direction
can be generated. This dependency model is called Dependency Model with Valence
(DMV). The generative story of DMV is as follows:

e We start with the root, which is marked by the symbol “¢”, and begin to
generate its dependents.

e For each node, we first generate all its left dependents (one by one) and then
the virtual left STOP symbol. We always first decide whether the STOP symbol
will be generated or not and if not, we generate the new dependent.

e Similarly, we generate all the right dependents and then the virtual right STOP
symbol.

e After a new node is generated, we recurse into its subtree.

During the generation, we decide at each point whether to generate a new de-
pendent or the STOP symbol. This is modeled by Psrop(STOP|h,dir,adj). The
decision is conditioned by the head h, the direction dir in which are currently gener-
ating the dependents, and the adjacency adj, which is a binary value saying whether
any dependent has been already generated in this particular direction. If the STOP
symbol is not generated, we generate a new dependent a in the direction dir accord-
ing to the probability Parracu(alh,dir). Dependents are generated conditionally
on the head h and the direction dir. In the basic model by Klein and Manning, the
attachment is not conditioned on adjacency. The recursive formula of computing the
overall probability of a dependency tree D with a head h is shown in Equation 2.1.

14 CHAPTER 2. RELATED WORK

pD(h)= 1] Il = Psror(=STOP|h, dir, ad))

direl,r acdepsp (h,dir)

Parracu(alh, dir)P(D(a)) (2.1)

Psrop(STOP|h, dir, adj),

where depsp(h,dir) are all the dependents of the head h in the direction dir. It
is apparent that each next dependent in a particular direction must pass a new
STOP/—STOP decision. Higher numbers of dependents are therefore less probable,
which is desired.

This generative schema can be described by a probabilistic context-free grammar
(PCFG). Each node appears in four stages during the generation:

e h — the head h has been just generated,

s
e h — left arguments of h are being generated,

_>
e h —right arguments of h are being generated,

e h — terminal symbol for h; all its argument have been generated.

<
Such PCFG includes three nonterminal symbols (h, ﬁ, ﬁ) for each terminal

symbol h, which is a PoS tag. An example of such PCFG is depicted in Figure 2.1.
Similarly to Carroll and Charniak (1992), the inside-outside algorithm was used
for the estimation of PCFG probabilities. Klein also admits that EM easily converges
to undesired local maxima and the assignment of initial probabilities (before entering
the inside-outside algorithm) is very important. He introduces an ad-hoc “harmonic”
completion where all non-root words take the same number of dependents and each
takes other words as dependents in an inverse proportion to the distance between
them. In this setting, the directed attachment score achieved 43.2% on the WSJ10!
corpus, which was the first result breaking the left /right chain baseline.
Dependency Model with Valence became very popular and is used (with some
modifications) in many current state-of-the art systems. Smith and Eisner (2005)
use a contrastive estimation together with DMV. Their learner takes into account
not only the observed positive examples, but also a set of similar examples that
are deprecated because they could have been observed but were not. Cohen et al.
(2008) use Dirichlet priors on the rewriting operations, which can encourage sparse
solutions, a property which is important for grammar induction. They derive a

!The WSJ10 treebank is a subset of Penn Treebank (Marcus et al., 1994) consisting of sentences
not longer than 10 words.

2.2. DEPENDENCY MODEL WITH VALENCE 15

:>>00

saw ‘o-;
| o
= 3
O/saw \o $
Mary o 0
o b
Mar saw
o) { \o
Mary SilW elephant
M Saw -—
ary /elephant\n
(a5 elephanf
= O/ <—\O
a Sma” e|ephanf
Q) °
a small elephant
6 Py Py
a smalt elephant

3
so

Figure 2.1: A lexicalized tree of the sentence “Mary saw a small elephant” in De-
pendency Model with Valence.

variational EM algorithm for the probability estimation and achieve a 59.4% directed
attachment score on WSJ10.

Headden et al. (2009) extend the term of valence in DMV and call it Extended
Valence Grammar (EVG). The main difference is that generating a new argument is
conditioned by the fact whether it is the first one in the given direction or not. The
probability Parracm(alh,dir) is thus substituted by Parracu(alh,dir,adj). This
allows, for example, different distributions for the attachment of words “small” and
“oreen” in the phrase “a small green apple”. Another contribution of Headden et
al. is the lexicalization (the generated arguments are conditioned not only the head
part-of-speech but also its word form) and smoothing by interpolation:

Parracu(alh, dir,adj) = A\ Py (a|h, dir, adj) + Ao Py(aldir, adj), (2.2)

where A\; and Ay sum up to one. The PCFG rules are estimated using linearly
interpolated probabilities by creating a “tied” PCFG which is extended by adding
rules that select between the main distribution P; and the back-off distribution
P,. With these improvements, the attachment score on WSJ10 jumped almost 10%
higher compared to previous results, reaching a directed attachment score of 68.9%.

Other improvements of DMV followed: Blunsom and Cohn (2010) use a tree

16 CHAPTER 2. RELATED WORK

undir. | dir. | dir.
Description Authors all | <]10] | all
Adjacent Baseline - 53.2 33.6 | 254
Grammatical bigrams Paskin (2001) 44.7 - -
Simple PCFG, EM Carroll and Charniak (1992) | 39.7 — —
DMV, EM Klein and Manning (2004) 54.4 | 43.2 -
DMV, Contrastive Est. | Smith and Eisner (2005) - 49.0 -
Dirichlet normal priors | Cohen et al. (2008) - 59.4 | 40.5
EVG, lexicalization Headden et al. (2009) - 68.8 -
TSG DMV Blunsom and Cohn (2010) — 67.7 | 55.7
Splitting on punctuation | Spitkovsky et al. (2011b) - 67.5 | 574
Unsupervised POS tags | Spitkovsky et al. (2011a) - - 59.1

Table 2.1: Directed (dir.) and undirected (undir.) attachment scores of different
approaches measured on Penn Treebank. The column “dir. < |10|” shows scores
measured on WSJ10, which is a subset containing sentences which are at most 10
words long.

substitution grammar which is capable of learning large dependency fragments and
thereby allows for better text modelling. Spitkovsky et al. (2011b) observe a strong
connection between English punctuation and phrase boundaries, split sentences at
punctuation marks and impose parsing restrictions over their fragments.

For a completely unsupervised approach on dependency parsing, we should not
use PoS tags. In case we have supervised PoS tags available, we could easily in-
troduce some constraints on the dependencies, for example that a noun cannot de-
pend on an adverb. Similar constraints were used by Carroll and Charniak (1992).
However, this violates one of our main motivations, which is the independence of
linguistic rules. The pure approach would be to use unsupervised PoS tags only as
well. Such experiment was made by Spitkovsky et al. (2011a), who used Alexander
Clark’s POSinduction tool (Clark, 2003) for grammar induction and report better
results for English than using the supervised tags.

We summarize all the results of the aforementioned methods in Table 2.1.

2.3 Other Approaches

A very interesting approach to unsupervised dependency parsing was described by
Brody (2010). He formulates the parsing task as a problem of word alignment.
Every sentence is aligned with itself with one constraint: no word can be attached
to itself. Figure 2.2 shows one such alignment. He applied models similar to the
IBM models (Brown et al., 1993), which are used for word-alignment induction:
alignment model, distance model, and fertility model.

A disadvantage of this approach is the absence of the treeness constraint. The

2.3. OTHER APPROACHES 17

Most vacationers still prefer a warm climate for their winter excursions

Most vacationers still prefer a warm climate for their winter excursions

Figure 2.2: Dependency parsing via word alignment.

resulting structures may contain cycles. The directed attachment score on WSJ10
achieved 39.3%, which is less than that of basic DMV (Klein and Manning, 2004).

A completely different method of obtaining dependency structures for languages
without any linguistically annotated resources can be a projection of dependencies
using a parallel corpus with a resource-rich language (typically English). McDon-
ald et al. (2011) showed that using such projection produces better structures than
what current unsupervised parsers are capable of. However, our task is different.
We would like to produce structures that are not burdened by any linguistic con-
ventions.

18

CHAPTER 2. RELATED WORK

CHAPTER 3

Statistical Background

In this chapter, we review the basic techniques of Bayesian statistics to provide
a background on the algorithms we employ for unsupervised parsing. We start
with the well-known Bayes formula, discuss the differences between maximum likeli-
hood estimation (MLE) and Bayesian inference and the corresponding expectation-
maximization (EM) and Gibbs sampling procedures respectively. More detailed
description can be found for example in the works of Goldwater (2006), Knight
(2009), and Resnik and Hardisty (2010).

Throughout the thesis, vectors are denoted in bold (e.g. &) and scalars in normal
font (e.g.). The equation mark “=" is used also for estimating probabilities.

3.1 Maximum Likelihood Estimation

Let us start with the Bayes rule, which defines the probability of a hypothesis A (in
our case, h is a linguistic grammar) given a data D:

p(DI|h)p(h)
p(D)

The posterior probability p(h|D) is proportional to the product of the likelihood
p(D|h) (the probability of the data under the hypothesis 1) and the prior probability
p(h). The likelihood evaluates how well h explains the observed data D, and the
prior evaluates how well h conforms to expectations about what a good hypothesis
should be like, regardless of the observed data. A hypothesis with a high prior
probability requires less evidence in its favor in order to be accepted.

In Maximum-Likelihood Estimation (MLE), we select the hypothesis h with the
highest likelihood:

p(h|D) = o p(D[h)p(h). (3.1)

~

h = argmax P(D|h). (3.2)
h

This is equivalent to assuming that all hypotheses are equally probable, i.e.the
prior probability p(h) is uniform, and then choosing the single hypothesis with the
highest posterior probability. Maximum likelihood estimation in an unsupervised

19

20 CHAPTER 3. STATISTICAL BACKGROUND

context can be performed by expectation-maximization (EM) algorithm (Dempster
et al., 1977). An example of an EM algorithm is the inside-outside algorithm (Baker,
1979), which is useful for learning context-free grammars and is used also in the DMV
grammar induction system (Klein and Manning, 2004). EM is an iterative procedure
with a very nice property: The likelihood is guaranteed to converge. However, the
substantial disadvantage of EM is the fact that it converges only to a local maximum
of the likelihood function, not to the global maximum. Complex models such as those
often found in linguistic applications generally have many local maxima. This can
lead to poor results that are highly dependent on parameter initialization (Carroll
and Charniak, 1992).

3.2 Categorical and Dirichlet Distribution

Hypotheses h in language learning systems have often the form of a categoricall
distribution. For example, we want to know the distribution of PoS tags for a given
word in PoS tagging or a distribution of a dependent word given a head word in
dependency parsing. In all such tasks, we have a given number of possible outcomes
1,...,m and parameters 8 = 604,...,0,,, which correspond to the probabilities of
the individual outcomes and sum up to 1. Let us have the outcomes zq,...,z,
distributed according to a categorical distribution with the parameter 6:

Tl .oy Ty ~ Cat(0) p(X; =j|0) =0;. (3.3)

In Bayesian statistics, we use a prior probability distribution different from dis-
crete uniform. The natural prior distribution for a categorical distribution is a
Dirichlet distribution. We can say that it is a distribution of distributions, because
each sample from a Dirichlet distribution is a set of parameter values @ for the
categorical distribution.

0 ~ Dir(a), (3.4)
where o« = «q,...,q,, are called hyperparameters. The definition of the Dirichlet
distribution is as follows:

01]'—1
p(Blar) o< [T 677 (3.5)
j=1
Assume that we have a data D = xy,...,z,, where z; € {1,...,m} Vi, and we

want to compute its probability given the parameters 0, i.e.likelihood of the data

D. Then: . . o
p(DI0) = [[p(X; = 2:10) = [[6 = T[] 67" (3.6)
i=1 =1

i=1 j=1

In the field of natural language processing, it is sometimes spoken of a “multinomial distribu-
tion” when a categorical distribution is actually meant.

3.2. CATEGORICAL AND DIRICHLET DISTRIBUTION 21

where I(z; = j) is an indicator function which is equal to one if the element x;
equals to j. Otherwise, it is zero. If we switch the two products, we get:

p(D|6) = HQZ“ (=:=j) ﬁejj, (3.7)
j=1

where ¢; = Y I(x; = j) refers to the number of occurrences of the element j in
our data D.
The posterior distribution p(@|D) is then:

p(8|D) x p(D|6) p Hecf Heaﬂ ﬁej.f*a”. (3.8)
j=1

Now we can see that the posterior distribution p(@|D) is proportional to another
Dirichlet distribution, in this case with the hyperparameter vector equals to ¢ + a.

p(0|D) x Dir(c + o). (3.9)

This is called conjugacy. The posterior distribution has the same analytical form as
the prior distribution and thus the Dirichlet distribution is a conjugate prior to the
categorical distribution.

Now assume that we have a new element x and we want to estimate its probability
with respect to our data D. The predictive distribution is then estimated by an
integral over all possible parameters 6:

p(z|D) = /p(a:,0|D) o = /p(:p|D,0)p(0|D) de. (3.10)

Furthermore, we assume that the new element x is conditionally independent of
the data D, i.e. p(x|@, D) = p(x|0), and is identically distributed, i.e. x ~ Cat(8).
Then:

p(|D) = / p(]0) p(6]D) d6 = / 0.p(0|D) = E(9,|D), (3.11)

which is the conditional expectation of #, given the data D. Such expected value of
the Dirichlet distribution can be expressed as:

Co + Qg -
p(a|D) = E(6,|D) = =——=, ag=» . (3.12)

n —+ oq

We leave this without proof. A detailed derivation can be found e.g.in Resnik
and Hardisty (2010). In case we ignore «a, and «ap in Equation 3.12, we get the
empirical probability ¢,/n estimated from the data D without any previous prior
knowledge. The prior is expressed here by the vector a and the hyperparameters «;
are sometimes called pseudocounts, i.e. virtual counts pre-set before seeing the data.

22 CHAPTER 3. STATISTICAL BACKGROUND

3.3 Bayesian Inference

In unsupervised natural language problems, we typically want to induce latent vari-
ables T on our data D. Specifically in the task of unsupervised dependency parsing,
we have a raw (or PoS tagged) corpus D consisting of sentences Dy, ..., D, and
want to induce dependency trees T' =T}, ..., T,,. We want to get such trees 7" that
maximize the probability p(T'|D, 8), where 0 is the mazimum aposteriory (MAP)
solution for @:

~

0 = arg ;naxp(D|0) p(0). (3.13)

Since the best @ is not known, the distribution over latent variables T given the
observed data D is obtained by integrating over all possible values of :

W(TID) = [(T|D.6)p(6|D) do. (3.14)

An advantage of integrating over all possible @ is that it allows to use linguisti-
cally appropriate priors. In linguistic models, we often deal with categorical distribu-
tions with parameters @ = 6., ..., 0,,. Natural prior is then a distribution conjugated
to the categorical one, i.e. the aforementioned Dirichlet distribution with parameters
o= 01,...,0n,.

As the prior, we often use a symmetric Dirichlet distribution, where all the
hyperparameters are equal. We denote their value by the scalar . With increasing
«, parameters @ approaches towards having the uniform distribution.?

Conversely, very low « causes that some parameter values tend to be very high
and other very low. Linguistic structures have typically very sparse distributions
and thus we often set o < 1.

Assume that the outcomes (let us imagine them as individual dependency edges
in dependency trees) on the data D are generated one by one. A probability of a new
outcome x; = y can be then computed using all the previously generated outcomes.
We will call them the history of z; and denote them by x_;.

X_; = {$1 .. ZL’i_l}. (315)
Then, using Equations 3.14 and 3.12, we have:

4 o,
- V=1 6. p(0lx_.)dO = " 1
bl = i) = [0, p(6bxdo = = (3.16)

where ¢’ stands for the number of times the value z; occurred in the history x_;.
This equation gives us a simple guide for the estimation of a new outcome based on
other outcomes. We will use its modifications in our dependency models.

2Theoretically, the uniform distribution of @ would be reached by setting o = oo.

3.4. GIBBS SAMPLING 23

3.3.1 Relationship with Chinese Restaurant Process

Equation 3.16 can also be easily explained in terms of the so-called “Chinese restau-
rant process”’. Let us imagine a restaurant with an infinite number of round tables,
each with an infinite capacity. At time 1, the first customer is seated at an unoc-
cupied table with probability 1. At time n + 1, a new customer comes and chooses
randomly (uniformly) one place to sit from the following options: directly to the
left of one of the n customers already sitting at any occupied table, or at a new,
unoccupied table.

Our outcomes are the customers sitting in the restaurant and their values corre-
spond to the tables. Dirichlet hyperparameters (pseudocounts) can be imagined as
a set of customers whose seating we determine. Those customers are seated before
the Chinese restaurant process starts and we will call them prior customers. If there
is a very low number of prior-customers or none at all (o < 1), just a few tables will
be very popular during the process and others will be empty in most cases. If we sit
one prior customer at each table, the occupation of the tables will be more uniform.
There will still be some extremes, but not as big as in the first case. Finally, imagine
that we will seat a thousand prior customers at each table. The resulting occupation
will be then very close to uniform for a long time and a lot of customers will be
necessary to change it.

3.4 Gibbs Sampling

For stochastic searching for a distribution over the latent variables T', we make use of
the Gibbs sampling, a standard Markov Chain Monte Carlo procedure (Gilks et al.,
1996) that produces samples from the posterior distribution

p(T|D) o< p(D|T, &) p(T). (3.17)

In this section, we will describe the Gibbs sampling algorithm generally. Its appli-
cation on dependency parsing, in which the latent variables T" over the data D are
the dependency trees, is described in Chapter 6.

Assume the data D = Dy, ..., D, on which we want to predict the latent vari-
ables T'="T},...,T,. The general schema of the Gibbs sampling procedure looks as
follows:

1. We initialize the variables T' randomly.

2. We keep going through the data D in a random order and iteratively changing
the values of respective latent variables T' (one by one) according to their con-
ditional distribution given the current values of the latent variable of all other
elements. Exchangeability (see Section 6.1) allows us to treat the currently
resampled element as if it was the last element in the data and thus the history
is then composed of all elements but this one.

24 CHAPTER 3. STATISTICAL BACKGROUND

3. We repeat the previous step in many iterations.

4. We obtain the final probability distributions of our latent variables based on
the samples generated during the sampling.

Since the choice in Step 2 is not uniformly random, the more likely latent vari-
ables are sampled more often than the less likely ones. However, the algorithm never
converges since there is always a possibility to make a small change that leads to
a less probable sample than the previous one. This feature helps the sampler to
escape local from optima.

CHAPTER 4

Data and Evaluation

One of the motivations for unsupervised language learning is the applicability to any
language. Moreover, since these methods do not require annotated texts, we can use
any texts available, for example documents from the web. This chapter describes
the data used in this work and discusses possible evaluation methods.

We use two types of resources in our experiments with unsupervised dependency
parsing. Large raw (not linguistically annotated) monolingual corpora and smaller
manually annotated monolingual treebanks to be able to automatically evaluate the
results and compare them to unsupervised parsers developed elsewhere.

4.1 Raw Corpora from W2C

Raw texts are easily available in vast amounts since they can be automatically down-
loaded from the web. Hoverer, a more tricky issue necessary to be solved is the lan-
guage recognition. The multilingual corpus W2C created by Majlis and Zabokrtsky
(2012) is publicly available and suitable for our purposes. It consists of two sources:
Wikipedia articles’ and other texts downloaded from the web by a web crawler.
The advantage of the Wikipedia articles is that the information about language is
provided with them. A language recognizer was trained on Wikipedia (Majlis, 2012)
and used for the language recognition of the web texts.

Although the W2C corpus contains texts written in 106 different languages (and
for 100 languages, there are more than 10 GB of texts available), we use only data
of 29 of them, because only for those 29 languages we have treebanks available
for evaluation purposes (see Section 4.2). The statistics of the selected data are
summarized in Table 4.1.

4.2 Treebanks

Treebanks are necessary to evaluate automatically to what degree the induced trees
match linguistic conventions. Different treebanks exist for more than 30 languages,

Thttp://www.wikipedia.org

25

26 CHAPTER 4. DATA AND EVALUATION

Wikipedia Web

language code | words | unique avg. words | unique avg.

(kw) (kw) | length (kw) (kw) | length
Arabic ar 2,846 139 4.50 1,575 120 4.84
Basque eu 9,716 440 6.61 | 64,498 | 1,370 6.38
Bengali bn 2,611 199 5.66 | 35,434 659 5.09
Bulgarian bg | 14,346 526 5.26 | 60,088 | 1,373 4.99
Catalan ca | 22,538 463 4.58 | 98,690 748 4.50
Chinese zh 6,242 | 4,289 7.99 867 354 7.54
Czech cs | 15,619 754 5.56 | 139,301 | 2,477 5.34
Danish da | 12,545 523 5.23 | 76,718 | 1,321 4.97
Dutch nl | 22,078 602 5.30 | 126,957 | 1,824 5.03
English en | 68,478 636 4.92 | 752,168 | 8,229 4.71
Estonian et 8,469 779 6.65 | 80,153 | 2,193 6.04
Finnish fi |13,657| 1,211 7.56 | 93,191 | 3,837 7.24
German de | 44,699 | 1,340 6.15 | 97,305 | 2,212 5.71
Greek el | 16,834 571 5.50 | 99,467 | 1,622 5.32
Hindi hi | 15,231 459 4.20 | 42,134 535 3.82
Hungarian | hu | 19,423 | 1,147 6.13 | 90,970 | 3,089 6.03
Italian it | 32,464 542 5.20 | 130,870 | 1,546 5.10
Japanese ja 7,806 | 4,841 | 10.54 | 68,838 | 35,556 9.43
Latin la 2,531 267 6.21 | 32,435 | 1,231 5.81
Persian fa | 16,142 290 3.67 | 104,540 913 3.69
Portuguese | pt | 25,502 448 499 | 82,158 1,121 4.88
Romanian ro | 17,824 523 5.23 | 154,886 | 1,370 4.82
Russian ru | 25,445 | 1,042 6.18 | 36,178 | 1,607 6.04
Slovenian sl 10,517 570 5.40 | 87,328 1,463 5.07
Spanish es | 44,509 635 4.96 | 223,776 | 2,295 4.87
Swedish sv | 15,397 678 549 | 93,963 | 1,661 4.95
Tamil ta 5,806 696 8.13 | 48,367 | 2,113 7.51
Telugu te 6,420 606 6.46 | 23,254 | 1,205 6.42
Turkish tr | 12,618 665 6.31 | 106,312 | 2,422 6.24

Table 4.1: Statistics of W2C Wikipedia and Web corpora for selected languages.
They show the total number of words (kw = thousands of words), the number of
unique words and the average word length. This table was extracted from the W2C
“stat” files.

4.2. TREEBANKS 27

the problem is, however, that almost each of them uses their own annotation style
and data format. For our purposes, we use our compilation of treebanks called
HamleDT (HArmonized Multi-Language Dependency Treebanks) described in Ze-
man et al. (2012). We solved the problem of annotation style inconsistencies by
developing a set of converters able to transform such heterogeneous dependency and
phrase-structure treebanks into one common format. The list of treebanks currently
present in the HamleDT collection follows.

e Arabic (ar): Prague Arabic Dependency Treebank 1.0 / CoNLL 2007; Smrz
et al. (2008)?

e Basque (eu): Basque Dependency Treebank (larger version than CoNLL 2007
generously provided by IXA Group); Aduriz et al. (2003)

e Bengali (bn): see Hindi

e Bulgarian (bg): BulTreeBank; Simov and Osenova (2005)3

e Catalan (ca) and Spanish (es): AnCora; Taulé et al. (2008)

e Chinese (zh): Sinica treebank / CoNLL 2007; Chen and Hsieh (2004)*

e Czech (cs): Prague Dependency Treebank 2.0 / CoNLL 2009; Haji¢ et al.
(2006)°

e Danish (da): Danish Dependency Treebank / CoNLL 2006; Kromann et al.
(2004), now a part of the Copenhagen Dependency Treebank®

e Dutch (nl): Alpino Treebank / CoNLL 2006; van der Beek et al. (2002)”
e English (en): Penn TreeBank 2 / CoNLL 2009; Surdeanu et al. (2008)3
e Estonian (et): Eesti keele puudepank / Arborest; Bick et al. (2004)°

e Finnish (fi): Turku Dependency Treebank; Haverinen et al. (2010)*

e German (de): Tiger Treebank / CoNLL 2009; Brants et al. (2002)!

’http://padt-online.blogspot.com/2007/01/conll-shared-task-2007 .html
3http://www.bultreebank.org/indexBTB.html
‘http://godel.iis.sinica.edu.tw/CKIP/engversion/treebank.htm
Shttp://ufal.mff.cuni.cz/pdt2.0/
Shttp://code.google.com/p/copenhagen-dependency-treebank/
"http://odur.let.rug.nl/~vannoord/trees/
8http://www.cis.upenn.edu/~treebank/
http://www.cs.ut.ee/~kaili/Korpus/puud/
Onttp://bionlp.utu.fi/fintreebank.html
Uhttp://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

28

CHAPTER 4. DATA AND EVALUATION

Greek (modern) (el): Greek Dependency Treebank; Prokopidis et al. (2005)

Greek (ancient) (grc) and Latin (la): Ancient Greek Dependency Treebank;
Bamman and Crane (2011)"?

Hindi (hi), Bengali (bn) and Telugu (te): Hyderabad Dependency Treebank /
ICON 2010; Husain et al. (2010)

Hungarian (hu): Szeged Treebank; Csendes et al. (2005)?

Italian (it): Italian Syntactic-Semantic Treebank / CoNLL 2007; Montemagni
et al. (2003)

Japanese (ja): Verbmobil; Kawata and Bartels (2000)

Latin (la): Latin Dependency Treebank; Bamman and Crane (2011)°
Persian (fa): Persian Dependency Treebank; Rasooli et al. (2011)'7
Portuguese (pt): Floresta sint(c)tica; Afonso et al. (2002)!8
Romanian (ro): Romanian Dependency Treebank; Célacean (2008)

Russian (ru): Syntagrus; Boguslavsky et al. (2000)

Slovene (sl): Slovene Dependency Treebank / CoNLL 2006; Dzeroski et al.
(2006)20

Spanish (es): see Catalan

Swedish (sv): Talbanken05; Nilsson et al. (2005)%!

Tamil (ta): TamilTB; Ramasamy and Zabokrtsky (2012)%2

Telugu (te): see Hindi

Turkish (tr): METU-Sabanci Turkish Treebank; Atalay et al. (2003)*

Other characteristics of HamleDT treebanks, including the numbers of non-
projective dependencies, are shown in Table 4.2.

2http://nlp.perseus.tufts.edu/syntax/treebank/greek.html
Bhttp://www.inf .u-szeged.hu/projectdirs/hlt/index_en.html
Yhttp://medialab.di.unipi.it/isst/
5http://www.sfs.uni-tuebingen.de/en/tuebajs.shtml
http://nlp.perseus.tufts.edu/syntax/treebank/latin.html
"http://dadegan.ir/en/persiandependencytreebank
Bhttp://www.linguateca.pt/floresta/info_floresta_English.html
Yhttp://www.phobos.ro/roric/texts/xml/
POnttp://nl.ijs.si/sdt/
http://www.msi.vxu.se/users/nivre/research/Talbanken05.html
22nttp://ufal.mff.cuni.cz/~ramasamy/tamiltb/0.1/
Zhttp://www.ii.metu.edu.tr/content/treebank

4.2. TREEBANKS

29

Pri. | Used Train Avg. | Non-
Language | code | tree | data Sents. | Tokens | / test sent. | proj.

type | source (% snt] | length | [%]
Arabic ar | dep | CoNLL'07 | 3,043 | 116,793 | 96 / 4 38.38 | 0.37
Basque eu | dep | primary 11,226 | 151,604 | 90 / 10 | 13.50 | 1.27
Bengali bn | dep | ICON’10 1,129 7,252 | 87 / 13 6.42 | 1.08
Bulgarian bg | phr | CoNLL’06 | 13,221 | 196,151 | 97 / 3 14.84 | 0.38
Catalan ca | phr | CoNLL’09 | 14,924 | 443,317 | 88 / 12| 29.70 | 0.00
Chinese zh | dep | CoNLL’07 | 57,647 | 342,336 | 99 / 1 N/A | N/A
Czech cs | dep | CoNLL'07 | 25,650 | 437,020 | 99 / 1 17.04 | 1.91
Danish da | dep | CoNLL’06 | 5,512 | 100,238 | 94 / 6 18.19 | 0.99
Dutch nl | phr | CoNLL’06 | 13,735 | 200,654 | 97 / 3 14.61 | 5.41
English en | phr | CoNLL’09 | 40,613 | 991,535 | 97 / 3 24.41 1 0.39
Estonian et | phr | primary 1,315 9,491 | 90 / 10 7.22 1 0.07
Finnish fi | dep | primary 4,307 | 58,576 | 90 / 10 | 13.60 | 0.51
German de | phr | CoNLL’09 | 38,020 | 680,710 | 95 / 5 17.90 | 2.33
Greek el |dep | CoNLL’O7 | 2,902 | 70,223 |93 /7 2420 | 1.17
Greek grc | dep | primary 21,160 | 308,882 | 98 / 2 14.60 | 19.58
Hindi hi | dep | ICON’10 3,015 | 77,068 | 85 /15| 21.93| 1.12
Hungarian | hu | phr | CoNLL’07 | 6,424 | 139,143 | 94 / 6 21.66 | 2.90
Italian it | dep | CoNLL'07 | 3,359 | 76,295 |93 /7 22.71 | 0.46
Japanese ja | dep | CoNLL’06 | 17,753 | 157,172 | 96 / 4 8.85 | 1.10
Latin la | dep | primary 3,473 | 53,143 191 /9 15.30 | 7.61
Persian fa | dep | primary 12,455 | 189,572 | 97 / 3 15.22 | 1.77
Portuguese | pt | phr | CoNLL’06 | 9,359 | 212,545 | 97 / 3 22.71 | 1.31
Romanian ro | dep | primary 4,042 | 36,150 | 93 / 7 8.94 | 0.00
Russian ru | dep | primary 34,895 | 497,465 | 99 / 1 14.26 | 0.83
Slovene sl |dep | CoNLL06 | 1,936 | 35,140 | 79 /21 | 18.15| 1.92
Spanish es | phr | CoNLL’09 | 15,984 | 477,810 | 90 / 10 | 29.89 | 0.00
Swedish sv | phr | CoNLL’06 | 11,431 | 197,123 | 97 / 3 17.24 | 0.98
Tamil ta | dep | primary 600 9,581 | 80 / 20 | 15.97 | 0.16
Telugu te | dep | ICON'10 1,450 5,722 | 90 / 10 3.95 | 0.23
Turkish tr | dep | CoNLL’07 | 5,935 | 69,695 |95 /5 11.74 | 5.33

Table 4.2: Statistics of individual treebanks included in HamleDT, adopted from Ze-
man et al. (2012). “Non-proj.” stands for the percentage of non-projective depen-
dencies; “Train / test” expresses the ratio between training and testing sets. In
case a treebank was not originally divided into a training and a testing part, we
determined the testing part ourselves by separating roughly 5000 tokens.

30 CHAPTER 4. DATA AND EVALUATION

4.3 Evaluation Metrics

As in other unsupervised tasks (e.g.in unsupervised PoS induction), there is little
consensus on evaluation measures. The performance of unsupervised methods is
often measured by comparing the induced outputs with gold-standard manual an-
notations (Gelling et al., 2012). However, this approach causes a general problem:
manual annotation is inevitably guided by a number of conventions. It is thus ques-
tionable, whether the unsupervised PoS tagging should adhere to the traditional PoS
categories, or what conventions for local tree shapes representing e.g. complex verb
forms, should be used to measure the performance of the unsupervised dependency
parsing.

Different linguistic conventions used to capture particular linguistic phenomena
in the form of dependencies across various treebanks were described by Zeman et al.
(2012). Coordination structures are probably the most heterogeneous, since there

a apples apples
[NNS\ [NNS\

Fresh apples bananas Fresh and Fresh and bananas
NNS NNS JJ CC\ J) CC NNS
bananas
a) b) NNS)

Figure 4.1: Three different annotations of coordination structures.

R
root root root
has working been
jvsz\ VBG VBN
He been He has been He has working
PRP VBN PRP VBZ VBN PRP VBZ VBG
a) L b))
working
VBG

Figure 4.2: Three different annotations of the complex verb form “has been work-

79

ing”.

4.3. EVALUATION METRICS 31

exist many linguistically motivated possibilities for them (see Figure 4.1). Relations
between auxiliary verbs and finite verbs seem to be even more problematic for eval-
uation as they are very frequent. Some possibilities are listed in Figure 4.2. The
problem here is to decide which verb should be the head, which one should be its
child and on which of them the individual arguments should depend. Figure 4.3
shows two possibilities of attaching prepositions and subordinating conjunctions.

Q

root root

On rain left left
IN\D NN !VBD\Q <ZVBD

train On the She because She felt

!NN IN DT PRP |N¥ PRP <ZVBD\3
the felt because she tired
DT !VBD\) IN PRP JJ
a) b) c) she tired d)

PRP J)

Figure 4.3: Two different annotation styles for prepositions and subordinating con-
junctions. In a) and c), the function words are heads of the structures, whereas in
b) and d) they are leaves.

Schwartz et al. (2011) discuss three different annotation schemes used to con-
vert English phrase structures into dependencies and conclude that the differences
between them are substantial. For instance, when evaluating two of the three anno-
tation schemes on the Penn Treebank section 23, they discovered that 14.4% of edges
were attached in a different way. In the following text, we will describe the main
evaluation metrics?* that have been used to measure the quality of unsupervised
dependency parsers.

4.3.1 Directed Attachment Score

The directed attachment score (DAS) is the standard metric for dependency parsers.
We simply calculate the percentage of words attached to a “correct” parent.

DAS(G, P) Z[=p;) x 100 [%], (4.1)

24 All the proposed attachment scores ignore the dependency labels in the treebanks, since we
predict only the structure and not individual types of the dependency relations.

32 CHAPTER 4. DATA AND EVALUATION

where G' and P are vectors of gold and predicted parents respectively. Although this
metric does not allow the even slightest local structural differences, which might be
caused just by more or less arbitrary linguistic or technical conventions, it is the
most commonly used metric, probably because of its simplicity and the tradition in
the field.

4.3.2 Undirected Attachment Score

It is obvious that using directed attachment scores leads to a strong bias towards
such conventions and might not be a good indicator of unsupervised parsing im-
provements. The second metric, which is more tolerant and has the aim of reducing
such bias, is called undirected attachment score (UAS). The direction of edges are
disregarded here.

UAS(G, P) ZI = piV gy, =) x 100 [%]. (4.2)

Figure 4.4 shows that two different linguistic conventions for the attachment of
modal verbs are more similar in case the undirected attachment score is used instead
of the directed one. On the other hand, completely unwanted attachments, such as
a noun depending on an adjective, are also judged as correct by this metric.

4.3.3 Neutral Edge Direction

The neutral edge direction® (NED) metric was proposed by Schwartz et al. (2011).
It is even more tolerant in assessing parsing errors than the undirected attachment
score. It treats not only node’s gold-standard parent and child as the correct answer,
but also its gold grandparent.

NED(G,P) = Z[=piVgy =iVgi=py) x100 [%]. (4.3)

By definition, the NED metric completely ignores the edge flip. Figure 4.4 docu-
ments that the flipped edge between the words must and have is correct according
to the NED. However, the NED greatly increases the number of false positives,
i.e.incorrect attachments treated as correct, and yet it does not cover all the differ-
ences in linguistic conventions.

4.3.4 Removing Punctuation

Most works in unsupervised dependency parsing report their results ignoring the
attachment of punctuation completely. This is justified because the attachment of

Znttp://www.cs.huji.ac.il/~roys02/software/ned.html

4.3. EVALUATION METRICS 33

DAS=0
UAS=0
/ NED=1
must DAS=0 have DAS=1
MD _ VB UAS=1
UAS=1
\ NED=1 | & \,/ NED=1
have must something
VB MD NN
a) gold structure something b) predicted structure
NN

Figure 4.4: Evaluation using directed attachment score (DAS), undirected attach-
ment score (UAS), and neutral edge direction (NED) on a predicted structure (b)
that has the edge must-have flipped in comparison to the gold standard (a). We can
see that DAS is the most strict one, whereas NED marks the predicted structure as
completely correct.

punctuation is very arbitrary. For example, in the Russian treebank (Boguslavsky
et al., 2000), punctuation is not treated as dependency tree nodes at all. Or, imagine
that all the full stops of predicted Czech trees are “correctly” attached to the main
verb. However, in the Czech treebank (Haji¢ et al., 2006), the full stops are attached
to the technical roots. The DAS score would be then immediately lower by about
5% since the average sentence length is 20 words and a full stop appears in almost
all of them.

Integrating punctuation removal into the evaluation as a preprocessing step be-
fore applying one of the aforementioned metrics thus appears as a possible solution.
Most punctuation nodes are leaves in the trees and removing them is simple. If
there are some words depending on a punctuation mark, they can be re-attached to
its parent node.

We experiment with excluding punctuation from evaluation and excluding punc-
tuation from learning in Section 7.3.4.

34

CHAPTER 4. DATA AND EVALUATION

CHAPTER 5

Dependency Tree Models

Developing a model that meets our requirements for the outcomes is the most im-
portant thing in unsupervised induction. We do not have any annotated training
data and therefore we must rely on basic intuitions. In general, our task is to induce
a linguistic structure, but there are various constraints that may be imposed upon
this structure. We have already made one essential assumption, which is the depen-
dency tree shape (see Section 1.5). Although we know several language phenomena
for which the tree structure is not well-suited (e.g. coordination structures), we still
decide to produce dependency trees. Such constraint is very helpful in unsuper-
vised induction since it prohibits many unreasonable structures. Projectivity (see
Section 5.6) can be used as another, stricter constraint.

In this chapter we will examine the models that reflect our basic intuitions about
dependency trees, such as repeatability of dependency relations, short distances
between dependents and governors, reducibility of dependents, fertility of words etc.
Various combinations of these models are then described in Section 5.5.

5.1 Edge Models

Probably the most obvious feature which can be useful for the induction of depen-
dencies is the fact that the distribution of dependency relations among the pairs of
words in the corpus is not uniform. Particular words often relate to a very small
subset of all possible words. For example, English adjectives depend very often on
nouns and almost never on adverbs. The word “York” has a very common depen-
dent, which is “New”.

Figure 5.1 shows that the majority of probability mass is concentrated on a
relatively low number of dependency relations (out of all possible pairs of words or
pairs of part-of-speech tags, respectively). We can see that in case of PoS tags, 10%
of the most frequent dependency edge types cover almost the whole treebank. In
case of word-forms, it is 0.03%. Czech, German, and Hungarian treebanks contain
less then 0.01% of all possible pairs of word-forms. It must be noted that word form
percentages are rather illustrative since they depend strongly on the corpus size.

35

36 CHAPTER 5. DEPENDENCY TREE MODELS

100 T T T T
Czech mmm
9 | English === .
German .
80 Catalan s i
Arabic 3
0 Italian —
70 r Hungarian 7]
n Chinese
8 -
<
()
‘5 -
[S]
(8]
O —
X
0.0001 0.0003 0.001 0.003 0.01 0.03
Percentiles of all possible child-parent PoS tag combinations
100 — T T T
English ===
9 German .
Catalan
80 L Arabic =3 |
Italian ——3
70 L Hungarian |
Chinese mmmmm
[%]
() -
[&]
c
g
S]
Q
[&]
o —
O\O

0.0001 0.0003 0.001 0.003 0.01 0.03
Percentiles of all possible child-parent word-form combinations

Figure 5.1: The percentage of edges in Czech, English, German, Catalan, Arabic,
Italian, Hungarian, and Chinese treebanks that are covered by a particular per-
centile of all possible edge types (|IW|?) sorted according to their frequencies in the
treebanks. The top figure shows statistics measured on part-of-speech-tags, the bot-
tom figure shows statistics of word-forms. For example, if we take 1% of PoS tag
pairs that constitute a dependency edge most frequently in the Chinese treebank,
we cover about 90% of edges.

5.1. EDGE MODELS 37

5.1.1 Naive Edge Model

Let us define a dependency edge as a pair [wq, w,], where wy is the dependent and
wy the governing word. We assume that the probability mass over all possible
dependency edges in the corpus is concentrated into a relatively low number of
types and the majority of types are very unlikely. In addition, we assume that the
dependency relations in the corpus are mutually independent.

Let us first define a very naive model as a product of probabilities over all
dependency edges in the treebank.

n
jozn H wd) wﬂ'(d

where n is the number of words in the corpus and wy (g is the parent of the word
wq. The best dependency trees would be then found by maximizing the Pjp,.

However, this model is mathematically incorrect since we assume independence
among the individual edges in a tree, which is not true. Note that every word plays
the role of a dependent in a dependency edge just once, but could be in the role of a
governor several times or not at all. Therefore, the maximization of the product of
joined probabilities would cause that more frequent words tend to be the heads and
less frequent words tend to be the leaves in the most probable dependency trees.
Such structures are not desired.

C wdyww d)

:j:

: (5.1)

d=1

5.1.2 Conditioning by Head

A better mathematical model which avoids this undesired behavior uses conditional
probability instead of the joint probability in Equation 5.1. The probability of the
dependency edge is now conditioned on the governing word.

Pcond - H P(wd|w7r(d)) = H M (52)

d=1 i (@)

Conditioning on the head word ensures independence from c(wx), which rep-
resents the number of times w4 was a governing word. Note that wy gy can be also
the technical root, which is never in the role of a dependent. Number of such roots
in the treebank equals the number of sentences. This basic model (or its variants)
was used in the majority of works published in the field of unsupervised dependency
parsing (Yuret, 1998; Klein and Manning, 2004).

Maximizing the conditional edge model in Equation 5.2 is the same as maximiz-
ing the sum over pointwise mutual information between dependent words. Pointwise
mutual information in the context of dependency trees is computed as follows.

p(wd7w9) (53)

pmi(d, g) =108 2 S pluw,)

38 CHAPTER 5. DEPENDENCY TREE MODELS

We define the pointwise mutual information of the whole tree as the sum of
pointwise mutual information of individual edges:
. = . “r p(wa, We(a))

pmi(tree) = » pmi(wg, weg) = log | | ——F——. (5.4)
; “ prd)p(wﬂ(d))
We can omit the probabilities of the dependent words for maximization since
they are the same for all possible trees corresponding to a given sentence.

& p(wa, wy
arg max pmi(free) = arg max P(Wa, Wr) = arg max P,q. (5.5)
tree tree 1 p(ww(d)) tree

5.1.3 A switch to Bayesian Statistics

We want to estimate the conditional probabilities p(wq|w,) from Equation 5.2. We
assume that this probability has a categorical distribution with parameters 8. Since
the Dirichlet distribution provides natural priors for the categorical distribution (see
Section 3.2 for a detailed description), we add symmetric Dirichlet priors parame-
terized by a:

wglwy ~ Cat (@) (5.6)
fla ~ Dir(a) (5.7)
Given this model, Equation 3.16 yields the formula for the probability of a de-

pendency edge [wq, w,] given the parent word w, and the history (all the preceding
dependency edges!):

Cid<”wd,wg”) +
c—d(nwgn) +C¥|W|’

Pe([wa, wgl|wg) = (5:8)

where wy and w, are words at positions d and g in the treebank and ¢=4("wg, w,”)
indicates the number of edges [wgq,w,] in the history. Unlike in Equation 3.16,
here we have the number of parents ¢~?("w,”) in the denominator since we are
conditioning on the parent word. Note, that the count ¢=¢("w,”) refers to the
number of edges whose parent is w,, not the number of words w,. |W]| is the
number of parameters, which is the number of distinct words is in this case. The
term «|W| stands for ay from Equation 3.16.

5.1.4 Various Edge Models

The edge model in Equation 5.8 can be applied to word forms, to part-of-speech
tags, or to a combination of both. It also proves useful to condition the probability

"'We define the position of a dependency edge as the position of the dependent word in the
corpus.

5.1. EDGE MODELS 39

of a dependency edge on the word-order direction of the dependency, which is used
in Dependency Models with Valence as well (Klein and Manning, 2004; Headden
et al., 2009) (see Section 2.2). For example in English, adjectives are attached to
their governing nouns from the left side, nouns appear to the right of their governing
prepositions, etc.

In the following four Equations, we present possible variants of the edge model.
For simplification, we will denote the dependency edges only as [d, g], where d and ¢
are the positions of the dependent and the governing word, respectively. We define
the dependency direction dir(d,g) to determine, whether the governing word is to
the left (d > g) or to the right (d < g) from the dependent. While wy and w,, are the
word forms, t4 and t, denote the respective PoS tags. All four models use symmetric
Dirichlet priors.

Since the corpora on which we run the induction algorithm are not very large and
the distributions of the individual word forms are thus very sparse, we first introduce
the edge model based on part-of-speech tags (or alternatively, automatically induced
word classes):

U gy ty”) + Qe

P, d, =)
t(g) C_d(“tg”) + Qv - ’T|

(5.9)

where |T'| is the number of distinct tags (or unsupervised word classes) used in the
corpus. A variant of this model, where the dependents are in addition conditioned
on the edge direction, look as follows:

4 (“ty, tg, dir(d,t)”) + Qeta

Pe d7 = .)
l(d; g) U “ty, dir(d, t)”) + cetq - |T|

(5.10)

In lexicalized edge models, we suppose that we have already generated the part-of-
speech tag of the dependent. The word form of the dependent is thus conditioned
on the part-of-speech tags of the dependent and the governor and also on the word
form of the governor:

—d(» 9
& (tdatgawdawg)+Oéew

Pew d> =)
(g) Cid<”td,tg,w‘g”) + Oéew . ’W‘

(5.11)

And finally, the lexicalized edge model conditioned also by the edge direction:

c("ty, tg, Wa, Wy, dir(d, 9)”) + Qewd
Cid(”tda tgv Wy, dZT(d, g)”) + Qewd * |W‘ ’

Pewd(d7 g) = (512)

We mostly use the part-of-speech tag edge model conditioned on the edge direc-
tion (Equation 5.10) in our experiments (see Chapter 7), sometimes in a combination
with one of the lexicalized models.

40 CHAPTER 5. DEPENDENCY TREE MODELS

5.2 Fertility Models

By the fertility of a node in a dependency tree, we mean the number of its children
(dependents). In Dependency Model with Valence (Klein and Manning, 2004), the
fertility is modelled by the STOP sign (see Section 2.2). Every time we want to gen-
erate a new dependent, we first use the stop model Psrop(STOPIt,,dir(d, g), adj)
that determines whether the new dependent can be generated or not. The stop
model is able to induce different fertilities for different heads because it is condi-
tioned on the head’s part-of-speech tag.

In this work, the fertility f; of a node at the i-th position in our treebank models
directly the number of its children conditioned on the PoS tag t;. Similarly as with
the edge models, we assume a categorical distribution of fertilities for a given PoS
tag with a Dirichlet prior 3:

filti ~ Cat(9), (5.13)
o|B ~ Dir(3). (5.14)

Unlike in edge models, where the Dirichlet prior distribution was symmetric, here
we assume that higher fertilities are less probable than lower ones. We introduce a
prior probability Py, which is estimated as follows:

1
Po(fi) = Sftl” (5.15)

The prior probability of a fertility f; decreases exponentially with the fertility itself.
A node is a leaf with a probability of %; has just one child with a probability i, etc.
The base 2 was chosen so that all possible fertilities sum up to one.

Examples of fertility distributions extracted from English and German treebanks
in Figures 5.2 and 5.3 show that for a majority of PoS tags, the zero fertility is
dominant. In contrast to this, the fertility of verbs is almost never zero. See the
English PoS tags with the prefix “VB” and the German PoS tags with the prefix
“vv?? .

Following Equation 3.16, we derive a formula for the basic fertility model:

' (“ti, £i7) + BoPo(fi)
™ (“L7) + Bo ’

where f; is the number of children of the i-th word, [is the Dirichlet hyperparam-
eter, and Py(f;) is the prior probability. In this case, the parameters of the Dirichlet
prior distribution are 8 = 5y Py(f;).

The following slight modification of the fertility model distinguishes the numbers
of left and right children. Instead of one number, it predicts a pair [f%, f¥]. For
example, fertility [1, 3] means that the node has one left and three right dependents,
fertility [0, 0] indicates that the node is a leaf.

Pr(filti) =

(5.16)

5.2. FERTILITY MODELS 41

[oe]

OFRP N WO

Figure 5.2: Fertility distribution conditioned by individual part-of-speech tags in the
English treebank. Areas of squares are proportional to the counts of occurrences.

OFRPNWhOUUION®

Figure 5.3: Fertility distribution conditioned by individual part-of-speech tags in the
German treebank. Areas of squares are proportional to the counts of occurrences.

' (“ti, fEFT) + BoPo(fF +)
Cfi(cctiw) +BO ’

The prior probability P, is defined here in the same way as before, using the total
number of children for each node.

Besides the basic fertility models, we also introduce a more complex model which
uses the frequency of a given word form to generate the number of children. We
assume that the most frequent words are mostly function words (e.g. determiners,
prepositions, auxiliary verbs, conjunctions). Such words tend to have a stable
number of children, for example (i) some function words are exclusively leaves, (ii)
prepositions have just one child, and (iii) the attachment of auxiliary verbs de-
pends on the annotation style, but the number of their children is also not very
variable. The higher the frequency of a word form, the higher the probability mass

Pra(ff, fiIt:) =

(5.17)

42 CHAPTER 5. DEPENDENCY TREE MODELS

concentrated on one specific number of children and the lower the Dirichlet hyper-
parameter) in Equation 5.17 needed. The extended fertility is described by the
following equation:

C_i<“ti7 fiL7 fiR”> + F(BSZ)P()(flL =+ sz)

Pfdz(ZLaszlt’l) = Py P
) + p

(5.18)

The relative word frequency F'(w;) is computed by dividing the number of oc-
currences of the word form w; in the corpus by the corpus size.

5.3 Distance Model

We define the distance between two words in a sentence as the difference between
their word-order positions. Distances between two dependent words (edge lengths)
are rather short in a typical case. Figure 5.4 shows the distributions of edge lengths
in four different treebanks. We can see that the probability of a dependency edge
between two words decreases rapidly with its length.

30 T
Czech mmmm
English ===

German =
Catalan s

% occurences

-0 9 8 7 6 5 4 3 -2 1 0 1 2 3 4 5 6 7 8 9 10
Edge length

Figure 5.4: Distribution of edge lengths for various languages, as measured on Czech,
English, German and Catalan treebanks included in the CoNLL 2006 and 2007
shared tasks.

5.4. REDUCIBILITY MODEL 43

In the distance model, we approximate the probability of the edge as the inverse
value of the distance between the dependent word and its parent:2

€d
where €4 is the normalization constant and the hyperparameter v determines the
impact of this model.

Py(d,g) = 1 (ﬁ)v, (5.19)

5.4 Reducibility Model

The notion of reducibility, i.e.the possibility of deleting a word from a sentence
without violating its syntactic correctness, belongs to traditionally known manifes-
tations of syntactic dependency. As mentioned e.g. by Kiibler et al. (2009), one
of the traditional linguistic criteria for recognizing dependency relations (including
their head-dependent orientation) is that a head H of a construction C' determines
the syntactic category of C' and can often replace C'. Or, in words of “Dependency
Analysis by Reduction” of Lopatkova et al. (2005), stepwise deletion of dependent el-
ements within a sentence should preserve its syntactic correctness. A similar idea of
dependency analysis by splitting the sentence into all possible acceptable fragments
is used by Gerdes and Kahane (2011).

All the above works had obviously to respond to the notorious fact that there are
many language phenomena precluding the ideal word-by-word) sentence reducibility
(e.g. the case of prepositional groups, or English finite clause subjects). However, we
disregard their solutions tentatively and borrow only the very core of the reducibility
idea: if a word can be removed from a sentence without damaging it, then it is likely
to depend on another word which is still present.

As is usual with dichotomies in natural languages, it seems more adequate to
use a continuous scale instead of a reducible-irreducible opposition. That is why we
introduce a simple reducibility measure based on n-gram corpus statistics.

5.4.1 Obtaining Reducible Words

We call a word (or a sequence of words) in a sentence reducible if the sentence
remains grammatically correct after the removal of this word (or sequence). But
here we face the problem that we cannot simply recognize whether a given sentence
is grammatical or not. This might be possible in case we have a grammar; however,
the grammar is the thing what we are trying to infer. We would need some negative
feedback, similar to what children have when they learn their mother tongue (see
Section 1.1). However, the only thing we have available are collections of many
positive examples — the large monolingual corpora described in Section 4.1.

2We decided to use a reciprocal function here. The use of an exponential function would be
also possible. However, we did not observe much differences on our experiments.

44 CHAPTER 5. DEPENDENCY TREE MODELS

We determine the grammaticality of a newly created (i.e. reduced) sentence by
searching for it in the corpus. If we find it, we assume that the removed word
was reducible in the original sentence. This is certainly an improper solution since
we suppose that all grammatically correct sentences occur in the corpus®, but we
are still able to recognize at least some words that are reducible. The experiments
show that even the relatively row number of reducible PoS n-grams is sufficient for
estimating PoS-ngram reducibility scores and improve the parsing quality for most
of the languages (see Section 7.3.6).

The necessity of searching for whole sentences in the corpus and not only for
smaller context,? which would lead to lower sparsity, is rationalized by the following
example:

Their children went to school.
I took their children to school.

The verb ‘went’ would be reducible in the context ‘their children went to school’,
because the sequence ‘their children to school’ occurs in the second sentence. One
could find such examples frequently even for larger contexts. For instance, verbs in
free word order languages can be placed almost at any position in the sentence. The
following two Czech sentences are both correct:

Pavel s nami na vylet do Orlickijch hor v tomto hrozném pocasi nepujde.

[lit: Paul with us on a-trip to the-Eagle Mountains in this terrible weather will-not-come.]

Pavel neptjde s nami na vylet do Orlickiyjch hor v tomto hrozném pocasi.

[lit: Paul will-not-come with us on a-trip to the-Fagle Mountains in this terrible weather.]

They differ only in the position of the verb nepijde [will not come]. The verb would be
considered as reducible in this case, if we take shorter segments than whole sentences
into account. This is not correct since the sentence does not make sense without
the verb. In order to prevent such errors, we decided to work exclusively with the
full sentence context instead of shorter contexts.

Another possibility of reaching a lower sparsity would be searching for sequences
of part-of-speech tags instead of sequences of word forms. However, this also does
not bring desired results. For instance, the following two sentence patterns

DT NNS VBD IN DT NN .
DT NNS VBD DT NN .

are quite frequent in English and we can deduce from them that the preposition IN
is reducible. But this is of course a wrong deduction since the preposition cannot be

3 Assume that natural languages have a possibly infinite number of grammatically correct sen-
tences due to their recursivity. The fraction of sentences occurring in a corpus of any size is
therefore close to zero.

4For example, we could consider using just the left and the right neighbor of the given word or
using a trigram language model.

5.4. REDUCIBILITY MODEL 45

removed from the prepositional phrase. Using part-of-speech tags instead of word
forms is thus not suitable for the reducibility score computation.

5.4.2 Computing Reducibility Scores

Our algorithm searches the corpus not only for reducible words but also for sequences
of words. We compute the reducibility score for each part-of-speech tag (and se-
quences of part-of-speech tags) based on the number of occurrences of reducible
words (sequences of words) with the particular part-of-speech tags. This requires a
morphological disambiguation of the corpus. A sequence of part-of-speech tags will
be denoted as a PoS n-gram in the following text.

Assume a PoS n-gram g = [ty,...,t,]. We go through the corpus and search for
all its occurrences. For each occurrence, we remove the respective words from the
current sentence and check in the corpus whether the rest of the sentence occurs at
least once elsewhere in the corpus.® If so, then this occurrence of the PoS n-gram is
reducible, otherwise it is not. We denote the count of the reducible occurrences of
the PoS n-gram g by r(g). The number of all its occurrences is ¢(g).

We compute the relative reducibility R(g) of a PoS n-gram ¢ as

1r(g)+o

R(g) = Nm,

(5.20)

where the normalization constant N, which expresses the relative reducibility over
all the PoS n-grams (denoted by G), causes that the mean of the scores is 1.

deG(T(g) + Ul)
> gec(clg) +02)

The smoothing constants ¢; and o5, which prevent reducibility scores from being
equal to zero, are set to

N =

(5.21)

_ deG r(g)
deG C(Q) ’

This setting causes that even if a given PoS n-gram is not reducible anywhere in the
corpus, its reducibility score is 1/(c(g) + 1).

Tables 5.1, 5.2, and 5.3 show the reducibility scores of the most frequent PoS
n-grams for three selected languages: English, German, and Czech. If we consider
unigrams only, we can see that the scores for verbs are often among the lowest.
Verbs are followed by prepositions and nouns, and the scores for adjectives and
adverbs are very high for all three examined languages. This is desired since the

oy =1 (5.22)

5We do not take sentences with less then 10 words into account because they could be nominal
(without any verb) and might influence the reducibility scores of verbs.

46

CHAPTER 5. DEPENDENCY TREE MODELS

unigrams reduc. | bigrams reduc. | trigrams reduc.
VB 0.04 | VBN IN 0.00 | IN DT JJ 0.00
TO 0.07 | IN DT 0.02 | JJ NN IN 0.00
IN 0.11 | NN IN 0.04 | NN IN NNP 0.00
VBD 0.12 | NNS IN 0.05 | VBN IN DT 0.00
CC 0.13 | JJ NNS 0.07 | JJ NN . 0.00
VBZ 0.16 | NN . 0.08 | DT JJ NN 0.04
NN 0.22 | DT NNP 0.09 | DT NNP NNP 0.05
VBN 0.24 | DT NN 0.09 | NNS IN DT 0.14
. 0.32 | NN, 0.11 | NNP NNP . 0.15
NNS 0.38 | DT JJ 0.13 | NN IN DT 0.23
DT 0.43 | JJ NN 0.14 | NNP NNP , 0.46
NNP 0.78 | NNP . 0.15 | IN DT NNP 0.55
JJ 0.84 | NN NN 0.22 | DT NN IN 0.59
RB 2.07 | IN NN 0.67 | NNP NNP NNP 0.64
) 3.77 | NNP NNP 0.76 | IN DT NN 0.80
CD 55.6 | IN NNP 1.81 | IN NNP NNP 4.27

Table 5.1: Reducibility scores of the most frequent English PoS n-grams. (V* are
verbs, N* are nouns, DET are determiners, IN are prepositions, JJ are adjectives,
RB are adverbs, CD are numerals, and CC' are coordinating conjunctions.)

unigrams reduc. | bigrams reduc. | trigrams reduc.
VVPP 0.00 | NN APPR 0.00 | NN APPR NN 0.01
APPR 0.27 | APPR ART 0.00 | ADJA NN APPR 0.01
VFIN 0.28 | ART ADJA 0.00 | APPR ART ADJA 0.01
APPRART 0.32 | NN VVPP 0.00 | NN KON NN 0.01
VAFIN 0.37 | NN §(0.01 | ADJA NN §. 0.01
KON 0.37 | NN NN 0.01 | NN ART NN 0.32
NN 0.43 | NN ART 0.21 | ART NN ART 0.49
ART 0.49 | ADJA NN 0.28 | NN ART ADJA 0.90
$(0.57 | NN §, 0.67 | ADJA NN ART 0.95
$. 1.01 | NN VAFIN 0.85 | NN APPR ART 0.95
NE 1.14 | NN VVFIN 0.89 | NN VVPP §. 1.01
CARD 1.38 | NN §. 0.95 | ART NN APPR 1.35
ADJA 2.38 | ART NN 1.07 | ART ADJA NN 1.58
$, 2.94 | NN KON 2.41 | APPR ART NN 2.60
ADJD 3.54 | APPR NN 2.65 | APPR ADJA NN 2.65
ADV 7.69 | APPRART NN 3.06 | ART NN VVFIN 9.51

Table 5.2: Reducibility scores of the most frequent German PoS n-grams. (V*
are verbs, N* are nouns, ART are articles, APPR* are prepositions, ADJ* are
adjectives, ADV are adverbs, CARD are numerals, and KON are conjunctions.)

5.4. REDUCIBILITY MODEL 47

unigrams reduc. | bigrams reduc. | trigrams reduc.
P4 0.00 | RR AA 0.00 | RR NN Z: 0.00
RV 0.00 | Z: J, 0.00 | NN RR AA 0.00
Vp 0.06 | Vp NN 0.00 | NN AA NN 0.16
\%i 0.06 | VB NN 0.12 | AA NN RR 0.23
P7 0.16 | NN Vp 0.13 | NN RR NN 0.46
J, 0.24 | NN VB 0.18 | NN J* NN 0.46
RR 0.28 | NN RR 0.22 | AA NN NN 0.47
VB 0.33 | NN AA 0.23 | NN Z: Z: 0.48
NN 0.72 | NN J° 0.62 | NN Z: NN 0.52
J" 1.72 | AA NN 0.62 | NN NN NN 0.70

= 1.85 | NN NN 0.70 | AA AANN 0.72
PD 2.06 | NN Z: 0.97 | AA NN Z: 0.86
AA 2.22 | Z: NN 1.72 | NN NN Z: 1.38
Dg 3.21 | Z: Z: 1.97 | RR NN NN 2.26
Z: 4.01 | J° NN 2.05 | RR AA NN 2.65
Db 4.62 | RR NN 2.20 | Z: NN Z: 8.32

Table 5.3: Reducibility scores of the most frequent Czech PoS n-grams. (V* are
verbs, N* are nouns, P* are pronouns, R* are prepositions, A* are adjectives, D*
are adverbs, C'* are numerals, J* are conjunctions, and Z* is punctuation.)

reducible unigrams are more likely to become leaves in the induced dependency
trees. Considering bigrams, the couples [determiner — noun|, [adjective — noun),
and [preposition — noun| obtained reasonably high scores. However, there are also
n-grams such as the German trigram [determiner — noun — preposition] (ART-NN-
APPR) whose reducibility score is undesirably high.®

Figure 5.5 depicts the correlation between the unigram reducibility of the indi-
vidual Czech PoS tags and the number of times these tags correspond to leaves in
gold-standard dependency trees. We can see that the correlation is positive, which
suggest that the reducibility feature can be useful.

5.4.3 Reducibility Model

The higher the reducibility score of a particular PoS n-ngram, the more likely the PoS
n-gram constitutes a rooted subtree in the dependency tree. Let us define desc(i)
as the PoS n-gram (a sequence of part-of-speech tags [t; - - -t,]) that corresponds to
all the descendants of the word w; including w;, i.e. the whole rooted subtree of w;.

6The high reducibility score of ART-NN-APPR was probably caused by German particles, which
have the same PoS tag as prepositions.

48 CHAPTER 5. DEPENDENCY TREE MODELS

We assume that the probability of such a subtree is proportional to the reducibility
R(desc(1)).
1
P,(i) = —R(desc(4))’, (5.23)
67"
where €, is the normalization constant and the hyperparameter ¢ determines the
impact of this model.
Note that the reducibility model is different from the previous three models,
since it utilizes external large monolingual corpus to obtain the reducibility scores.
The inference itself is done on a much smaller corpus.

5.5 Combining the Models

The previously described models are combined into a single one by multiplying them
over all nodes in the treebank. The main configuration used in our experiments is a
combination of models defined in Equations 5.10, 5.18, 5.19, and 5.23. The formula
for computing probability of the whole treebank looks as follows:

25 T T T T T T
RL
- Db
2 -
15 W —

Reducibility
¥

05 AU _
W .
\is
L &
1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1
Leaf/non-leaf ratio

Figure 5.5: Correlation between unigram reducibility of individual Czech PoS tags
and frequency of them being leaves in gold-standard dependency trees. The size of
the squares corresponds to the frequencies of the individual PoS tags.

5.6. PROJECTIVITY 49

IDtreebank - H Petd Z 7T()) Pfdx(flv ()) Pd<Z,7T(Z)) P7"<Z> =

=1

_ H (“tiy tagay, dir (i, 7(1))”) + Cer
W “rgay, dir (i, 7(7))”) + era - | T|

Tt fE) + s PolfE 4 1)

)+ i

(5.24)

11
€ali —m(@)[

lR(desc(z’))‘;.

€r
The dependency function 7 () returns the position of the parent of the word at the
position i. In our experiments (Section 7.3), we will add, remove or substitute the
individual submodels to inspect their positive and negative impacts for different
configurations.

5.6 Projectivity

Projectivity is an important property of natural languages, even though there are
many exceptions which violate this constraint. The notion of projectivity was estab-
lished by Harper and Hays (1959), who mentioned that projections of dependency
trees into sentences have a tendency to fill continuous intervals.

Generally, there are not many non-projective edges in manually annotated tree-
banks. Havelka (2007) studied non-projective constructions in treebanks included in
CoNLL 2006 shared task and reported about 2.1% of non-projective edges for Czech,
2.4% for German and similar or lower percentages of non-projective edges for other
languages. It is important to note that the number of non-projective edges depends
not only on the chosen language but also on the selected annotation guidelines.

Edge projectivity can be also modeled, for example similarly to the distance
between the governing and the dependent word by introducing a penalty for non-
projective edges. However, such a feature is not convenient for our inference algo-
rithm (see Section 6.2).

20

CHAPTER 5. DEPENDENCY TREE MODELS

CHAPTER 6

Inference of Dependency Trees

In this chapter, the algorithm for dependency trees inference is described in detail.
We employ the Gibbs sampling algorithm Gilks et al. (1996), a Monte Carlo method
which allows us to solve the integral from Equation 3.14. In Section 6.1, we show the
basic algorithm for dependency edge sampling without the “treeness” constraint,
using only the simple edge model. The algorithm for projective dependency tree
sampling is derived in Section 6.2. The decoding step (Section 6.3) is necessary to
obtain the final dependency trees.

6.1 Basic Algorithm

We provide the basic algorithm first since we want to describe properly the sam-
pling technique in a simple setting. For simplicity, we use just the edge model
(Equation 5.9) and the task here is not to create a dependency tree but only to
find a parent for each word. This means that the structures we are sampling may
contain cycles and can be discontinuous.

The treebank probability, which we want to maximize, is then:

n

u (i ta)”) +
Pirecvank = H Pedge(ti|t7r(H i “t ' ,, + O{|T| (61)
i=1 i1 ()

We follow the generic algorithm from Section 3.4:

1. The dependency edges are initialized randomly. Since our task is not con-
strained by the condition of “treeness”, we simply assign a random parent
word to each word in each sentence.

2. We keep going through all the words in the corpus in a random order in many
iterations and changing their attachments using the small change operator.

In our case, the small change operator is a re-attachment of a chosen node. An
example of such a small change is depicted in Figure 6.1. Assume that we have
selected the word “lunch” in the dependency tree and want to make a small change

51

52 CHAPTER 6. INFERENCE OF DEPENDENCY TREES

7R
.

root

had

!V_BD\O
! A . 0.34
v0.17 We sandwiches for = N
_ PRP " NNS N\ G
\‘\ %0.06 . .31 °-0.11 ! .0.01
N \\\ *\~~ R ~~_______’__“ _____ -
_N' " lunch
"""" NN

Figure 6.1: Performing a small change operator in basing sampling algorithm.

root root root
Vv Lo ~V Vv
NN S N~ A
Feol

Figure 6.2: Exchangeability feature showed on a very small treebank containing only
three sentences. Letters “N”, “V” and “A” stand for nouns, verbs and adjectives
respectively; “root” symbols represent the technical roots.

on it, in our case to change its parent. Since the sentence has six words, we have
six possibilities of attaching it; the five other words and the technical root. Note
that there is always the possibility of not changing anything, i.e. to choose the
current parent “for” as the new parent. We compute the new overall probability
of the treebank after each small change. These probabilities are then normalized
(see the example numbers in Figure 6.1) and according to the obtained distribution,
we randomly choose one candidate. We keep doing such small changes through the
whole treebank. We go through all the sentences and make a small change on every
word in a random order. One iteration is one pass through the whole corpus. A
pseudo-code of this simple sampling is in Figure 6.3.

In a sense, we are sampling random treebanks one after another. Since the small
changes are not uniformly random, the samples are slowly pushed towards the area
with more probable treebanks. However, there is always a chance of moving to
another area with different kinds of trees. This algorithm never converges by its
definition, but if we sample long enough, we are most likely to get better and better
samples, however, it is not guaranteed.

The overall treebank probability computation (on Line 8 in Figure 6.3), needed
to compute the sampling distributions before each small change, poses a time com-
plexity problem. Computing it according to the Equation 6.1 would be absolutely

6.1. BASIC ALGORITHM 53

1 for i = 0; i < iterations; i++ do

2 foreach sentence € corpus do

3 foreach node € randomPermutation(sentence—getNodes()) do
4 # estimate probability of node’s parents

5 foreach parent € sentence—getNodes() U “root”) do
6 if parent != node then

7 node—setParent(parent);

8 problparent] = estimateTreebankProbability();
9 end

10 end

11 # choose parent w.r.t. the distribution

12 n_prob = normalize(prob);

13 parent = sampleFromDistribution(n_prob);

14 node—setParent(parent);

15 end

16 end

17 end

Figure 6.3: Basic sampling algorithm.

impossible (it requires one pass through all words in the corpus). Instead, we use the
fact that the probability of a sample after the small change differs only a little from
the probability of the previous sample. Assume the following very simple treebank
depicted in Figure 6.2 and the highlighted small change, where the adjective “A”
in the second sentence changes its parent from the noun “N” to the verb “V”. If
we followed Equation 6.1 and computed the probability before the small change, we
would end up with the following fractions:
N+V root—V V—=N A+N N+V root—V N+V root—V V+A

O+a 04+a 14a 04+a 24a 14a 34+a 24a 0+«

— 6.2
O+4a0+4a14+4a0+4a2+4a 1+4a 3+4a 2+ 4a 4+ 4a (6.2)

old

The corresponding edges are shown above the fractions. The first edge NV
has no history and therefore there are zero counts both in the numerator and the
denominator. The third edge V—N has a “1” in the numerator, since there was one
such edge in its history (we disregard the edge direction in this setting). The “1”
in the denominator means that there was one edge with the same parent PoS tag in
its history, etc. After the small change is done, the probability of the new treebank
is as follows:

N+V root—V V=N A<V N«V root—V N+V root—V V+A

O+a 0+a 14a 04+a 24a 14a 34+a 24a 14+«

6.3
0+4a00+4+4al+4a2+4a3+4a1+4a 4+ 4a 2+ 4a 5+ 4o (6.3)

Pnew:

54 CHAPTER 6. INFERENCE OF DEPENDENCY TREES

Note that although only one edge has been changed, many more fractions must
be updated because the histories of all the edges following the changed edge have
changed. We changed the edge A<—N to A<V and thus the last edge V—A now
has one occurrence in its history and therefore the number 0 in the numerator must
be changed to 1. The verb V has becomes a head one more time than it has been
before and thus the number 4 in the last denominator must be changed to 5.

If we inspect the numerators and denominators separately, we can observe a
regularity: the numbers in the numerators for a particular edge keep growing. For
example, the numerators for the edge N<-V contain the numbers 0, 1, and 2. The
same holds for the numbers in the denominators any specific parent tag. Denomi-
nators for edges with the parent tag “V” contain the numbers 0, 1, 2, 3, and 4.

The difference between P,;q and P, lies only in the numerators and denomina-
tors associated with the changed edge:

1+a/0+a
544’ 0+ 4a

Therefore, when we compute the probability of the treebank by multiplying the
fractions for the individual edges, the ordering of the edges is not important even
though the edges have different histories. When computing the new probability, we
can assume that the edge we are changing is the last edge in the treebank and all
other edges are in its history. Then the histories of all other edges remain the same
and we can change just the last fraction. This feature is called exchangeability.

In general, if we have a treebank with a probability P,; and change an edge
X<+Y to X<«Z, the probability P,., of the changed treebank is:

Pnew = Lold (64)

Cothers(“Y”) + 04|T] Cothers(“X, Zn) T a
Cothers(“X’ Y”) + o Cothers(“Z”) + OJ‘T‘ ’

Pnew = Pold (65)

where c®¢"s are the counts of the respective edges in the whole treebank, excluding
the edge which is currently being changed.

Using this update, we can quickly estimate the new treebank probability after
each small change in a constant time. The exchangeability property applies to all
the models presented in Chapter 5 as well.

However, this basic algorithm has a crucial disadvantage: The sampled structures
may contain cycles (and may be disconnected).! There are several ways of ensuring
the acyclicity:

1. We can use the basic algorithm and simply allow only such samples that do
not cause any cycles. However, this will not work very well since such an algo-
rithm will deal differently with nodes in different positions in a tree. Although

In the case of our task, which is to assign a parent word to each word in a sentence, the
condition of acyclicity is equal to the condition of connectivity. The sampled structure contains a
cycle if and only if it is disconnected.

6.2. SAMPLING PROJECTIVE TREES 55

the leaves could be attached to all other possible words in the sentence, the
word attached to the technical root (e.g.the verb “had” in Figure 6.1) in a de-
pendency tree has no other possibility of attachment in case it has no siblings
since all other nodes are its descendants.

2. Our paper (Marecek and Zabokrtsky, 2011) introduces a sampling algorithm
where a tree with a cycle is fixed by re-attaching one of the node in the cycle
to another node which is outside the cycle. The choice of the node in the
cycle and the choice of its new parent is done by sampling as well. However,
this algorithm cannot be applied to the reducibility model (see Section 5.4)
since that model assumes that the current structure is always a tree. The
cycles would cause that subtrees of certain nodes would not be defined and
the reducibility could not be computed.

3. We define a more complex small change operator, where more nodes change
their parents together at one step. This operator will be described in the
following section.

6.2 Sampling Projective Trees

We introduce a Gibbs sampling algorithm that preserves the tree structure when
re-attaching nodes in a tree. Moreover, the trees sampled using this algorithm are
strictly projective, which is very useful from several points of view:

e Tree projectivity is a very valuable constraint for unsupervised parsing. Even
though some of the language phenomena are certainly of a non-projective
nature, they occur very rarely and it can be beneficial to disallow them com-
pletely. (See the percentages of non-projective edges in the individual tree-
banks in Table 4.2.)

e Our reducibility model (Section 5.4) requires that the subtree of a given node
correspond to a continuous sequence of words in the sentence. It would be
probably useful for discontinuous sequences as well, but it is more suitable for
the continuous ones since the reducibility score is obtained from continuous
sequences as well.

6.2.1 Initialization

Before the sampling starts, we initialize the projective trees randomly. We use the
two following initializers for this step:

e FlatInit — For each sentence, we randomly choose one word as the head and
attach all other words to it.

ot
(@)

CHAPTER 6. INFERENCE OF DEPENDENCY TREES

1 foreach sentence € corpus do

2 foreach node € randomPermutation(sentence—getNodes()) do
3 left_parent = node—getPrevNode();

4 while notAttached(left_parent) & left_parent do
5 left_parent = left_parent—getPrevNode();

6 end

7 right_parent = node—getNextNode();

8 while notAttached(right_parent) & right_parent do
9 right_parent = node—getNextNode();

10 end

11 parent = random(right_parent, left_parent);

12 if parent then

13 node—ssetParent(parent);

14 end

15 else

16 if right_parent then

17 node—setParent(right_parent);

18 end

19 else if left_parent then

20 node—setParent(le ft_parent);

21 end

22 else

23 node—setParent(sentence—getRoot());

24 end

25 end

26 end

27 end

Figure 6.4: Projective initializer.

e Reallnit — We pick one word after another in a random order and attach it
to the nearest left (or right) neighbor that has not been attached yet. The
left-right choice is made randomly. If it is not possible to attach a word to
one neighbor, we attach it to the other one. The last unattached word then
becomes the head of the sentence. See the pseudo-code in Figure 6.4.

The FlatInit method generates only flat trees, whereas the more complex Reallnit
is able to generate all possible projective trees.? However, experiments showed that

2Note that the Reallnit initializer does not generate all projective dependency trees with equal
probability. It favors trees with shorter edges. We are not aware of any algorithm that would uni-
formly generate projective trees and be fast enough. Searching for all the possibilities is exponential
and uncomputable for longer sentences.

6.2. SAMPLING PROJECTIVE TREES o7

R
root
had
<ZVBD\o
We sandwiches for
PRP NNS IN\)
lunch
NN

((We) had (sandwiches) (for (lunch)) (.))

Figure 6.5: Edge and bracketing notation of a projective dependency tree.

((We) had sandwiches (for (lunch)) (.))

\

(((We) had) sandwiches (for (lunch)) (.))
((We) (had) sandwiches (for (lunch)) (.))
((We) had (sandwiches) (for (lunch)) (.))

((We) had (sandwiches (for (lunch))) (.))

((We) had (sandwiches (for (lunch)) (.)))

Figure 6.6: An example of a small change in a projective tree. The bracket (sand-
wiches) is removed and there are five possibilities for replacing it.

the sampler converges to similar results for both the initializations. Therefore, we
conclude that the choice of the initialization mechanism is not so important and
choose the FlatInit initializer because of its simplicity.

6.2.2 Small Change Operator

We use a bracketing notation to illustrate the small change operator. Each projective
dependency tree consisting of n words can be expressed by n pairs of brackets. Each
bracket pair belongs to one node and delimits its descendants from the rest of the
sentence. Furthermore, each bracketed segment contains just one word that is not
embedded deeper; this node is the head of this segment head. An example of this
notation is shown in Figure 6.5.

A small change that abides the projective tree constraint is very simple to ac-
complish in this notation. We remove one pair of brackets and add another so that

58 CHAPTER 6. INFERENCE OF DEPENDENCY TREES

the projective tree properties are not violated. Figure 6.6 illustrates all possible
pairs of brackets in an example situation.

From the perspective of dependency structures, the small change can be de-
scribed as follows:

1. Pick a random non-root word w (the word sandwiches in our example) and
find its parent p (the word had).

2. Find all other children of w and p (the words We, for, and .) and denote this
set of the nodes found by C.

3. Choose the new head out of w and p. Mark the new head as g and the second
candidate as d. Attach d to g.

4. Select a neighborhood D, a continuous subset of C', adjacent to the word d.
Attach all words from D to d. (D may be empty).

5. Attach the remaining words from C' that were not in D to the new head g.

Figure 6.7 shows all possible dependency trees that can be created after the ex-
ample small change shown in Figure 6.6. Obviously, one such small change typically
leads to a re-attachments of more than one node.

6.3 Decoding

The Gibbs sampling algorithm never converges. The dependency trees which are
sampled in the last few iterations always fluctuate around the best solution that fits
our model by far. In a majority of applications, we will probably need to have the
final trees fixed, not only to have a probabilistic distribution on them. Fixed trees
are also more suitable for evaluation and for inspecting the resulting structures. The
way of obtaining the final dependency trees from the sampling is called decoding.
We introduce several possible decoding methods.

The easiest way would be to make no decoding at all and simply take the treebank
as is after the last sampling iteration. If we do this, some edges will end up wrong
due to an accidental choice of a low probability option in the previous iterations.
Figure 6.8 shows the decreasing number of changes during a sampling experiment.
We can see that no more than 15% of dependencies are changed after the twentieth
iteration. If we assume that a half of these changes are for the worse and the second
half for the better, we can expect that the trees after the last iteration may differ
in 7% of edges compared to the trees that can be obtained by more sophisticated
methods.

One of such methods of settling the final dependency trees is called “simulated
annealing” or “decreasing the temperature” (Kirkpatrick et al., 1983). The term
“temperature” is borrowed from metallurgy. Decreasing the temperature will lower

6.3. DECODING

29

We
PRP

components:
EGRANDPARENT: HEAD CANDIDATES: :
1
1 [e) o 1
. :&)t had sandwiches |
: \ VBD NNS !
: :
1 1
. DEPENDENTS: '
I l l l :
1 1
] 1
P We for . '
' PRP IN\\. 1
1 1
1 1
1 1
. lunch :
1 NN 1
l_ ________________________________ 1
R
root
b)
had
jVBD\\b
We sandwiches for
PRP NNS IN\\
lunch
NN
a
t
roo d)
sandwiches
NNS \\‘
had for .
[VBD IN\\
We lunch
PRP NN

R
root
a)
had
[VBD\\\\‘\
We sandwiches
PRP NNS \
for
IN\
300,: lunch
NN
\
had
jVBD\
We sandwiches
PRP NNS \'\.
for .
IN\
lunch
NN
e
root e)
sandwiches
NNS \'\
had for .
VBD IN\\.
lunch
NN

Figure 6.7: Small change example from Figure 6.6 in the perspective of dependencies.
The two nodes had and sandwiches are the two candidates for the new head. Each
of the three dependent subtrees is then attached to one of these candidates. All the
possible trees that do not violate the projectivity constraint are depicted in a) to f).

60 CHAPTER 6. INFERENCE OF DEPENDENCY TREES

100

80

60

40

% of changed edges

20

Iterations

Figure 6.8: An example of the percentage of edges changed after each iteration.
(Measured on English.)

the amount of “perturbations” in the trees. If the temperature is zero, the depen-
dency trees become “frozen”. During the sampling, each small change is chosen
randomly according to a probability distribution proportional to the probabilities of
individual changes. At the end of the sampling (in the last few iterations), we start
decreasing the temperature, which means that the sampling is made on a sharper
distribution than before. If we have n possible small changes with probabilities
D1 -..Pn, We are sampling according to a new distribution py ... p,7r:

1/T
px/

> i1 pyT’

where the temperature T gradually decreases from one to zero. If T'= 1, the original
probability distribution is used. If 7' — 0, the most probable change is always chosen
since its probability in the new distribution is equal to one.

pxyT = (66)

The third proposed method is to apply the maximum spanning tree (MST) algo-
rithm (Chu and Liu, 1965) to create an “averaged” treebank based on the individual
samples during the sampling. We skip so-called “burn-in” period, the first b iter-
ations that change the initial random treebank very quickly to some more stable
shape. In our experiments, we set b equal to 20. After this period, we count how
many times the potential edges between all possible node pairs were sampled during
the rest of the sampling. This counts are collected over the whole corpus with a
collection-rate of 0.01, which means that we collect the counts roughly once per 100
small changes.

6.3. DECODING 61

Log probability

-28000 T T T T
-30000
-32000
-34000
-36000
-38000
-40000
-42000
-44000
-46000
-48000 |
-50000 L L L

Iterations

Figure 6.9: Increasing log-prob during iterations of the Gibbs sampler.

When the sampling is finished, we compute the scores of individual edges and
build the most probable trees using MST. Since the MST maximizes the sum over
the scores of used edges, it is natural to define the scores as logarithms of counts
collected during the sampling. The MST maximization is then proportional to
maximization of the individual counts.

TysT = arg maxz log count(e) = arg max H count(e). (6.7)
T ecT T e€T

It is important to note that the MST algorithm may produce non-projective trees.
Even if we average the strictly projective dependency trees, some non-projective
edges may appear in the result. This might be an advantage since correct non-
projective edges can be predicted, however, this relaxation may introduce mistakes
as well.

62

CHAPTER 6.

INFERENCE OF DEPENDENCY TREES

CHAPTER 7

Experiments

7.1 Baselines

Before presenting experiments with our parser, we introduce several baselines for
the unsupervised dependency parsing task.

The first baseline generates a completely random tree for a given sentence. An
example of such random (generally non-projective) tree is depicted in Figure 7.1a.
The algorithm proceeds as follows:

1. Select a random unattached word in the sentence.

2. Attach it to another word which is selected randomly, but only so as not to
create a cycle.

3. Repeat the steps 1 and 2 until all words are attached.

This baseline is supposed to be very poor since the only knowledge used for con-
structing dependencies is the requirement of a tree shape.

The second baseline builds on the fact that the majority of dependencies in a
tree should be projective. This fact follows from the properties of natural languages
and treebank statistics in Table 4.2 confirm it as well. This baseline is identical to
the projective initializer from Section 6.2.1, a pseudocode is shown in Figure 6.4. A
random projective tree is depicted in Figure 7.1b.

The last two baselines are called “left chain” and “right chain”. Here we make
use of the fact that dependencies between words are rather short and many of them
connect adjacent words. In the left chain baseline (see Figure 7.1c), each word is
attached to the following neighbor and the last word is attached to the technical
root. The right chain baseline (Figure 7.1d) works in the opposite way: Each word
is attached to the previous one and the first word is attached to the root.

The average baseline scores computed on all our testing treebanks are shown
in Table 7.1. It is interesting that some languages (or, more precisely, some man-
ual annotations) are very left-oriented (e.g. Arabic, Italian, and Romanian), while
other languages (Bengali, Japanese, Tamil, Telugu, Turkish) tend to have many
more right-oriented dependencies. The scores for random projective trees are much

63

64

CHAPTER 7. EXPERIMENTS

Q
root
parents a) LN ?
NNS\ root\ root
live in \
VB IN - Her
PRP$
Scotland \'
PRP$ NNP cotland parents
NNP NNS
in live
o IN VB
root x
in
IN

live
ZVB

in X
IN parents Scotland
jNNS NNP

parents Scotland
NNS NNP Her
x PRP$
Her live
PRP$ VB . b) c) d)

Figure 7.1: Examples of baselines for the unsupervised dependency parsing task:
a) general non-projective random tree, b) projective random tree, c) left chain, d)
right chain.

higher than for random non-projective trees not because of the projectivity, but due
to shorter dependencies that are implicitly forced by the projectivity constraint.
However, the best scoring baseline is always either the left chain or the right chain.

7.2 Preprocessing

7.2.1 Computing Reducibility Scores

One of the required preprocessing steps in order to use the dependency model defined
in Section 5.5 is computing reducibility scores for the individual PoS n-grams as
described in Section 5.4 so that we can use the reducibility model in the main

7.2. PREPROCESSING 65

lang. | r.nproj | r.proj | left | right || lang. | r. nproj | r. proj | left | right
ar 2.5 175 | 79 | 55.6 || hi 4.3 155 | 21.5 | 27.8
bg 6.9 15.9 | 18.8 | 32.5 || hu 5.4 142 | 35.9| 6.2
bn 18.9 294 | 52.0| 53 | it 4.8 18.0 | 204 | 42.8
ca 3.3 15.5 | 23.8 | 25.9 || ja 12.6 22.4 | 49.7 | 245
cs 6.4 17.8 [26.9 | 25.2 | la 6.5 139 | 18.6 | 184
da 5.4 164 | 11.6 | 41.9 || nl 7.1 17.8 | 24.7 | 31.2
de 6.3 14.0 | 22.4 | 18.0 || pt 5.0 16.0 | 229 | 27.0
el 4.1 17.0 | 33.6 | 16.9 || ro 9.5 21.2 | 18.0 | 46.1
en 4.0 15.2 | 23.7 | 25.4 || ru 11.5 20.3 | 23.3 | 35.5
es 3.2 15.3 | 23.6 | 25.7 || sl 6.6 16.0 | 26.8 | 19.5
et 13.3 16.9 | 28.8 | 15.5 || sv 6.8 16.5 | 24.8 | 24.3
eu 7.8 18.3 | 24.6 | 35.7 || ta 6.5 209 | 484 | 95
fa 4.9 16.3 | 17.5 | 37.6 | te 25.1 424 1 65.5| 2.5
fi 8.0 16.3 | 34.3 | 139 | tr 6.8 234 | 65.5] 1.6
gre 9.8 175 | 26.6 | 17.7 || zh 13.3 22.1 | 40.7 | 14.0

Table 7.1: Directed attachment scores (DAS) for random non-projective baseline
(r.nproj), random projective baseline (r.proj), left chain baseline (left), and right
chain baseline (right). Random baselines were averaged over 10 runs.

inference procedure. We obtain the reducibility scores from Wikipedia monolingual
raw corpora (Section 4.1), which must be first automatically tokenized and processed
by a part-of-speech tagger.

The segmentation to sentences and tokenization is done by a simple rule-based
script consisting of a sequence of regular expressions. Most of the rules are common
for all the languages. Only some rules, such as separating d’ and [’ in Catalan,
separating of ‘re, ’s, ‘'m in English, dealing with different quotation marks or with
different full stop marks, are language specific. We developed such tokenization rules
that best fit the evaluation treebanks; however, there still remain many character
sequences that are tokenized differently. Note that we tokenize only the data that
are used for computation of reducibility scores and induction of word classes. The
inference itself is done on the same treebank as the evaluation.

For the assignment of supervised PoS tags, we used the TnT tagger (Brants,
2000). We trained it on the training part of the respective treebanks. The quality of
the trained taggers is not very high since we do not use any lexicons! or pretrained
models. However, we show that it is sufficient for obtaining useful reducibility scores
(Tables 5.1, 5.2, and 5.3).

We were not able to do this preprocessing correctly for five languages: There are
no Wikipedia articles written in Ancient Greek (grc). The words in Chinese (zh)

1Using lexicons or another pretrained models for tagging would mean using other sources of
human annotated data, which is not allowed if we want to compare our results with others.

66 CHAPTER 7. EXPERIMENTS

9000 T

T T T T 1T
unigrams

8000 | trigrams messsemt |

7000 | —
6000 |- T
5000 |- T

4000 —

of reducible n-grams

3000 -

1000

2000 | i

bg bn ca cs da de el en es et eu fa fi hi hu it la nl pt ro ru sl sv te tr
Languages

Figure 7.2: Numbers of unigrams, bigrams and trigrams that were considered as
reducible in Wikipedia monolingual corpora.

and Japanese (ja) are not separated by spaces and we do not have an appropriate
segmenter for them. The Tamil (ta) treebank is transcribed to Latin characters,
whereas the Wikipedia articles are not. The TnT tagger cannot process Arabic (ar)
texts properly.

All the 25 remaining languages were preprocessed correctly so that we could
compute the reducibility scores of the individual PoS n-grams. The quality of the
scores depends on the size of the corpus and on the number of word n-grams that
were considered as reducible. The numbers of reducible unigrams, bigrams, and
trigrams are summarized in Figure 7.2. We can see that for Bengali (bn) and
Telugu (te), there were less than 50 reducible words found, which is probably not
enough to determine reliable reducibility scores for all the PoS tags. We also have
identified several repeating patterns of sentences that cause some abnormally high
numbers of reducible words. For example, the majority of English (en) reducible
unigrams are cardinal numbers in just one sentence type — “The per capita income
for the city was $X.”, where X stands for a number. Such a sentence occurs in
Wikipedia descriptions of all U.S. cities. Unfortunately, the number is missing in one
such sentence and that is why all the numbers become reducible. Similar problems
appeared in Hindi (hi) trigrams.

7.3. EXPERIMENTAL SETTINGS 67

7.2.2 Unsupervised Part-of-speech Induction

Besides the standard supervised part-of-speech tags, we also experiment with un-
supervised word classes. We use the same tokenized Wikipedia corpora as in the
previous section and employ the best available word clustering tool. According
to Christodoulopoulos et al. (2010) who compare the quality of various tools, one
of the best is Alex Clark’s POSinduction tool (Clark, 2003). This tool is used also
by Spitkovsky et al. (2011a) in his DMV-based approach to dependency parsing.

The disadvantage of the POSinduction tool is the fact that it is limited to the
ASCII encoding. Moreover, it employs individual characters in morphology predic-
tion, so the simple substitution of characters by their UTF-8 codes is not sufficient.
We have developed transliteration rules for converting European non-ASCII char-
acters of European languages including the Cyrillic and Greek alphabet. However,
other languages (zh, ja, fa, hi, ta, te, bn, ar) remain unconvertible.

The POSinduction tool requires to specify the number of word-classes we want to
induce. We experiment with 25, 50, 100, and 200 word classes for all the languages.
The induction is executed using the Wikipedia corpora together with training and
testing sets of the corresponding treebanks.

7.3 Experimental Settings

In Chapters 5 and 6, we discussed possible models, methods, and procedures that
might be helpful in the unsupervised parsing task. The variables we have for various
experimental settings are summarized in the following list.

e Languages/treebanks — The experiments will be performed for all 30 languages
for which we have their treebanks available in HamleDT (see Section 4.2).

e Part-of-speech tags — A majority of the treebanks in HamleDT have two avail-
able types of part-of-speech tags: the full tags (the fifth column in the CoNLL
format), and coarse-grained tags (the fourth column in the CoNLL format).
In addition, we can use word classes induced in an unsupervised way (see
Section 7.2.2). For each language, we have four different sets of word classes
differing by their numbers: 25, 50, 100, and 200. Therefore we have six dif-
ferent part-of-speech sets; we denote them as: POS, CPOS, WC25, WC50,
WC100, and WC200.

e [nduction with included/excluded punctuation — Many unsupervised parsing
systems exclude punctuation marks from learning. We will also experiment
with this option. This requires excluding punctuation from the evaluation as
well.

68 CHAPTER 7. EXPERIMENTS

o Different models and their parameters — We can experiment with various com-
binations of our models (edge model, fertility model, distance model, reducibil-
ity model) and their parameters.

e Decoding procedure — We have implemented two possible decoding procedures:
Maximum spanning tree algorithm and annealing.

e Fwvaluation — We use three different evaluation metrics: directed attachment
score (DAS), undirected attachment score (UAS) and neutral edge direction
(NED). See section 4.3 for details. Moreover, a common practice in evaluation
is to exclude punctuation.

We will not show here the results for all the combinations (30 languages X 6
part-of-speech sets x many model combinations with different hyperparameters x
2 decoding procedures x three different evaluation methods). Instead, we will go
through the most interesting settings and compare the results by switching individ-
ual variables (PoS tags, models, evaluation methods, etc.).

All the inference experiments are performed and evaluated on the testing parts of
the HamleDT treebanks (see Section 4.2 for their sizes) since the proposed sampling
method is relatively slow.?

7.3.1 Standard setting

We have selected one of the possible settings as the base of our experiments and
denote it as the standard setting. This setting, which emerged as the best one
during the time of developing this parser, employs the default model defined in
Equation 5.24. It uses fine-grained PoS tags (POS), decoding is done using maximum
spanning tree algorithm, and punctuation marks are included both in the learning
and in the evaluation.

All the following experiments compare this standard setting with other settings,
where one of the variables is changed. In Section 7.3.3, we experiment with different
tag sets. The impact of excluding punctuation is explored in Section 7.3.4. We have
also examined the effects of: using unsupervised PoS tags (Section 7.3.5), removing
one of the four models (Section 7.3.6), adding lexicalized model (Section 7.3.7), and
using different evaluation metrics (Section 7.3.8).

7.3.2 Setting the Hyperparameters

First of all, we need to set the unknown hyperparameters of our models from Chap-
ter 5. The basic model used in our standard setting has four hyperparameters: «, 3,

2The inference of dependency structures using a larger data might be beneficial mainly for the
lexicalized models (see Section 7.3.7). However, it would required a parallelization of the learning
process. We leave this for the future research.

7.3. EXPERIMENTAL SETTINGS 69

45

DAS

1000

0.1

0.0001
alpha 1904500

Figure 7.3: A graph of averaged directed attachment scores for different values of
hyperparameters a and 3. The other two hyperparameters are fixed: v = 1.5, § = 1.
Measured on English test data, punctuation is included.

v, and 0. These numbers are the only parameters for tuning we have. Similarly to
some previous papers on unsupervised parsing (Gillenwater et al., 2011; Spitkovsky
et al., 2011c), the tuning experiments are performed on English only. The best pa-
rameters of the parser optimized for the English data will be then used for parsing
all other languages. This simulates the situation in which we have only one treebank
(English) on which we can tune our parser and we want to parse other languages
for which we have no manually annotated treebanks.
This “tuning” is performed by exhaustive searching for the best four-tuple [a, 3, 7, 0]

from the Cartesian product of the following sets:

a € {0.01, 0.1, 1, 10},

3 € {0.001, 0.01, 0.1, 1},
ve{l, 15,2, 2.5},

5 €{0.5, 1, 1.5, 2}.

The ranges for individual hyperparameters were set manually, based on our pre-
liminary experiments with the individual parameters during the development. More-
over, the exact values of the hyperparameters are not crucial: The graphs showing
directed attachment scores for different combinations of hyperparameter values are
plotted in Figures 7.3 and 7.4. We can see that the “peak” area is very flat. Even
the change of a or # by one order of magnitude does not affect the re-attachment

70 CHAPTER 7. EXPERIMENTS

DAS

Figure 7.4: A graph of averaged directed attachment scores for different values
of hyperparameters v and . The other two hyperparameters are fixed: o = 1,
B = 0.01. Measured on English testing data, punctuation is included.

score very much. The hyperparameters v and 0 are expectedly more sensitive to
their values, since the influence of respective models is directly connected with them.

We maximize the directed attachment score (including punctuation) on English
test set and find the following optimal values:

a=1, B=001, v=15 d&=1

Note that here we make use of manually annotated trees, which might be consid-
ered as minimally supervised training. However, we use only the English treebank
and we are setting only four numbers out of four previously manually estimated
values. Similar searching could be done by changing the numbers and inspecting
the outputs. So we believe such simple search does not violate the unsupervised
nature of our experiments.

We experimented with searching for optimal parameters also for other treebanks
and found out that they vary across languages. Therefore, adjusting the hyperpa-
rameters specifically for individual languages would improve their parsing quality.

7.3. EXPERIMENTAL SETTINGS 71

7.3.3 Results on Supervised PoS Tags

The model with the hyperparameters tuned on English is now applied on all the
testing languages. We perform this experiment both on fine-grained tags (POS) and
coarse-grained tags (CPOS) and compare the results with the left and right baselines
in Table 7.2. Since the sampling algorithm is not deterministic and every run can
lead to different scores, we present the average scores and standard deviations based
on 10 runs.

The parsing quality differs a lot across languages. Spanish (es), Catalan (ca),
Portuguese (pt), Italian (it), Persian (fa), Swedish (sv) and other (bg, cs, en, nl, ru,
sl) reached reasonably good parsing quality. It is noticeable that the best results
were observed for languages from the Romance family. In the case of Bengali (bn),
Estonian (et), or Romanian (ro), there are very big differences in parsing quality
when using POS and CPOS tags. It is yet another evidence that the chosen tagset
strongly influences the unsupervised parsing task. Very poor results were obtained
for Hindi (hi), Latin (la), Telugu (te), and Turkish (tr). In a few cases, we were
even not able to beat one of the left/right baselines.

lang baselines our lang baselines our
left /right | CPOS POS left /right | CPOS POS

ar 7.9/55.6 | 22.840.3 | 26.4+3.2 | hi | 21.5/27.8 | 22.3+0.3 | 18.3+0.4
bg | 18.8/32.5 | 46.3+24 | 46.5+0.8 || hu | 35.9/6.2 35.6+9.8 | 46.1 £4.2
bn | 52.0/5.3 | 54.0+138 | 23.6+16.2 || it | 20.4/42.8 | 42.94+0.3 | 53.044.0
ca | 23.8/25.9 | 40.8+15 | 40.5+1.9 | ja | 49.7/24.5 | 35.3+2.3 | 36.1+1.7
cs | 26.9/25.2 | 42.7+0.7 | 43.84+0.7 || la | 18.6/18.4 | 25.1+0.3 | 24.6+0.3
da | 11.6/41.9 | 38.1+1.4 | 37.0+2.1 || nl | 24.7/31.2 | 38.8+7.8 | 43.2+38
de | 22.4/18.0 | 38.0+0.3 | 38.0+0.4 || pt | 22.9/27.0 | 47.9+2.7 | 48.8+3.3
el | 33.6/16.9 | 22.5+0.7 | 23.6+3.0 || ro | 18.0/46.1 | 25.0+0.7 | 45.1+2.9
en | 23.7/25.4 | 44.1+06 | 43.2£19 | ru | 23.3/35.5 | 40.1+0.3 | 40.0+0.6
es | 23.6/25.7 | 52.0+0.4 | 52.0+0.3 || sl | 26.8/19.5 | 40.6+£0.4 | 32.0+1.9
et | 28.8/15.5 | 47.8+125 | 28.7+£6.7 || sv | 24.8/24.3 | 47.5£1.0 | 47.340.9
eu | 24.6/35.7 | 28.4+0.5 | 30.4+0.7 || ta | 48.4/9.5 22.4+0.7 | 32.6+4.7
fa | 17.5/37.6 | 51.1+1.3 | 49.0+09 || te | 65.5/2.5 25.4+15.6 | 10.8+£16.6
fi | 34.3/13.9 | 30.4+04 | 33.3+1.0 | tr | 65.5/1.6 5.8+0.5 | 19.6+28
gre | 26.6/17.7 | 20.3+24 | 20.6+1.7 || zh | 40.7/14.0 | 14.8+04 | 31.1+1.0

Table 7.2: Directed attachment scores and standard deviations for the basic settings
with hyperparameters a« = 1, § = 0.01, v = 1.5, and 6 = 1. The results of method
using CPOS and POS tags are compared to the left /right baselines. The results in
italic indicates that the reducibility model could not be properly applied due to the
aforementioned problems in preprocessing. The bold results are the best ones for a
particular language.

72 CHAPTER 7. EXPERIMENTS

7.3.4 Learning and Evaluation Excluding Punctuation

In many previous works, the unsupervised parsers were evaluated excluding punctu-
ation marks. The main reason for doing so was probably the fact that punctuation
was harmful to the inference algorithms. In this experiment, we confirm this hypoth-
esis. The learning without punctuation must be then evaluated without punctuation
as well. We use the same setting as in the last experiment on POS tags. The only
difference is that we exclude punctuation from evaluation (e-p) or even from learning
(I-p). The results are compared with the standard learning (1+p e+p) in Table 7.3.

The experiment shows that if punctuation is included in learning but excluded
in evaluation, the parsing quality increases for 24 out of 30 languages. This means
that our parser makes more mistakes in (often very arbitrarily attached) punctuation
marks than in attachment of other words. One such example is Czech (cs), where
the score increased from 43.8% to 50.7%. This was caused by incorrectly attached
full stops in all sentences, which depend on technical roots in the Czech treebank.

However, excluding punctuation from learning is beneficial only for 9 out of 30
languages. The biggest improvement in directed attachment score was achieved for
Estonian (et), where the score increased from 34.2% to 42.2%.

POS tags POS tags
lang lang
I4pe+p | Hperp l-p e-p l4+pe+p | Hperp l-p e-p

ar 26.4+3.2 | 27.7+35 | 23.5+4.2 || hi 18.34+04 | 17.4+0.3 | 10.8+0.7
bg | 46.5+0.8 | 49.0+08 | 45.7+1.3 || hu | 46.1+4.2 | 51.14+5.0 | 52.0+1.8
bn | 23.6+16.2 | 23.8+17.1 | 22.6 £16.4 | it 53.0+£4.0 | 51.9+46 | 43.4431
ca 40.5+1.9 | 42.64+21 | 44.8+0.2 | ja 36.1+1.7 | 52.54+2.6 | 47.5+2.5
cs 43.840.7 | 50.7+0.8 | 49.14+1.1 | la 24.6+0.3 | 27.7+04 | 26.6+0.3
da | 37.0+2.1 | 40.4+24 | 39.64+1.6 | nl 43.2+3.8 | 41.7+4.4 | 45.14+0.6
de 38.0+0.4 | 40.8+0.4 | 40.9+038 || pt 48.8+3.3 | 54.943.6 | 52.8+3.2
el 23.6+3.0 | 25.4+34 | 21.14+0.5 || ro 45.142.9 | 45.14+29 | 45.9+54
en | 43.2+1.9 | 48.0+1.5 | 425428 | ru 40.0+0.6 | 39.8+0.6 | 41.7+3.8
es 52.04+0.3 | 56.0+0.3 | 54.8+0.2 | sl 32.04+19 | 37.8+2.2 | 25.244.8
et 28.7+6.7 | 34.845.6 | 42.2446 | sv 47.3+0.9 | 49.94+1.0 | 48.9+0.9
eu | 30.440.7 | 27.2+1.0 | 25.2+0.2 | ta 32.6+4.7 | 36.2+5.2 | 36.945.4
fa 49.0+09 | 47.941.0 | 36.5+4.0 || te | 10.8+16.6 | 11.0+16.9 | 5.5 +0.3
fi 33.3+1.0 | 35.2+1.2 | 31.5+1.1 || tr 19.6+2.8 | 20.9+3.7 | 15.9+0.7
gre | 20.6+1.7 | 23.8+2.1 | 20.2408 || zh | 31.1+1.0 | 31.2+1.1 | 31.9+1.0

Table 7.3: Learning and evaluation excluding punctuation. “l” stands for learning,
“e” for evaluation, “-p” and “+p” for excluding or including punctuation respec-
tively.

7.3. EXPERIMENTAL SETTINGS 73

7.3.5 Results on Unsupervised PoS Tags (Word Classes)

We run the same experiment as in Section 7.3.3 but for automatically induced word
classes instead of the gold POS tags. Table 7.4 shows the results for 25 and 100
word classes. We can hardly determine which number of classes is better from these
results. It seems that the ideal number can differ across languages. The results for
50 and 200 word classes were thoroughly similar but never outperform the standard
setting results. Significant improvement when using word-classes instead of the
manually designed POS tags was achieved on three languages: Greek (el; from
23.6% to 33.0%), Estonian (et; from 28.7% to 53.7%), and Turkish (tr; from 19.6%
to 51.7%). Other seven languages reached similar scores at least for one number
of the word-classes (bn, da, fi, ru, sv, te, zh). On the remaining languages, using
word-classes instead of POS tags worsened the parsing quality.

We made a more detailed experiments for three languages (English, Estonian,
and Swedish) to investigate the influence of various numbers of used word classes to
the parsing quality. We induced unsupervised tag sets for 2, 4, 8, 16, 32, 64, 128, and
256 classes, recomputed the reducibility scores and tested our parser on these classes.
The results, which are plotted in Figure 7.5, correspond with our expectations. The
quality is low for very small number of word classes. It is necessary to distinguish
at least the basic PoS tags, such as nouns, adjectives, verbs, prepositions etc. The
results for 16 and 32 word classes are considerably better and the quality slightly
decreases for higher numbers of word classes.

lang standard # of word-classes lang standard # of word-classes
setting 25 100 setting 25 100

ar 26.44+3.2 | 21.840.7 | 18.640.5 || hi 18.3404 | 13.14+44 | 12.7£15
bg | 46.54+0.8 | 40.04+2.0 | 32.740.6 || hu | 46.1+4.2 | 35.7+£0.5 | 32.9+1.9
bn | 23.6+16.2 | 23.84+1.5 | 24.2+43.7 || it 53.0+4.0 | 37.642.1 | 36.4+0.6
ca | 40.5+1.9 | 17.54+02 | 17.5+£0.2 | ja 36.1+1.7 | 27.3+£5.1 | 30.4+4.7
s 43.840.7 | 16.2+0.3 | 25.940.6 | la 24.6+0.3 | 18.5+0.9 | 16.5+0.2
da | 37.0+2.1 | 35.74+1.3 | 28.5+0.5 || nl 43.243.8 | 17.64+0.4 | 23.7+1.1
de | 38.0+04 | 30.54+0.2 | 29.2+04 || pt | 48.84+3.3 | 41.7+1.3 | 38.0%1.9
el 23.64+3.0 | 33.0£1.2 | 37.841.2 || r0 45.142.9 | 41.440.6 | 28.3+1.1
en | 43.241.9 | 14.74+0.6 | 37.240.8 || ru 40.04+0.6 | 44.74+0.5 | 45.8+1.3
es 52.0+0.3 | 20.340.3 | 26.0+0.7 || sl 32.0+£1.9 | 16.440.2 | 20.9+0.2
et 28.74+6.7 | 53.740.6 | 23.1+2.3 || sv | 47.3+£09 | 46.7+1.4 | 35.1+0.4
eu | 30.440.7 | 22.14+0.1 | 26.140.1 || ta | 32.64+4.7 | 18.34+0.6 | 17.940.5
fa 49.04+0.9 | 17.840.3 | 15.64+0.3 | te 10.84+16.6 | 17.6+6.1 | 15.245.9
fi 33.34+1.0 | 32.540.3 | 26.943.3 | tr 19.6 +2.8 | 51.7+0.2 | 26.1£1.8
gre | 20.6+1.7 | 17.74+1.0 | 16.4+0.7 || zh 31.1+1.0 | 31.7+6.2 | 25.549.9

Table 7.4: Directed attachment scores for unsupervised word classes compared to
the basic setting results (PoS).

74 CHAPTER 7. EXPERIMENTS

60 T T T T T T
English ——
Estonian
Swedish ------

50 | T

DAS

0 L L L L L L
2 4 8 16 32 64 128 256

Number of word classes

Figure 7.5: Directed attachment scores for different number of word classes.

7.3.6 Impact of Individual Models

To investigate the impact of individual components of the model, we experiment with
removing one of them (ablation analysis). Table 7.5 shows the directed attachment
scores when the distance model or the reducibility model is omitted. We can see
that using all the four models is not always beneficial. For example, Bengali (bn),
Russian (ru), or Telugu (te) performs better without the distance model. FEight
other languages (ar, el en, hi, ja, ro, ta, tr) perform better without the reducibility
model.3

Another experiment is focused on different fertility models. We compare the
results of parser with the standard fertility model (Equation 5.18), with the simpler
fertility model with symmetric Dirichlet prior (Equation 5.17), and with no fertility
model at all. Table 7.6 shows that if we move from the symmetric Dirichlet prior
to the prior derived from word frequency, we cannot make it significantly worse.
Moreover, there are languages for which the non-uniform Dirichlet prior was very
helpful: Spanish (es; from 43.6% to 52.0%), Hungarian (hu; from 33.4% to 46.1%).
Complete removal of the fertility model usually means lower parsing quality. How-
ever, there are exceptions as well. The greatest improvement caused by removing
the fertility model was achieved for Telugu (te; from 10.8% to 52.6%).

31t was caused probably by the fact, that reducibility scores were not computed properly due
to some errors during preprocessing (see Section 7.2).

7.3. EXPERIMENTAL SETTINGS

5

lang standard | without without lang standard | without without
setting dist. m. red. m. setting dist. m. red. m.
ar 26.4+3.2 174411 36.7+21.2 || hi 18.340.4 20.6 £0.5 32.04+5.7
bg | 46.5+0.8 | 36.7+13 | 259482 || hu | 46.1+4.2 | 15.6+15 | 31.9+3.2
bn | 23.6+16.2 | 50.4 +12.4 | 16.1+46 | it | 53.0+4.0 | 20.3+£2.4 | 42.94838
ca | 40.5+1.9 | 30.1+06 | 26.6+0.6 | ja | 36.1+1.7 | 28.9+3.0 | 61.8+4.3
CS 43.8 +0.7 22.446.0 22.441.8 la 24.6 £0.3 23.540.7 16.24+1.7
da | 37.0+2.1 21.2455 18.349.9 nl 43.2 438 21.1+£59 34.3 £2.7
de | 38.0+0.4 27.6£1.0 23.4+1.1 pt | 48.8+3.3 40.3+3.2 37.4+7.9
el 23.6 £3.0 16.6 £0.4 35.6+3.2 ro 45.142.9 45.147.1 55.7 £11.0
en | 43.24+1.9 | 14.2+0.7 | 252423 | ru | 40.0£0.6 | 50.94+1.6 | 22.946.0
es | 52.04+03 | 5.4 +69 | 282441 | sl | 32.04+1.9 | 23.3+1.1 | 24.14+14
et 28.7+6.7 14.8+1.3 24.9+3.2 sv | 47.3+0.9 25.3+£1.0 25.1+1.8
eu 30.4+0.7 10.4+0.6 37.4+34 | ta 32.6 4.7 26.0+4.9 | 34.8415.3
fa 49.040.9 32.6£1.8 25.8+1.3 te 10.8£16.6 | 64.5£19.2 | 18.5£16.2
fi | 33.3+1.0 | 29.3+1.7 | 25.846.1 || tr | 19.64+28 | 25.14+1.3 | 36.0£7.2
grc 20.6 £1.7 27.1+25 20.2+1.8 zh | 31.1+1.0 24.2+0.3 29.0+1.5

Table 7.5: Comparison of directed attachment scores in case the distance and re-
ducibility model is omitted.

1 standard | symmetric | without | standard | symmetric | without
’ fert. m. prior fert. m. ’ fert. m. prior fert. m.
ar 26.4+3.2 27.7+0.6 23.240.5 || hi 18.3+04 18.340.5 14.84+0.3
bg | 46.5+08 | 45.340.7 | 36.0+0.9 | hu | 46.1+4.2 | 33.4+05 | 28.5+0.5
bn | 23.6+16.2 | 30.54+18.1 | 43.5+3.0 || it 53.0+4.0 42.242.0 37.74+0.9
ca 40.5+1.9 36.8 £5.1 31.440.3 | ja 36.1+1.7 37.6+2.7 31.9+0.4
cs | 43.8+0.7 | 422411 | 39.3+05 || la | 24.6+0.3 | 24.9404 | 23.8+0.4
da | 37.0+2.1 | 34.7+1.2 | 30.2+05 || nl | 43.2+3.8 | 44.7+24 | 33.1+0.5
de | 38.0+04 | 37.3+1.0 | 26.6+04 || pt | 48.843.3 | 45.9+29 | 39.3+1.1
el 23.6+3.0 25.2+2.38 25.04+05 || ro | 45.14+2.9 42.445.2 41.840.6
en 43.24+1.9 32.6 4.5 287404 || ru | 40.0+0.6 45.6+5.9 47.540.6
es 52.0+0.3 | 43.6+104 | 31.6+02 | sl 32.0+1.9 30.5+4.3 30.740.5
et | 28.7+6.7 | 21.9439 | 20.3+2.1 || sv | 47.3+£09 | 46.8+1.2 | 38.2+0.7
eu | 30.4+0.7 | 30.6+£09 | 29.44+0.3 | ta | 32.6+4.7 | 29.9+41 | 31.8+21
fa 49.040.9 46.8+5.4 38.1+1.0 || te | 10.8+16.6 5.8 +0.8 52.6 £1.0
fi 33.3+1.0 | 33.0£09 | 30.14+0.3 || tr | 19.6+£28 | 19.1+6.2 | 24.540.2
gre | 20.6+1.7 | 19.242.7 | 24.1+0.7 | zh | 31.1+1.0 | 30.7+0.7 | 27.2+0.5

Table 7.6: Comparison of directed attachment scores for different models of fertility.

76 CHAPTER 7. EXPERIMENTS

7.3.7 Lexicalized Edge models

So far, the parser used only part-of-speech tags obtained in either supervised or
unsupervised way. It has never looked on the words themselves. In this experiment,
we add the lexicalized edge model, which was specified in Equation 5.12. This model
supposes that the PoS tags are already generated and fills the word forms in the
tree. A word form of a node is conditioned by the word form of its parent, by PoS
tags of both the node and its parent and by the edge direction. We experiment with
different settings of its Dirichlet hyperparameter a. However, this model does not
improve the parsing quality for almost any language. The only exception is Bengali
(bn), for which addition of the lexicalized model increased the directed attachment
score from 23.6% to 35.8%.

7.3.8 Comparison of different metrics

In the last experiment, we do not change any parameters of the parser. We only
evaluate its standard setting using three different evaluation measures described in
Section 4.3. The majority of papers about unsupervised parsing report their results
using DAS, but the UAS and NED are sometimes also mentioned (Gelling et al.,
2012). So we provide the results of our standard parser setting using all these three
metrics in Table 7.7. From the definitions of DAS, UAS and NED, it is obvious that
the following inequalities hold:

DAS <UAS < NED

. DAS UAS NED L. DAS UAS NED

ar | 26.443.2 | 42.34+04 | 53.04+0.4 || hi | 18.3+04 | 35.3+0.4 | 45.1+05
bg | 46.540.8 | 53.64+0.8 | 63.840.6 | hu | 46.1+4.2 | 52.2+1.5 | 59.840.9
bn | 23.6+16.2 | 44.1+9.9 | 56.0+9.5 || it | 53.0+£4.0 | 60.7+2.1 | 68.6+0.8
ca | 40.5+1.9 |53.24+1.2 | 61.6+1.5 | ja | 36.1+1.7 | 54.940.8 | 70.240.7
cS 43.840.7 | 51.8+0.5 | 63.5+0.5 || la | 24.6+0.3 | 35.5+0.3 | 52.0+0.4
da | 37.0+2.1 | 50.4+1.2 | 62.6+1.3 | nl | 43.2+3.8 | 52.94+1.8 | 69.4+1.6
de | 38.04+0.4 | 46.840.3 | 56.940.3 || pt | 48.8+3.3 | 58.0£1.6 | 69.4+0.7
el 23.6+3.0 | 45.3£1.8 | 62.2+1.1 || ro | 45.14+29 | 55.6+1.7 | 67.2+1.1
en | 43.2+1.9 | 52.7+1.2 | 67.6+0.7 || ru | 40.0+0.6 | 56.2+0.5 | 73.9+0.8
es 52.04+0.3 | 56.8+0.1 | 66.440.2 || sl 32.0+1.9 | 44.9+0.8 | 57.3+0.6
et 28.746.7 | 44.045.1 | 58.0+3.7 || sv | 47.3+0.9 | 56.84+0.6 | 68.9+0.7
eu | 30.440.7 | 47.2404 | 58.640.7 || ta | 32.6+4.7 | 46.2+£3.0 | 53.5+3.2
fa 49.0+£0.9 | 55.940.4 | 65.0+0.5 || te | 10.8£16.6 | 40.5+9.7 | 58.1+6.9
fi 33.3+£1.0 | 44.740.6 | 58.6+0.6 || tr | 19.6+2.8 | 47.1+0.5 | 50.1+0.7
gre | 20.6+1.7 | 35.34+0.8 | 44.941.3 | zh | 31.1+1.0 | 46.840.7 | 59.240.8

Table 7.7: Evaluation of the standard parser setting using different metrics.

7.4. ERROR ANALYSIS 7

We will not provide here any specific analysis of influence of the errors in different
treebanks on different metrics. We only remark that instead of finding an opti-
mal metric for unsupervised parsing evaluation by comparing to the gold standard,
we should rather focus on finding other evaluation methods which would not need
manually annotated treebanks.

7.4 Error Analysis

So far, we have measured the quality of different parser settings by comparison
with a gold standard treebank. Nevertheless, we are aware of the disadvantages of
such evaluation, which were discussed in Section 4.3. In this section, we look into
dependency trees we have induced by using the standard setting and analyze and
explain some of the most substantial types of errors and interesting phenomena.
Many such errors were caused due to the lack of any model using word forms (i.e. no
lexicalized model was used in the standard setting).

e Prepositional phrases— Preposition (or apposition) should govern the noun
in a prepositional group. One reason for this is that some verbs require partic-
ular prepositions. Our parser makes it sometimes reverse and attaches prepo-
sitions to nouns. Such errors appear for example in Slovene or in German
prepositions with am and im (the tag APPRART, which is a determiner and
a preposition in one word).

e Determiners — Determiners depend on nouns in the majority of treebanks.
One exception is the Danish treebank, where it is reversed and nouns, together
with their adjectival modifiers, depend on determiners. Interestingly, similar
structures have been sometimes induced by our parser (e.g.in English and
German) but all determiners were correctly placed as leaves in Danish, which
is however incorrect according to the Danish treebank.

e Compound verbs — Compound verbs (e.g. have been swimming in English)
that consists of one content (swimming) and one or more auxiliary verbs (have
and been) occur very often in various languages. One of the verbs is often finite
(have) and it may or may not be the content one. The ways how to structure
compound verbs differ across treebanks. Our parser usually choose one verb
as the head and attaches all other verbs and the verb arguments to it. This
can cause large decrease in DAS, since if it chooses an incorrect verb, all the
arguments are attached incorrectly too.

e Sequences of nouns — The structure of phrases that consist of more nouns
is often induced badly. For example, the structure of English PoS tag sequence
‘NN NN NN’ can be hardly recognized by our parser, since it does not look
at word forms.

78 CHAPTER 7. EXPERIMENTS

e Left/right chain — Our parser sometimes induced trees that were very close
to right chain or left chain baselines. This happened e.g. for Turkish when
experimenting with unsupervised PoS tags (Table 7.4). It was the best result
for Turkish, since left-chain baseline is 65.5% of DAS and the induced trees
were very close to it and achieved 51.7%.

e Attachment of prepositional and noun phrases — Attachment of such
phrases makes problems to supervised parsers as well. Our parser makes many
more such mistakes.

e Completely wrong trees — In cases when DAS falls below 20%, the depen-
dency structure is often completely incorrect. For example, nouns depend on
adjectives or verbs are leaves instead of being heads of the structures.

7.5 Comparison with Other Systems

7.5.1 Two Other Systems Evaluated on CoNLL Data

We compare our parser with two other systems that appeared in the last year NLP
conference papers and reported very good results across various languages in CoNLL
shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007). Note that the CoNLL
datasets may differ from the HamleDT data sets, so the attachment scores might
differ for some languages.

The two systems are described in Gillenwater et al. (2011) and Spitkovsky et al.
(2011c) and we named them “Gillen.2011” and “Spitkov.2011” respectively. Both
of them are based on Dependency Model with Valence (see Section 2.2). Since
they provide results for several configurations of their parsers, we choose only the
best one from each paper. We define the best configuration as the one with the
highest average attachment score across all the tested languages. The results for
“Gillen.2011” are taken from the best configuration in Table 7 in their paper. They
provided only results on sentences of up to 10 tokens from CoNLL 2006 treebanks.
The results for “Spitkov.2011” are taken from the best configuration in Table 6 in
their paper.

The results are compared in Table 7.8. We can see that our parser outperforms
the previously published approaches for majority of treebanks. In one case, it is
better for all the ten data sets, in the other case, it is better for 15 out of 20 data
sets. The average attachment scores, which are computed only from the results
present for both compared parsers, also confirm the improvement.

However, it is important to note that we used an additional source of informa-
tion, namely large raw corpora for computing reducibility scores, while the others
probably used the CoNLL data only.

7.5. COMPARISON WITH OTHER SYSTEMS 79

CoNLL < 10 tokens all sentences
language code | year | Gillen.2011 | our parser | Spitkov.2011 | our parser
Arabic ar 06 - 40.5 16.6 26.5
Arabic ar 07 - 42 .4 49.5 27.7
Basque eu 07 - 32.8 24.0 27.2
Bulgarian bg 06 58.3 59.0 43.9 49.0
Catalan ca 07 — 63.5 59.8 47.0
Czech cs 06 53.2 58.9 27.7 49.5
Czech cs 07 - 67.6 28.4 50.7
Danish da 06 45.9 52.8 38.3 40.4
Dutch nl 06 33.5 42.4 27.8 41.7
English en 07 - 64.1 45.2 49.2
German de 06 46.7 60.8 30.4 44.8
Greek el 07 - 35.8 13.2 25.4
Hungarian | hu 07 - 63.2 34.7 51.1
Italian it 07 - 50.5 52.3 43.3
Japanese ja 06 57.7 68.6 50.2 52.5
Portuguese | pt 06 54.0 66.0 36.7 54.9
Slovenian sl 06 50.9 51.0 32.2 37.8
Spanish es 06 57.9 67.3 50.6 51.9
Swedish sV 06 45.0 62.9 50.0 49.9
Turkish tr 07 - 18.6 35.9 20.9

Average: 50.3* 59.0" 37.4 42.1

Table 7.8: Comparison of our parser with two other parsers “Gillen.2011” and
“Spitkov.2011”. The evaluation here is done on CoNLL data using directed at-
tachment score (DAS) and excluding punctuation. The average score in the last line
is computed across all comparable results, i.e.for comparison with “Gillen.2011”
only the CoNLL’06 results are averaged (*).

7.5.2 Shared Task on Induction of Linguistic Structure

We have participated in the “PASCAL Challenge on Grammar Induction” shared
tasks (Gelling et al., 2012). One of the tasks was unsupervised induction of de-
pendency structures. Participants were given data sets extracted from ten different
treebanks. Each data set consisted of three parts:

e unlabeled training data — These data are not provided with dependency struc-
tures and are intended for training the parsers.

e labeled development data — Data provided with dependency structures. Their
purpose was parser quality checking.

80 CHAPTER 7. EXPERIMENTS

e unlabeled testing data — The participants made their predictions on these data
and submitted them for a central evaluation.

All the sets were provided with three types of part-of-speech tags: coarse grained
(CPOS), fine-grained (POS), and universal (UPOS), a common tag set for all the
languages.

The exact setting of our parser is described by Marecek and Zabokrtsky (2012b)
is very similar to the standard setting described here. We have tested our parser
(marked as “Mar.”) on all the three available tag sets (CPOS, POS, UPOS). Other
participating systems (marked as “Bisk”, “Blun.”, “Sgg”, and “Tu”) were submitted
by Bisk and Hockenmaier (2012), Blunsom and Cohn (2010), Sggaard (2012), and
Tu (2012) respectively.

fle Bisk | Blun. | Mar. | Mar. | Mar. | Seg. | Seg. | Tu
std. | std. | CPOS | POS | UPOS | norul. | rul. | std.
arabic_padt 23.5 | 48.7 12.7 | 57.3 | 52.0 33.9 | 46.5 | 54.1
basque_31b 36.2 | 45.9 | 21.0 | 25.5 | 224 25.5 | 13.7 | 44.0
czech_pdt 32.1 | 38.0 | 49.1 | 429 | 44.1 32.9 |40.9 | 48.8
danish_cdt 37.8 | 32.1 48.4 | 414 | 49.7 42.4 | 45.1 | 50.2
dutch_alpino 379 | 49.2 | 28.3 | 442 | 29.9 31.3 | 40.5 | 43.7
english_childes 59.4 | 45.8 54.2 | 44.2 | 49.3 48.1 | 51.9 | 53.8
english_ptb 50.4 | 56.0 | 41.0 | 50.3 | 37.5 32.8 | 42,5 | 55.5
portuguese_floresta | 65.2 | 42.0 50.2 | 49.5 | 294 37.1 | 54.6 | 41.8
slovene_jos 354 | 52.8 304 | 40.8 | 26.7 28.4 | 37.7 | 58.0
swedish_talbanken | 48.9 | 524 | 484 | 50.6 | 52.6 37.5 | 55.1|57.3
average 42.7 | 46.3 384 | 447 | 394 35.0 | 42.9 | 50.7

Table 7.9: Results of the “PASCAL Challenge on Grammar Induction” shared task.
Directed attachment scores computed on all testing sentences excluding punctuation
marks.

The results are summarized in Table 7.9.* According to the average scores across
all languages, the best system is the one developed by Tu (50.7%). However, Tu’s
system was tuned for each language separately using the development data and
therefore is not comparable to other unsupervised systems, which used the same set-
ting for all the languages. Disregarding Tu’s results, the best average score (46.3%)
was achieved by Blunsom and Cohn (2010). Our system using the POS tagset was
the second-best one, with the average directed attachment score of 44.7%. Sggaard
(2012) submitted a baseline system based on universal hand-specified rules and
reached a DAS of 42.9%, which was enough for the third place.

4This table was taken from http://wiki.cs.ox.ac.uk/InducinglinguisticStructure/
ResultsDep, where the results computed on all sentences regardless of their length are available.
Gelling et al. (2012) provide results computed only on sentences not exceeding 10 words.

CHAPTER 8

Conclusions

We have described and implemented a novel method for unsupervised induction of
dependency trees. Our dependency parser uses a model that consists of four sub-
models: the edge model, the fertility model, the distance model, and the reducibility
model. For the inference itself, we have designed a Gibbs sampling method capable
of sampling dependency structures that adhere at all times to the restrictions of pro-
jective dependency trees. The main ideas of this thesis have been also published in
NLP conference papers: the Gibbs sampling of dependency trees in (Marecek and
Zabokrtsky, 2011), the dependency models in (Marecek and Zabokrtsky, 2012a)
and the parser evaluation in the PASCAL Challenge shared task (Section 7.5.2)
in (Mareéek and Zabokrtsky, 2012b).

The main asset of this work lies in the reducibility model, which is based on
the fact that words which can be removed from a sentence without damaging its
grammaticality are very often leaves in dependency trees. Similarly, reducible se-
quences of words are very often subtrees. In fact, we have combined two rather
complementary views on dependency:

e frequent co-occurrence of head-dependent pair, which is expressed by edge
model, versus

e reducibility of the dependent, which is expressed by the reducibility model.

No other published work on unsupervised parsing employs reducibility or a sim-
ilar idea. Dominating approaches in unsupervised parsing are typically based on
repeated patterns, and not on the possibility of a deletion inside a pattern.

Our parser has been tested on 30 languages. Thanks to the HamleDT collection
of treebanks, we were able to evaluate the parser also on more “exotic” languages,
such as Ancient Greek, Persian, Tamil, or Telugu. We have tested various settings
of the model and the algorithm and confirm the conclusions of previous work in this
field (Spitkovsky et al., 2011c), (Gillenwater et al., 2011): even a small change in the
parser setting can drastically decrease or increase the parsing quality for a particular
language. There is no ideal setting which would work reasonably well across all the
languages. Some models are very helpful for some languages but very harmful for
other languages.

81

82 CHAPTER 8. CONCLUSIONS

If we look at the resulting trees induced by our unsupervised parser, we can see
that the crucial dependency relations were mostly determined correctly. Adjectives
depend on nouns, verbs are in the role of heads of sentences with nouns as their
arguments. The syntactic positions of prepositions, articles, and other functional
words are also induced correctly in many testing languages. Most errors stem from
the lack of lexicalization, i.e.from not using the word forms. Unfortunately, the
lexicalized model we have proposed is not able to improve the delexicalized one and
rather makes the overall quality worse.

Almost for each language, we would probably be able to find a better set of
hyperparameters for a model combination which would lead to a better parsing
quality. However, we did not do that. Our goal was to find a language-independent
universal method for induction of dependency trees based on a text corpus only,
without any tuning on a treebank of a particular language. The research progress
in this area over the last ten years promises that it could be possible and we believe
that our work is one of the steps on this long journey.

Bibliography

Itzair Aduriz, Mara Jess Aranzabe, Jose Mari Arriola, Aitziber Atutxa, Arantza
Daz de Ilarraza, Aitzpea Garmendia, and Maite Oronoz. Construction of a Basque
dependency treebank. In Proceedings of the 2nd Workshop on Treebanks and
Linguistic Theories, 2003.

Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. “Floresta
sintd(c)tica”: a treebank for Portuguese. In Proceedings of the 3rd International
Conference on Language Resources and FEvaluation (LREC), pages 1968-1703,
2002.

Nart B. Atalay, Kemal Oflazer, Bilge Say, and Informatics Inst. The annotation
process in the Turkish treebank. In Proceedings of the 4th International Workshop
on Linguistically Interpreteted Corpora (LINC), 2003.

James K. Baker. Trainable grammars for speech recognition. In Speech communica-
tion papers presented at the 97th Meeting of the Acoustical Society, pages 547550,
1979.

David Bamman and Gregory Crane. The Ancient Greek and Latin dependency
treebanks. In Caroline Sporleder, Antal Bosch, and Kalliopi Zervanou, editors,
Language Technology for Cultural Heritage, Theory and Applications of Natural
Language Processing, pages 79-98. Springer Berlin Heidelberg, 2011. ISBN 978-
3-642-20227-8.

Eckhard Bick, Heli Uibo, and Kaili Mrisep. Arborest —a VISL-style treebank derived
from an Estonian constraint grammar corpus. In Proceedings of Treebanks and
Linguistic Theories, 2004.

Yonatan Bisk and Julia Hockenmaier. Induction of Linguistic Structure with Com-
binatory Categorial Grammars. In Proceedings of the NAACL-HLT Workshop on
the Induction of Linguistic Structure, pages 90-95, Montréal, Canada, June 2012.
Association for Computational Linguistics.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution gram-
mars for dependency parsing. In Proceedings of the 2010 Conference on Empirical

83

84 BIBLIOGRAPHY

Methods in Natural Language Processing, EMNLP’10, pages 1204-1213, Strouds-
burg, PA, USA, 2010. Association for Computational Linguistics.

Rens Bod. An all-subtrees approach to unsupervised parsing. In Proceedings of the
21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, ACL-44, pages 865—
872, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.
doi: 10.3115/1220175.1220284.

Igor Boguslavsky, Svetlana Grigorieva, Nikolai Grigoriev, Leonid Kreidlin, and
Nadezhda Frid. Dependency treebank for Russian: Concept, tools, types of in-
formation. In Proceedings of the 18th conference on Computational linguistics-
Volume 2, pages 987-991. Association for Computational Linguistics Morristown,
NJ, USA, 2000.

Gideon Borensztajn and Willem Zuidema. Bayesian Model Merging for Unsuper-
wvised Constituent Labeling and Grammar Induction. ILLC scientific publications.
Institute for Logic, Language and Computation (ILLC), University of Amsterdam,
2007.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith.
The TIGER treebank. In Proceedings of the Workshop on Treebanks and Linguis-
tic Theories, Sozopol, 2002.

Thorsten Brants. TnT - A Statistical Part-of-Speech Tagger. Proceedings of the
sizth conference on Applied natural language processing, pages 1-8, 2000.

Samuel Brody. It depends on the translation: unsupervised dependency parsing via
word alignment. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, EMNLP 10, pages 1214-1222, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert. L.
Mercer. The Mathematics of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19:263-311, 1993.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual depen-
dency parsing. In Proceedings of the Tenth Conference on Computational Natural
Language Learning, CoNLL-X 06, pages 149-164, Stroudsburg, PA, USA, 2006.
Association for Computational Linguistics.

Glenn Carroll and Eugene Charniak. Two Experiments on Learning Probabilis-
tic Dependency Grammars from Corpora. In Working Notes of the Workshop
Statistically-Based NLP Techniques, pages 1-13. AAAI, 1992.

BIBLIOGRAPHY 85

Keh-Jiann Chen and Yu-Ming Hsieh. Chinese Treebanks and Grammar Extraction.
In Proceedings of the First International Joint Conference on Natural Language
Processing (IJCNLP 2004), pages 655-663, March 2004.

Noam Chomsky. Syntactic Structures. Mouton classic. Mouton De Gruyter, 2002.
ISBN 9783110172799.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. Two decades
of unsupervised POS induction: How far have we come? In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, 2010.

Y. J. Chuand T. H. Liu. On the Shortest Arborescence of a Directed Graph. Science
Sinica, 14:1396-1400, 1965.

Alexander Clark. Combining distributional and morphological information for part
of speech induction. Proceedings of 10th Furopean Chapter of Association of
Computational Linguistics (EACL’03), pages 59-66, 2003.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith. Logistic normal priors for
unsupervised probabilistic grammar induction. In Neural Information Processing
Systems, pages 321-328, 2008.

Déra Csendes, Jénos Csirik, Tibor Gyiméthy, and Andras Kocsor. The Szeged
treebank. In Vaclav Matousek, Pavel Mautner, and Toméas Pavelka, editors, T'SD,

volume 3658 of Lecture Notes in Computer Science, pages 123—-131. Springer, 2005.
ISBN 3-540-28789-2.

Mihaela Calacean. Data-driven dependency parsing for Romanian. Master’s thesis,
Uppsala University, August 2008.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question an-
swering passage retrieval using dependency relations. In Proceedings of the 28th
annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR’05, pages 400—407, Salvador, Brazil, 2005. ACM.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal statistical society,
Series B, 39(1):1-38, 1977.

Saso Dzeroski, Tomaz Erjavec, Nina Ledinek, Petr Pajas, Zdenék Zabokrtsky, and
Andreja Zele. Towards a Slovene dependency treebank. In Proceedings of the
Fifth International Language Resources and Fvaluation Conference, LREC 2000,
pages 1388-1391, Genova, Italy, 2006. European Language Resources Association
(ELRA).

86 BIBLIOGRAPHY

Nicholas Evans and Stephen C. Levinson. The myth of language universals: Lan-
guage diversity and its importance for cognitive science. Behavioral and Brain
Sciences, 32(05):429-448, 2009.

Douwe Gelling, Trevor Cohn, Phil Blunsom, and Joao Graca. The PASCAL Chal-
lenge on Grammar Induction. In Proceedings of the NAACL-HLT Workshop on
the Induction of Linguistic Structure, pages 64-80, Montréal, Canada, June 2012.
Association for Computational Linguistics.

Kim Gerdes and Sylvain Kahane. Defining dependencies (and constituents). In
Proceedings of Dependency Linguistics 2011, Barcelona, 2011.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov chain Monte Carlo in
practice. Interdisciplinary statistics. Chapman & Hall, 1996. ISBN 9780412055515.

Jennifer Gillenwater, Kuzman Ganchev, Joao Graga, Fernando Pereira, and Ben
Taskar. Posterior Sparsity in Unsupervised Dependency Parsing. Journal of Ma-
chine Learning Research, 12:455-490, February 2011. ISSN 1532-4435.

Sharon Goldwater. Nonparametric Bayesian Models of Lezical Acquisition. PhD
thesis, Brown University, 2006.

Jan Haji¢, Jarmila Panevovd, Eva Hajicovd, Petr Sgall, Petr Pajas, Jan Stépének,
Jit{ Havelka, Marie Mikulovd, Zdenék Zabokrtsky, and Magda Sevéikové-
Razimova. Prague Dependency Treebank 2.0. CD-ROM, Linguistic Data Con-
sortium, LDC Catalog No.: LDC2006T01, Philadelphia, 2006.

Kenneth E. Harper and David G. Hays. The Use of Machines in the Construction
of a Grammar and Computer Programm for Structural Analysis. In Proceedings
of the IFIP. Information Processing, pages 188-194, Paris, France, 1959.

Jit{ Havelka. Beyond Projectivity: Multilingual Evaluation of Constraints and Mea-
sures on Non-Projective Structures. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics, pages 608-615, 2007.

Katri Haverinen, Timo Viljanen, Veronika Laippala, Samuel Kohonen, Filip Ginter,
and Tapio Salakoski. Treebanking Finnish. In Markus Dickinson, Kaili Mrisep,
and Marco Passarotti, editors, Proceedings of the Ninth International Workshop
on Treebanks and Linguistic Theories (TLT9), pages 79-90, 2010.

William P. Headden, ITI, Mark Johnson, and David McClosky. Improving unsuper-
vised dependency parsing with richer contexts and smoothing. In Proceedings of
Human Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, NAACL 09, pages
101-109, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.
ISBN 978-1-932432-41-1.

BIBLIOGRAPHY 87

Samar Husain, Prashanth Mannem, Bharat Ambati, and Phani Gadde. The ICON-
2010 tools contest on Indian language dependency parsing. In Proceedings of
ICON-2010 Tools Contest on Indian Language Dependency Parsing, Kharagpur,
India, 2010.

Yasuhiro Kawata and Julia Bartels. Stylebook for the Japanese treebank in Verb-
mobil. In Report 240, Thingen, Germany, September 29 2000.

Scott Kirkpatrick, Daniel C. Gelatt, and Mario P. Vecchi. Optimization by Simu-
lated Annealing. Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.

Dan Klein. The Unsupervised Learning of Natural Language Structure. PhD thesis,
Stanford University, 2005.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic struc-
ture: models of dependency and constituency. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics, ACL 04, Stroudsburg,
PA, USA, 2004. Association for Computational Linguistics.

Kevin Knight. Bayesian Inference with Tears. A tutorial workbook for
natural language researchers, September 2009. URL http://www.isi.edu/
natural-language/people/bayes-with-tears.pdf.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2009.
ISBN 978-0521874151.

Matthias T. Kromann, Line Mikkelsen, and Stine Kern Lynge. Dan-
ish dependency treebank, 2004. URL http://code.google.com/p/
copenhagen-dependency-treebank/.

Sandra Kiibler, Ryan T. McDonald, and Joakim Nivre. Dependency Parsing. Syn-
thesis Lectures on Human Language Technologies. Morgan & Claypool Publishers,
20009.

Tom Kwiatkowski, Sharon Goldwater, Luke Zettelmoyer, and Mark Steedman. A
Probabilistic Model of Syntactic and Semantic Acquisition from Child-Directed
Utterances and their Meanings. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics, 2012.

Karim Lari and Steve J. Young. The estimation of stochastic context-free grammars
using the Inside-Outside algorithm. Computer Speech and Language, 4:35-56,
1990.

Markéta Lopatkovéa, Martin Platek, and Vladislav Kubon. Modeling syntax of free
word-order languages: Dependency analysis by reduction. In Vaclav Matousek,

88 BIBLIOGRAPHY

Pavel Mautner, and Tomas Pavelka, editors, Lecture Notes in Artificial Intelli-
gence, Proceedings of the 8th International Conference, TSD 2005, volume 3658
of Lecture Notes in Computer Science, pages 140147, Berlin / Heidelberg, 2005.
Springer. ISBN 3-540-28789-2.

David M. Magerman and Mitchell P. Marcus. Parsing a natural language using
mutual information statistics. In Proceedings of the eighth National conference on
Artificial intelligence - Volume 2, AAAT'90, pages 984-989. AAAI Press, 1990.
ISBN 0-262-51057-X.

Martin Majlis. Yet Another Language Identifier. In Proceedings of the Thirteenth
Conference of the European Chapter of the Association for Computational Lin-
guistics (EACL 2012). The Association for Computer Linguistics, April 2012.

Martin Majlis and Zdenék Zabokrtsky. Language Richness of the Web. In Proceed-
ings of the eighth international conference on Language Resources and Evaluation
(LREC 2012), Istanbul, Turkey, May 2012. ELRA, European Language Resources
Association.

Gary F. Marcus. Negative evidence in language acquisition. Cognition, 46:53-85,
1993. doi: 10.1016/0010-0277(93)90022-N.

Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz. Building a
Large Annotated Corpus of English: The Penn Treebank. Computational Lin-
guistics, 19(2):313-330, 1994.

David Marecek and Zdenék Zabokrtsky. Gibbs Sampling with Treeness constraint in
Unsupervised Dependency Parsing. In Proceedings of RANLP Workshop on Ro-
bust Unsupervised and Semisupervised Methods in Natural Language Processing,
pages 1-8, Hissar, Bulgaria, 2011.

David Marecek and Zdenék Zabokrtsky. Exploiting Reducibility in Unsupervised
Dependency Parsing. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, pages 297-307, Jeju Island, Korea, July 2012a. Association for Compu-
tational Linguistics.

David Marecek and Zdenék Zabokrtsky. Unsupervised Dependency Parsing using
Reducibility and Fertility features. In Proceedings of the NAACL-HLT Workshop
on the Induction of Linguistic Structure, pages 84-89, Montréal, Canada, June
2012b. Association for Computational Linguistics.

David Marecek, Martin Popel, and Zdenék Zabokrtsky. Maximum entropy trans-
lation model in dependency-based MT framework. In Proceedings of the Joint
Fifth Workshop on Statistical Machine Translation and MetricsMATR, WMT 10,

BIBLIOGRAPHY 89

pages 201-206, Uppsala, Sweden, 2010. Association for Computational Linguis-
tics. ISBN 978-1-932432-71-8.

Ryan McDonald, Slav Petrov, and Keith Hall. Multi-source transfer of delexicalized
dependency parsers. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 62-72, Edinburgh, Scotland, UK., July
2011. Association for Computational Linguistics.

Simonetta Montemagni, Francesco Barsotti, Marco Battista, Nicoletta Calzolari, Or-
nella Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca Fanciulli, Maria
Massetani, Remo Raffaelli, Roberto Basili, Maria Teresa Pazienza, Dario Saracino,
Fabio Zanzotto, Nadia Mana, Fabio Pianesi, and Rodolfo Delmonte. Building the
Italian syntactic-semantic treebank. In Anne Abeill, editor, Building and using
Parsed Corpora, Language and Speech series, pages 189-210, Dordrecht, 2003.
Kluwer.

Jens Nilsson, Johan Hall, and Joakim Nivre. MAMBA meets TIGER: Reconstruct-
ing a Swedish treebank from antiquity. In Proceedings of the NODALIDA Spe-
cial Session on Treebanks, 2005. URL http://www.msi.vxu.se/users/nivre/
research/TalbankenO5.html.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan McDonald, Jens Nilsson, Sebastian
Riedel, and Deniz Yuret. The CoNLL 2007 Shared Task on Dependency Parsing.
In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages
915-932, Prague, Czech Republic, June 2007. Association for Computational Lin-
guistics.

Mark Paskin. Grammatical bigrams. In Advances in Neural Information Processing
Systems 14. MIT Press, 2001.

Sharon G. Penner. Parental Responses to Grammatical and Ungrammatical Child
Utterances. Child Development, 58(2):376-384, April 1987.

Prokopis Prokopidis, Elina Desipri, Maria Koutsombogera, Harris Papageorgiou,
and Stelios Piperidis. Theoretical and practical issues in the construction of a
Greek dependency treebank. In In Proc. of the 4th Workshop on Treebanks and
Linguistic Theories (TLT), pages 149-160, 2005.

Loganathan Ramasamy and Zdenék Zabokrtsky. Prague dependency style treebank
for Tamil. In Proceedings of LREC 2012, Istanbul, Turkey, 2012.

Mohammad Sadegh Rasooli, Amirsaeid Moloodi, Manouchehr Kouhestani, and
Behrouz Minaei-Bidgoli. A syntactic valency lexicon for Persian verbs: The first
steps towards Persian dependency treebank. In 5th Language & Technology Con-
ference (LTC): Human Language Technologies as a Challenge for Computer Sci-
ence and Linguistics, pages 227-231, Pozna, Poland, 2011.

90 BIBLIOGRAPHY

Philip Resnik and Eric Hardisty. Gibbs Sampling for the Uninitiated. Technical
Report LAMP-TR-153, University of Maryland, College Park, 2010.

Roy Schwartz, Omri Abend, Roi Reichart, and Ari Rappoport. Neutralizing linguis-
tically problematic annotations in unsupervised dependency parsing evaluation.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 663—672, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

Petr Sgall, Eva Hajicova, and Jarmila Panevova. The Meaning of the Sentence in
Its Semantic and Pragmatic Aspects. D. Reidel, 1986. ISBN 9789027718389.

Kiril Simov and Petya Osenova. Extending the annotation of BulTreeBank: Phase
2. In The Fourth Workshop on Treebanks and Linguistic Theories (TLT 2005),
pages 173-184, Barcelona, December 2005.

Noah A. Smith and Jason Eisner. Guiding unsupervised grammar induction us-
ing contrastive estimation. In Proceedings of IJCAI Workshop on Grammatical
Inference Applications, pages 73-82, 2005.

Otakar Smrz, Viktor Bielicky, Iveta Koufilova, Jakub Kra¢mar, Jan Hajic, and Petr
Zemanek. Prague Arabic dependency treebank: A word on the million words. In
Proceedings of the Workshop on Arabic and Local Languages (LREC 2008), pages
16-23, Marrakech, Morocco, 2008. European Language Resources Association.
ISBN 2-9517408-4-0.

Anders Sggaard. Two baselines for unsupervised dependency parsing. In Proceedings
of the NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 81—
83, Montréal, Canada, June 2012. Association for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang, and Daniel Jurafsky. Un-
supervised dependency parsing without gold part-of-speech tags. In Proceedings

of the 2011 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2011), 2011a.

Valentin 1. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Punctuation: Mak-
ing a point in unsupervised dependency parsing. In Proceedings of the Fifteenth
Conference on Computational Natural Language Learning (CoNLL-2011), 2011b.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Lateen EM: Unsuper-
vised training with multiple objectives, applied to dependency grammar induction.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2011), 2011c.

BIBLIOGRAPHY 91

Mihai Surdeanu, Richard Johansson, Adam Meyers, Llus Mrquez, and Joakim Nivre.
The CoNLL-2008 shared task on joint parsing of syntactic and semantic depen-
dencies. In Proceedings of CoNLL, 2008.

Mariona Taulé, Maria Antonia Marti, and Marta Recasens. AnCora: Multilevel
annotated corpora for Catalan and Spanish. In LREC. European Language Re-
sources Association, 2008.

Kewei Tu. Combining the Sparsity and Unambiguity Biases for Grammar Induc-
tion. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic
Structure, pages 105-110, Montréal, Canada, June 2012. Association for Compu-
tational Linguistics.

Leonoor van der Beek, Gosse Bouma, Jan Daciuk, Tanja Gaustad, Robert Malouf,
Gertjan van Noord, Robbert Prins, and Begoa Villada. Chapter 5. the Alpino
dependency treebank. In Algorithms for Linguistic Processing NWO PIONIER
Progress Report, Groningen, The Netherlands, 2002.

Antony van der Mude and Adrian Walker. On the inference of stochastic regular
grammars. Information and Control, 38(3):310-329, September 1978.

Deniz Yuret. Discovery of Linguistic Relations Using Lexical Attraction. PhD thesis,
Massachusetts Institute of Technology, 1998.

Daniel Zeman, David Marecek, Martin Popel, Loganathan Ramasamy, Jan
Stepének, Zdenek Zabokrtsky, and Jan Hajic. HamleDT: To Parse or Not to
Parse? 1In Proceedings of the eighth international conference on Language Re-
sources and Evaluation (LREC 2012), Istanbul, Turkey, May 2012. European
Language Resources Association.

92

BIBLIOGRAPHY

APPENDIX A

Examples of Induced Trees

We provide examples of dependency trees induced by our parser using the standard
setting, unless stated otherwise.

s
N-

Figure A.1: Example of an induced Arabic dependency tree.

93

94 APPENDIX A. EXAMPLES OF INDUCED TREES

HacToA

Vpp
KOHTpoAnpaT Bucwmnat cbBeT BYepa
jvpi\ \' Am Nc Dt
npokypaTypaTa na n3nos3BaHeTo Ha cbaebeH .
[Nc\\' Tx Nc R\ Am Punct
7] , " yCTpPONCTBa
Cp Punct Cp ch
CbabT noacaylwBaTenHnTe
Nc

Figure A.2: Example of an induced Bulgarian dependency tree.

nejsou

B \ \0
najit jestlize pri plné .
b f f\ , \ R\ A :
snahu resenf saly koncertech
jN N N jN
velkou , jazzovych
A .

Figure A.3: Example of an induced Czech dependency tree.

95

erwartet

[VVPP\
Umsatz
NN NN $.

Noch Februar Heckert Millionen
ADV NN NE NN

im 92

APPRART CARD

Figure A.4: Example of an induced German dependency tree.

root

onuiCetal
36 23
2{pvog KataydAava TWv .
[69 32 89 94
H MAVELOPPWVY AKTWY ™ne
77 99 88 64

Figure A.5: Example of an induced Greek dependency tree using unsupervised part-
of-speech tags (100 classes).

96 APPENDIX A. EXAMPLES OF INDUCED TREES

trading character
NN NN

j'vsz [

attitude illustrated the flamboyant
jNN / VBN\ DT ju
This clearly in of 's most
DT RB IN\ IN jPOS RBS
treatment Max room
jNN NNP NN
the)
DT

Figure A.6: Example of an induced English dependency tree.

root

ofrecié
Vv \
de nacimientos a de .
s\ n s\ s \f

terminar tienda

N> [

Al Navidad , una belenes precio quema
s n f d n n n

la pasada

d a

Figure A.7: Example of an induced Spanish dependency tree.

97

meisterkonspiraatorit ettevalmistusi

[24 9 / 17\\ 4
Kaks ja teki sest
10 [12 16 [16\

pimedas , tohtinud

23 11 2 16 \
ei midagi aimata
11 9 23

Figure A.8: Example of an induced Estonian dependency tree using unsupervised
part-of-speech tags (25 classes).

ool E9_ a .
jACT\ IANM PREP PUNC
2 o\ PIFY) 9 sl
PREP jPREP\IANM CoNj IANM
9005 Sjo be,S
jIANM IANM IANM
ol b
DEMA) AMBA|

Figure A.9: Example of an induced Persian dependency tree.

98 APPENDIX A. EXAMPLES OF INDUCED TREES

eldonteni

ij \'
nehéz lenne .
[Nc vm SPUNCT

véllalkozé netan véllalkozé azt
[Nc \ Rx Nc \ Pd
Récsey , masként ,
Np WPUNCT Rx WPUNCT

Figure A.10: Example of an induced Hungarian dependency tree.

proseguite

\Y \

ricerche di sono per [ji
E

ool L

Le Gabriella tutta posti blocco perquisizioni
RD SP DI\ jS S& S&
mattinata con , e .
js \ E\ PU C PU
la , elicotteri
RD PU S

Figure A.11: Example of an induced Italian dependency tree.

99

aangeboden

\ Punc

Het van in aan wijze
Art Prep Prep Prep [N
uniform het Nederland kinderen dezelfde
N Art jN N Pron
deel Basistakenpakket heel alle
N N Adj Pron

Figure A.12: Example of an induced Dutch dependency tree.

MEHATb

\ \\\\\\’
npembepa
[s
cuTyauum MOTUBaM yCchewHoro
Is s A
Takon CJIOXKHON HEMOHSATHbLIM
A A A

Figure A.13: Example of an induced Russian dependency tree.

100 APPENDIX A. EXAMPLES OF INDUCED TREES

vrnil™_
jVerb-main\.

odSel se z pollitroma
[Verb—main

Pronoun-reflexive Adposition-preposition Noun-common

Winston je pultu,
Noun-proper Verb-copula Noun-common

k in
Adposition-preposition Conjunction-coordinating

novima .
Adjective-qualificative PUNC

Figure A.14: Example of an induced Slovene dependency tree.

root

kan

Nordbor forvarva vistelse
NN WY, \ jVN \\.
aven svenskt medborgarska anmalan efter ars i .
AB Al NN VN PR NN PR IP
genom hos sju Sverige
PR PR RO PN

b

lansstyrelse
VN

Figure A.15: Example of an induced Swedish dependency tree.

APPENDIX B

“UDP” — Software Documentation

The software that has been developed for the purpose of this thesis is publicly
available and can be downloaded from http://ufal.mff.cuni.cz/~marecek/udp/.

Installation
The unsupervised dependency parser “UDP” is implemented in Perl and does not
need to be installed. However, it requires the Moose module, which can be installed

from CPAN using following command:

cpan Moose

Running UDP

The parser can be run either with configuration file or without it using default
parameters.

./parse.pl --reducibility reducibility_file.red < input_file.conll
> output_file.conll

./parse.pl --config config.cfg < input_file.conll > output_file.conll

Input and output files are in CoNLL-X format, which is specified e.g. by Buchholz
and Marsi (2006). The file reducibility_file.red contains reducibility scores for
individual PoS n-grams. Such file can be obtained by running the following script:

scripts/ngram_reducibility.pl < big_corpus.conll > reducibility.red

Precomputed reducibility files for Czech, English and German are also available in
the directory extracted reducibilities.

101

102 APPENDIX B. “UDP” - SOFTWARE DOCUMENTATION

List of Options

e —-reducibility — File containing reducibility scores in the line-oriented for-
mat (see e.g the file extracted reducibilities/en.red).

e ——iterations — Number of Gibbs sampling iterations (passes through data);
default is 20.

e ——tag-column — PoS tag column used in CoNLL input file, numbered from 0;
default is 4.

e ——form-column — Word form column used in CoNLL input file, numbered
from 0; default is 1.

e ——config — Config file with model parameters (see the file config.cfg).

Configuration file

Each model which is used in the parser is specified on one line in the configuration
file. An example of such configuration file (particularly the “standard” setting of
the parser defined in 7.3) follows:

edge alpha=1

distance alpha=1.5

subtree alpha=1 default_score=0.03 score_file=english.red
fertility alpha=0.01 freq_contribution=linear

The name of the model is followed by its parameters. Parameter alpha is the
Dirichlet hyperparameter.
Evaluation

Evaluation script takes gold and predicted CoNLL files and returns scores of the
three evaluation metrics: DAS (directed attachment score), UAS (undirected at-
tachment score), and NED (neutral edge direction).

scripts/eval.pl gold.conll generated.conll

