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Block 3.1
Ensemble learning methods

Outline

• Combining classifiers into ensembles

• Bagging vs. boosting

• Bagging – example classifier

• Random Forests

• AdaBoost
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Ensemble classifiers – a motivation exercise

Consider the following task – we have a binary classification problem and
a number of predictors, each with error less than 0.5. Will the resulting
majority voting ensemble have an error lower than the single classifers?

– Depends on the accuracy and the diversity of the base learners!

Particular settings – assume that you have

• 21 classifiers
• each with error p = 0.3
• their outputs are statistically independent

Compute the error of the ensemble under these conditions!
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General scheme of combining classifiers

Resampling approach

• Distribute the training data into K portions

• Run the learning process to get K different models

• Collect the output of the K models use a combining function to get a
final output value
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Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with
replacement, each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while
the examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability
that we do not pick an instance is 1− 1/n. The probability that we
do not pick it after n draws is (1− 1/n)n ≈ e−1 .

= 0.368.

• It means that for training the system will not use 36.8% of the data,
and the error estimate will be pessimistic. So the solution is to repeat
the process many times.
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Same algorithm, different classifiers
Combining classifiers to improve the performance

Bootstrapping methods – key ideas

• combining the classification results from different classifiers to
produce the final output

• using (un)weighted voting
• different training data
• different features
• different values of the relevant paramaters
• performance: complementarity −→ potential improvement

Two fundamental approaches

• Bagging works by taking a bootstrap sample from the training set
• Boosting works by changing the weights on the training set
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Bagging and boosting — the difference

• Bagging: each predictor is trained independently

• Boosting: each predictor is built on the top of previous predictors
trained
– Like bagging, boosting is also a voting method. In contrast to
bagging, boosting actively tries to generate complementary learners
by training the next learner on the mistakes of the previous learners.
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Combining multiple learners

• the more complementary the learners are, the more useful their
combining is

• the simpliest way to combine multiple learners is voting
• in weighted voting the voters (= base-learners) can have different
weights

Unstable learning

• learning algorithm is called unstable if small changes in the training
set cause large differences in generated models

• typical unstable algorithm is the decision trees learning
• bagging or boosting techniques are a natural remedy for unstable
algorithms
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Bagging

• Bagging is a voting method that uses slightly different training sets
(generated by bootstrap) to make different base-learners. Generating
complementary base-learners is left to chance and to unstability of the
learning method.

• Generally, bagging can be combined with any approach to learning.
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Bagging – algorithm

Bootstrap AGGregatING

1 for i ← 1 to K do
2 Traini ← bootstrap(Data)

3 hi ← TrainPredictor(Traini)

Combining function

• Classification: hfinal(x) = MajorityVote(h1(x), h2(x), . . . , hK(x))

• Regression: hfinal(x) = Mean(h1(x), h2(x), . . . , hK(x))
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Random Forests

• an ensemble method based on decision trees and bagging

• builds a number of random decision trees and then uses voting

• introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

• very good (state-of-the-art) prediction performance

• a nice page with description
www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

• important: Random Forests helps to
• avoid overfitting (by random sampling the training data set)
• select important/useful features (by random sampling the feature set)

ESSLLI ’2015 Hladká & Holub Day 3, page 11/56



Building Random Forests

The algorithm for building a tree in the ensemble

1 Having a training set of the size n, sample n cases at random - but
with replacement, and use the sample to build a decision tree.

2 If there are M input features, choose a less number m� M (fixed for
the whole procedure). When building the tree, at each node m
variables are selected at random out of the M and the best split on
these m features is used to split the node.

3 Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!
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Regularized Random Forests

• a recent extension of the original Random Forest
– introduced by Houtao Deng and George Runger (2012)

• produces a compact feature subset

• provides an effective and efficient feature selection solution for many
practical problems

• overcomes the weak spot of the ordinary RF: Random Forest
importance score is biased toward the variables having more
(categorical) values

• a useful page: https://sites.google.com/site/houtaodeng/rrf
– a presentation
– a sample code
– links to papers
– a brief explanation of the difference between RRF and guided RRF
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R packages for Random Forests

• randomForest: Breiman and Cutler’s random forests for classification
and regression
– Classification and regression based on a forest of trees using random
inputs.

• RRF: Regularized Random Forest
– Feature Selection with Regularized Random Forest. This package is
based on the ’randomForest’ package by Andy Liaw. The key
difference is the RRF function that builds a regularized random forest.
– http://cran.r-project.org/web/packages/RRF/index.html

• party: A Laboratory for Recursive Partytioning
– a computational toolbox for recursive partitioning
– cforest() provides an implementation of Breiman’s random forests
– extensible functionality for visualizing tree-structured regression
models is available
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Boosting

Motivation

• I want to write a program that will accurately predict the winner of a
tennis tournament based on the information like number of
tournaments recently won by each player.

• I have not much experience so I ask a highly successfull expert
gambler to explain his betting strategy. In general, he is not able to
explain a grand set of rules for predicting a winner. However, when he
is provided with the data for a particular tournament, the expert has
no problem to come up with a "rule of thumb" like Bet on the player
who has recently won the most matches.

• Such a rule of thumb is obviously rough and inaccurate, we can
expect to provide predictions that are at least a little bit better than
random guessing.
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Boosting

Motivation

• How to extract rules of thumb from expert that will be the most
useful?

• How to combine moderately accurate rules of thumb into a single
highly accurate prediction rule?

Basic idea

• Boosting is a method that produces a very accurate predictor by
combininig rough and moderately accurate predictors.

• It is based on the observation that finding many rough predictors
(rules of thumb) can be easier than finding a single, highly accurate
predictor.
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Boosting — Adaboost (Adaptive Boosting)

AdaBoost is a boosting method that repeatedly calls a given weak
learner, each time with different distribution over the training data. Then
we combine these weak learners into a strong learner.

• originally proposed by Freund and Schapire (1996)
• nice presentation including theoretical details and a demonstration
available at
http://cmp.felk.cvut.cz/∼sochmj1/adaboost_talk.pdf
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Boosting — Adaboost (Adaptive Boosting)

Key questions

• How to choose the distribution?
• How to combine the weak predictors into a single predictor?
• How many weak predictors should be trained?

Schapire’s strategy: Change the distribution over the examples in each
iteration, feed the resulting sample into the weak learner, and then
combine the resulting hypotheses into a voting ensemble, which, in the
end, would have a boosted prediction accuracy.
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Binary classification and AdaBoost

• We explain the notion of boosting using binary classification with the
training data

Data = {〈xi , yi〉 : xi ∈ X , yi ∈ Y ,Y = {−1,+1}, i = 1, . . . , n}

.

• We need to define distribution D over Data such that
n∑

i=1
Di = 1.

• A weak classifier ht : X → Y has the property

errorD(ht) < 1/2.
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AdaBoost
• Initialize D1(i) = 1/n
• At each step t

• Learn ht using Dt : find the weak classifier ht with the minimum

weighted sample error errorDt (ht) =
n∑

i=1
Dt(i) δ(h(xi) 6= yi)

• Set weight αt of ht based on the sample error

αt =
1
2 ln

(
1− errorDt (ht)

errorDt (ht)

)
• Update the distribution (Zt is a normalization factor)

Dt+1 =
1
Zt
Dt e−αtyiht(xi )

• Stop when impossible to find a weak classifier being better than chance

• Output the final classifier hfinal(x) = sign
T∑
i=1

αihi(x)
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AdaBoost

• constructing Dt :
• On each round, the weights of incorrectly classified instances are

increased so that the algorithm is forced to focus on the hard training
examples.

• D1(i) = 1/n

• given Dt and ht (i.e. update Dt):

Dt+1(i) =
Dt(i)

Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

=
Dt(i)

Zt
e−αtyiht(xi ),

where Zt is normalization constant Zt =
∑

i Dt(i) e−αtyiht(xi )

• αt measures the importance that is assigned to ht
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AdaBoost

Weights

• errorDt (ht) < 1
2 ⇒ αt > 0

• the smaller the error, the bigger the weight of the weak learner

• The bigger the weight, the more impact on the strong classifier:
errorDt (h1) < errorDt (h2)⇒ α1 > α2

• Dt+1 =
1
Zt
Dt e−αtyiht(xi )

The weights of correctly classified instances are reduced while weights
of misclassified instances are increased.
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AdaBoost.M1 — multiclass problem

Multiclass problem

• Assume classification task where Y = {y1, . . . , yk}

ht : X → Y ,

Dt+1(i) =
Dt(i)

Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

hfinal(x) = argmaxy∈Y
∑

{y | ht(x)=y}
αt .

We can prove same bound on the error if ∀t : εt ≤ 1
2
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Block 3.2
Model complexity and regularization

Outline

• Overfitting
• Regularization theoretically

• Ridge regression
• Lasso
• Recap of linear regression
• Recap of logistic regression
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Settings

• Suppose m features A1, . . . ,Am and a set of possible target values Y
• Suppose development data as a set of instances

D = {(xi , yi), xi = 〈x1
i , . . . , xm

i 〉, yi ∈ Y },
where xi are feature vectors and yi are the corresponding target values

Let h? be a best approximation of c trained on D.
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Model complexity

Model complexity is the number of hypothesis parameters

Θ =< Θ0, . . . ,Θm >
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Model complexity – example
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Model complexity – example

• h(x): a straight line – determined by two parameters of the prediction
function
– doesn’t fit two examples

• h2(x): a parabola – determined by three parameters of the prediction
function
– doesn’t fit one example

• h3(x): a curve – determined by many parameters of the prediction
function
– perfectly fits all examples
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Model complexity and overfitting

Finding a model that minimizes generalization error
. . . is one of central goals of the machine learning process
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Bias and variance

1 Select a machine learning algorithm
2 Get k different training sets
3 Get k predictors h?1, . . . , h?k
• Bias measures error that originates from the learning algorithm
– how far off in general the predictions by k predictors are from the
true output value

• Variance measures error that originates from the training data
– how much the predictions for a test instance vary between k
predictors
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Bias and variance
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Bias and variance

Generalization error errorD(h) measures how well a hypothesis h
generalizes beyond the used training data set, to unseen data with
distribution D.

Decomposition of errorD(h)

errorD(h) = Bias2 + Variance
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Bias and variance

• underfitting = high bias
• overfitting = high variance
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Regularization

We want a model in between which is

• powerful enough to model the underlying structure of data
• not so powerful to model the structure of the training data

Let’s prevent overfitting by complexity regularization, a technique that
regularizes the parameter estimates, or equivalently, shrinks the parameter

estimates towards zero

ESSLLI ’2015 Hladká & Holub Day 3, page 34/56



Regularization

• A machine learning algorithm estimates hypothesis parameters
Θ =< Θ0,Θ1, . . . ,Θm > using Θ? that minimizes loss function for
the data D

Θ? = argmin
Θ

loss(Θ)

• Regularization

Θ? = argmin
Θ

loss(Θ) + λ ∗ penalty(Θ)

where λ ≥ 0 is a tuning parameter
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Regularization – Ridge regression

penalty(Θ) = Θ2
1 + · · ·+ Θ2

m

Θ? = argmin
Θ

loss(Θ) + λ ∗ (Θ2
1 + · · ·+ Θ2

m)

The penalty is applied to Θ1, . . . ,Θm, but not to Θ0, since the goal is to
regularize the estimated association between each feature and the target
value.
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Ridge regression

Θ? = argmin
Θ

loss(Θ) + λ ∗ (Θ2
1 + · · ·+ Θ2

m)

• Let Θ?
λ1, . . . ,Θ

?
λm be ridge regression parameter estimates for a

particular value of λ

• Let Θ?
1, . . . ,Θ

?
m be unregularized parameter estimates

• When λ = 0, then Θ?
λi = Θ?

i for i = 1, . . . ,m

• When λ is extremely large, then Θ?
λi = 0 for i = 1, . . . ,m

• When λ between, we are fitting a model and skrinking the
parameteres
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Ridge regression
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Ridge regression – alternative formulation

Θ? = argmin
Θ

loss(Θ)

subject to Θ2
1 + · · ·+ Θ2

m ≤ s

• the gray circle represents the
feasible region for Ridge
regression; the contours
represent different loss values for
the unconstrained model
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Regularization – Lasso

penalty(Θ) = |Θ1| + · · ·+ |Θm|

Θ? = argmin
Θ

loss(Θ) + λ ∗ (|Θ1| + · · ·+ |Θm|)
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Lasso

Θ? = argmin
Θ

loss(Θ) + λ ∗ (Θ1| + · · ·+ |Θm|)

• Let Θ?
λ1, . . . ,Θ

?
λm be lasso regression parameter estimates

• Let Θ?
1, . . . ,Θ

?
m be unregularized parameter estimates

• When λ = 0, then Θ?
λi = Θ?

i for i = 1, . . . ,m

• When λ grows, then the impact of penalty grows

• When λ is extremely large, then Θ?
λi = 0 for i = 1, . . . ,m
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Lasso
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Lasso – alternative formulation

Θ? = argmin
Θ

loss(Θ)

subject to |Θ1|+ · · ·+ |Θm| ≤ s

• the grey square represents the
feasible region of the Lasso; the
contours represent different loss
values for the unconstrained
model

• the feasible point that minimizes
the loss is more likely to happen
on the coordinates on the Lasso
graph than on the Ridge
regression graph since the Lasso
graph is more angular
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Ridge regression and Lasso – comparison

Difference between L1 and L2

Ridge regression shrinks all the parameters but eliminates none, while the
Lasso can shrink some parameters to zero.
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Recap of linear regression

Linear regression is a regression algorithm

Θ? = argmin
Θ

n∑
i=1

(h(xi)− yi)2

where

• h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm
• loss function = mean squared error
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Recap of linear regression

Intepretation of Θ

• h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm

Θj gives an average change in a target value with one-unit change in
feature Aj , holding other features fixed
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Regularized linear regression

h(x) = Θ0 + Θ1x1 + · · ·+ Θmxm

Θ? = argmin
Θ

n∑
i=1

(h(xi)− yi)2 + λ ∗ penalty(Θ)
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Recap of logistic regression

Logistic regression is a classification algorithm

Assume Y = {0, 1}

• modeling the probability h(x) = Pr(Y = 1|x;Θ)

h(x) = g(ΘTx) =
1

1 + e−ΘT x
,where Θ = 〈Θ0, . . . ,Θm〉

• prediction function of x

=

{
0, h(x) ≥ 0.5
1, h(x) < 0
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Recap of logistic regression

•
h(x)

1− h(x)
= odds ratio

• log odds is linear
log h(x)

1− h(x)
= ΘTx

• recall linear regression

h(x) = ΘTx
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Recap of logistic regression

Interpretation of Θ

Suppose Θ =< Θ0,Θ1 >

• linear regression h(x) = Θ0 + Θ1x1: Θ1 gives an average change in a
target value with one-unit change in A1

• logistic regression log h(x)
1−h(x) = Θ0 + Θ1x1: Θ1 gives an average

change in logit h(x) with one-unit change in A1
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Recap of logistic regression

Interpretation of Θ

Example: Classify CRY into two classes: "1" ∼ "1", "0" ∼ others. Use
one feature only. Thus

log h(x)

1− h(x)
= Θ0 + Θ1x1

Let p1 = Pr(Y = 1|x1 = 0) and p2 = Pr(Y = 1|x1 = 1). Then

• log p1
1−p1

= Θ0 + Θ1x1
x1=0
===⇒ p1

1−p1
= eΘ0

• log p2
1−p2

= Θ0 + Θ1x1
x1=1
===⇒ p2

1−p2
= eΘ0+Θ1

• p2
1−p2

/ p1
1−p1

= eΘ1 (i.e. the change in the odds of h(x) by unit change
in x1)
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Recap of logistic regression
Estimating Θ by maximizing the likelihood

• likelihood of the data

L(y1, . . . , yn;Θ,X) =
n∏

i=1
P(yi |xi;Θ)

• log likelihood of the data

`(y1, . . . , yn;Θ,X) = log L(y1, . . . , yn;Θ,X)

=
n∑

i=1
log P(yi |xi;Θ)

=
n∑

i=1
yi log P(yi |xi;Θ) + (1− yi) log(1− P(yi |xi;Θ))
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Recap of logistic regression
Estimating Θ by maximizing the likelihood

• loss function
J(Θ) = `(y1, . . . , yn;Θ,X)

=
n∑

i=1
yi log P(yi |xi;Θ) + (1− yi) log(1− P(yi |xi;Θ))

• optimization task
Θ? = argmaxΘ J(Θ)

= argminΘ − J(Θ)

= argminΘ

n∑
i=1
−yi log P(yi |xi;Θ)− (1− yi) log(1− P(yi |xi;Θ))
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Recap of logistic regression

Multinomial logistic regression Y = {y1, . . . , yk}

• train k one-versus-all binary classifiers h?i , i = 1, . . . , k
• classify x into the class K that maximizes h?K (x)
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Regularized logistic regression

h(x) =
1

1 + e−ΘT x

Θ? = argmin
Θ

− `(y1, . . . , yn;Θ,X) + λ ∗ penalty(Θ)
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MOV and VPR

We will address the MOV task using

1 linear regression
2 regularized linear regression

We will address the VPR task using

1 logistic regression
2 regularized logistic regression
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