VIADAT-DEPOSIT Documentation (user)

VIADAT-DEPOSIT Documenation

Metadata and metadata workflow for oral history
Adaptation and installation

As the domain where the software is used changed from linguistic data and software to oral history,
a different metadata schema and a submission workflow was required for VIADAT-DEPOSIT.

The proposed schema distinguishes/describes three ,entities” — the interview itself, the narrator and
technical details. The submission itself distinguishes several types of files — consents from narrators,
outputs and other materials, the interview itself and its transcription.

The narrator is assigned the following metadata: name, surname, id, alternative name (alias),
academic degree, gender, date of birth, the project, consent, keywords, occupation, period, other
characteristics, contact details and notes. The first three are mandatory; degree, project, keywords,
occupation, period and other characteristics are extensible lists; gender and consent are lists of
predefined values (plus there’s the option to upload the consent), date is in a predefined format.

The interview is assigned the narrator, file name, id, interview type, transcription available, date of
the interview, length of the interview, place of the interview, the interviewer, annotation, keywords,
codes, language, notes. The filename and id are mandatory, type, place, interviewer, keywords and
codes are extensible lists; transcription available and language are lists of predefined values; date
and length have a predefined format.

The technical details are assigned to the interview; they describe the file type, the format, the size,
the creator, the license/rights and additional notes. The file type is mandatory; the creator and rights
are extensible lists.

In theory, some of the metadata can be extracted in an automated way. Such extractions will be
explored in the future.

Technically most of the metadata will be stored in newly created ,,viadat“ namespace — to give us the
option to define our own semantics of the fields. For compatibility with the Ul some fields are in the
,dc” namespace. If need for cooperation with software outside of the VIADAT project arises a
mapping of the metadata scheme can be prepared (similar to what’s described below).

The current workflow mimics the three entities; it's expected that additional changes will be
required; these might be splitting the forms in multiple pages (in input-forms.xml) or addition of the
automatic extraction steps (in item-submission.xml).

1|Page

VIADAT-DEPOSIT Documentation (user)

OAI-PMH

The Open Archives Initiative goal is to ease access to material on the Web. They
decided to do so by devising a protocol that enables Data providers (web
servers/repositories owners) to expose their “data about data” (metadata). The
exposure happens in a way that allows Service providers to programmatically
retrieve (harvest) these metadata and build some value added services on top of
them (ie. adding them to a larger, searchable, collection). The protocol is called Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH).

The service providers issue HTTP requests to data providers and receive XML
responses. The protocol does not define a format (schema?) for the metadata. It is up
to particular Data and Services providers to come up with format that suits their
needs. A Data provider can even offer more formats. However, among these formats,
for interoperability purposes, there must be unqualified [Dublin
Core](Metadata_info#Dublin Core).

As from the point of view of this project, we want to (have to?) be roles - Data and
Service provider. We should support Meta-share schema and also offer metadata
in cndi format.

To see currently supported formats check https://ufal-
point.mff.cuni.cz/oai/request?verb=ListMetadataFormats

Crosswalks

Metadata crosswalk contains mapping from one metadata element set to another.
l.e., which elements are semantically close to witch. The mapping usually discards
some information as it usually goes from fine grained elements to more coarse one.
Eg. creationDate -> date. Ingestion and dissemination crosswalks kind of describe in
which way the mapping “goes”. Suppose you have all metadata in metashare
"format”, you have to offer them in DC thus you do some mapping - a dissemination
crosswalk. Ingestion (or submission) crosswalk does the mapping other way around -
you receive metadata in DC (eg. through harvesting) and want to save them in
metashare "format”.

Dublin Core

In DSpace you can meet element sets by Dublin Core Metadata Initiative - DCMI - in
two places. You'll encounter DCMES and DCTERMS

DCMES (or unqualified dc or just dc) contains (and defines/describes) 15 elements for
resource description, none of them is mandatory, some can be repeated (eg. more
creators). This is the “minimal” format we must support in OAI-PMH. The categories

2|Page

VIADAT-DEPOSIT Documentation (user)

(elements) are very coarse so by mapping to DC we usually “throw” away a lot of
information we have about our data. But, on the other hand, everyone, even people
outside our “partner projects”, can somehow interpret/use our data.

DCTERMS is another set (another namespace) but it contains the same 15 elements
as DCMES and their refinements - together aprox. 50 elements. There are eg. these
elements: date, dateAccepted, dateCopyrighted... DSpace uses this set (or some
modification of it - it refers to dcmi-terms but the sets are not exactly the same) when
you submit an item or display metadata of an item through “show full item record”.

While browsing you see eg. dc.title.alternative (alternative is refinement of title in
dcterms), but for OAI-PMH the output is just dc:title.

Our metadata in dc: https://ufal-
point.mff.cuni.cz/oai/request?verb=ListRecords&metadataPrefix=0ai\ dc

CMDI

The idea behind CMDI (or Component MetaData Infrastructure) is that one metadata
schema can't "fit” a large community. The elements might be too detailed for one
and still to coarse for others, subcommunities might prefer to use different names for
same thing etc.

So the solution is to let the users/organizations create own schemas but with ensured
“semantic interoperability”. Schema/profile is created from components - sets of
metadata elements and other components. The components and profiles are stored
in component registry and thus can be shared and reused. User can create new
components, but the elements used must be linked to a database of atomic concepts
(data categories). This then allows to “see” that for example ‘a noun’ and ‘a
substantive’ is the same concept and for example search for tools/articles/... about
‘nouns’ can also refer to ‘substantives’. On such data category registry is Isocat and
the "purl” identifiers maintained by dcmi are also accepted.

The component registry was populated by components/profiles based on some of
the element sets/schemata widely used (eg. IMDI, OLAC...). To allow a quick transfer
for organizations (data providers) using these. So there is a dcmi-terms profile
already prepared; it seems natural to be using this as long as we have only few items
with metashare md, or while there is no profile available for metashare (they plan to
do it in future (???)).

The OAI-PMH cmdi crosswalk is mapping the “DSpace dc” to dcterms, for the
metashare elements some mapping is done when inserting an item; the email and
validation is not mapped, the rest as follows:

dc.contributor.advisor = contributor

3|Page

VIADAT-DEPOSIT Documentation (user)

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc

dc.
dc.

dc

dc

contributor
contributor
contributor
contributor
contributor
coverage.sp
coverage.te
creator = ¢
date.access
date.availa
date.copyri
date.create
date.issued
date.submit
date.update
date = date

description.
description.
.description.
description.

description

.description.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
.language.is
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

description
description
format.exte
format.medi
format.mime
format = fo
identifier.
identifier.
identifier.
identifier.
identifier.
identifier.
identifier.
identifier.
identifier.
identifier

language.rf
language

publisher
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation.
relation

rights.hold
rights.uri

rights ri
source.uri

ha
ha
is
is
is
is
is
is
is
re
re
ur

4|Page

.author creator
.editor contributor
.illustrator contributor
.other contributor
contributor

atial = spatial
mporal = temporal
reator

ioned = date

ble available

ght = dateCopyrighted
d = created

= issued
ted = dateSubmitted

d = date

abstract = abstract

provenance = provenance

sponsorship = description
statementofresponsibility = description
tableOfContents

.tableofcontents

uri = description
.version = description
= description

nt extent

um = medium

type = format

rmat
citation

govdoc
isbn
ismn
issn

= bibliographicCitation
= identifier
identifier
identifier
identifier
other = identifier

sici identifier

slug = identifier

uri identifier
= identifier
o = language

c3066 = language
language

publisher

spart = hasPart
sversion = hasVersion
basedon relation
formatof = isFormatOf
partof = isPartOf
partofseries relation
referencedby = isReferencedBy
replacedby = isReplacedBy
versionof = isVersionOf
places replaces
quires = requires

i relation

relation
er = rightsHolder
= rights
ghts
source

VIADAT-DEPOSIT Documentation (user)

dc.source = source

dc.subject.classification = subject

dc.subject.ddc = subject

dc.subject.lcc = subject

dc.subject.lcsh = subject

dc.subject.mesh = subject

dc.subject.other = subject

dc.subject = subject

dc.title.alternative = alternative

dc.title = title

dc.type = type

metashare.ResourceInfo#ContentInfo.mediaType = type
metashare.ResourceInfo#DistributionInfo.availability = rights
metashare.ResourceInfo#DistributionInfo#LicenseInfo.distributionAccessMedium =
medium

metashare.ResourceInfo#DistributionInfo#LicenseInfo.restrictionsOfUse = rights
metashare.ResourceInfo#fResourceCreationInfo#FundingInfo#ProjectInfo.fundingType =
description
metashare.ResourceInfo#fResourceCreationInfo#FundingInfo#ProjectInfo.projectName =
description

metashare.ResourceInfo#TextInfo#SizeInfo.* = extent
metashare.ResourceInfo#ContactInfo#PersonInfo#0rganizationInfo.organizationName =
contributor

To make a proper CMD file we also have to add the administrative metadata
("headers"):

e MdCreator is omitted as it has minOccurs=0; but it can be set to something like
“UFALCmdiCrosswalk” (name of script can be used)

e MdCreationDate is set to item.getLastModified()

e MdSelfLink - should be set to “the URL or PID of this file”; but we actually don't have
any real CMD file so it is set to url that will return CMDI metadata for this particular
item. le. a link to OAl app with prefilled query (verb, identifier, metadataprefix).

e MdProfile - URL of profile’s XSD in the component registry.

e MdCollectionDisplayName - item.getOwningCollection(). Eg. "UFAL - Published Data".
According to FAQ “an (optional but recommended) plain text indication to which
collection this file belongs. Used for the Collection facet in the VLO".

e Resources - section, containing links to:
o external files (e.g. an annotation file or a sound recording) and/or other CMDI
metadata files (to build hierarchies)

o The only attached resource, referenced through “hdl.handle.net +
item.getHandle()", is the item’s "webpage” in DSpace.

e JournalFileProxyList(links to file(s?) tracking the changes of a resource) and
ResourceRelationList are left empty.

Updating the schema in new installs

The dspace ant build file contains a job to populate the metadata tables. It does so by
running Metadatalmporter on xml file with described schema. If the schema should
change (eg. new items) this file needs to be changed. That can be done either

5|Page

VIADAT-DEPOSIT Documentation (user)

manually or you can update the schema in any running instance (through xmlui) and
use MetadataExporter to create this file.

Run the following from [installation]/config

In 1.8 it is simmilar (-f contains the path to created file; -s name of the schema in
dspace instance you are exporting from)

java -Ddspace.configuration=./dspace.cfg -cp ../lib/dspace-api-1.8.2.jar:../lib/*
org.dspace.administer.MetadataExporter -f [git-checkout-
dir]/sources/dspace/config/registries/metashareSchema.xml -s metashare

Quality

We should try to provide as consistent metadata as possible. That means from time
to time checking the values and if we come to conclusion there are multiple values
for one entity (author, affiliated organization, etc.) we should replace it with just one...
Since we don't display all the metadata in item browse, our main feedback are
currently the organizations that harvest our repository (eg. VLO). One “drawback”
with this approach is we actually see our metadata after certain mapping (eg. our
publisher and affiliated institution are both organization of some kind, so there is
nothing “preventing” from grouping this under one facet called organization).

So identifying from which field the value came might be somewhat tedious. In VLO
you can display the source metadata, the dc metadata should be clear and most of
the (X)Paths in the resourcelnfo component should resemble our database entries.
But some values are generated automatically, database uses some “fake” fields (eg.
detailedType) which are named differently based on the type of resource and some
entries resemble the structure of the first version of schema which might have
changed (something moved to other component). The easiest way to identify the
field is thus probably following the links to the item display; going to full display and
searching the value through browsers find. Or connecting to psql and doing the
search there, which is currently probably the best way...since you'll want to find other
items, or do some mass replace.

Other thing is that from time to time we might not like under which facet certain
value appears, there's really not much we can do. We should check the semantics of
the field, to see if it really matches our usage (if we are using the right fields for the
right values). Some fields might have broader semantics then we choose to use (eg.
author = person || institution, we use it just for people; it can make sense when
people and institutions are under one facet). The grouping of different fields under
one is usually application specific.

6|Page

