Selected Topics in Applied Machine Learning: An integrating view on data analysis and learning algorithms

ESSLLI '2015 Barcelona, Spain

http://ufal.mff.cuni.cz/esslli2015

Barbora Hladká hladka@ufal.mff.cuni.cz

Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Block 2.1 <u>Data</u> analysis (cntnd)

Motivation No. 1

We, as students of English, want to understand the following sentences properly

- He broke down and cried when we talked to him about it.
- Major cried, jabbing a finger in the direction of one heckler.

If we are not sure, we check definitions for the verb cry in a dictionary

ESSLLI '2015 Hladká & Holub Day 2, page 2/38

Verb Patterns Recognition

```
CRY -- dictionary definitions
CIV 4: ****
   1 cry; cries; crying; cried
      When you cry, tears come from your eyes, usually because you are
      unhappy or hurt.
          I hung up the phone and started to cry.
         Please don't cry.
          He cried with anger and frustration.
         ...a crying baby.
      VR
  2 crv: cries: crving: cried
      If you cry something, you shout it or say it loudly.
          `Nancy Drew,' she cried, `you're under arrest!'.
         I cried: 'It's wonderful news!'
      VB
     cry; cries
      You can refer to a public protest about something or appeal for
      something as a cry of some kind. (JOURNALISM)
          There have been cries of outrage about this expenditure.
          Many other countries have turned a deaf ear to their cries for help.
      N-COUNT: usu N of/for n
```

Verb Patterns Recognition

Based on the explanation and the examples of usage, we can recognize the two meanings of *cry* in the sentences

- He broke down and cried when we talked to him about it. [1]
- Major cried, jabbing a finger in the direction of one heckler. [2]

ESSLLI '2015 Hladká & Holub Day 2, page 4/38

Verb Patterns Recognition

Motivation No. 2

We, as developers of natural language application, need to recognize verb meanings automatically.

Verb Patterns Recognition task (VPR) is the computational linguistic task of lexical disambiguation of verbs

- a lexicon consists of verb usage patterns that correspond to dictionary definitions
- disambiguation is recognition of the verb usage pattern in a given sentence

ESSLLI '2015 Hladká & Holub Day 2, page 5/38

VPR – **Verb** patterns

CRY -- Pattern definitions

Pattern 1	[Human] cry [no object]
Explanation	[[Human]] weeps usually because [[Human]] is unhappy or in pain
Example	His advice to stressful women was: ` If you cry , do n't cry alone.
Pattern 4	[Human] cry [THAT-CL WH-CL QUOTE] ({out})
Explanation	[[Human]] shouts ([QUOTE]) loudly typically, in order to attract attention
Example	You can hear them screaming and banging their heads, crying that they want to go home.
Pattern 7	[Entity State] cry [{out}] [{for} Action] [no object]
Explanation	[[Entity State]] requires [[Action]] to be taken urgently
Example	Identifying areas which cry out for improvement or even simply areas of muddle and misunderstanding, is by no means negative rather a spur to action.

E.g., the pattern 1 of *cry* consists of a subject that is supposed to be a Human and of no object.

ESSLLI '2015 Hladká & Holub Day 2, page 6/38

VPR – **Getting examples**

Examples for the VPR task are the output of annotation.

- ① Choosing verbs you are interested in −> cry, submit
- 2 Defining their patterns
- 3 Collecting sentences with the chosen verbs

VPR – **Getting examples**

- 4 Annotating the sentences
 - assign a pattern that fits best the given sentence
 - if you think that no pattern matches the sentence, choose "u"
 - if you do not think that the given word is a verb, choose "x"

ESSLLI '2015 Hladká & Holub Day 2, page 8/38

VPR - Data

Basic statistics

	CRY					SI	JBM	ΙΤ		
instances		250						250		
classes	1	4	7	u	Х	u	1	2	4	5
frequency	131	59	13	33	14	7	177	33	12	21

VPR – Data representation

instance	feature					
id		vecto	r		pattern	
	morphological	morpho-syntactic	morpho-syntactic	semantic		
	feature	feature	feature	feature		
	family	family	family	familiy		
	(MS)	(STA)	(MST)	(SEM)		
129825	0	0	0	0	1	
	0	0	0	0	7	

For more details, see vpr.handout posted at the course webpage.

VPR – Feature extraction

tp

He broke down and **cried** when we talked to him about it.

MF_tense_vbd MF_3p_verbs MF_3n_verbs	1 1 1	verb past tense – OK third word preceding the verb is verb – $broke$, OK third word following the verb is verb – $talked$, OK
STA.LEX_prt_none	1 1	there is no particle dependent on the verb – \ensuremath{OK} there is no preposition dependent on the verb – \ensuremath{OK}
 MST.GEN_n_subj	1	nominal subject of the verb – OK
SEM.s.ac	1	verb's subject is Abstract – <i>he</i> , KO

ESSLLI '2015 Hladká & Holub Day 2, page 11/38

true target pattern

VPR – Details on annotation

Annotation by 1 expert and 3 annotators

verb	target	number of	baseline	avg human	perplexity	kappa
	classes	instances	(%)	accuracy (%)	2 ^{H(P)}	
CRY	1,4,7,u,x	250	52,4	92,2	3,5	0,84
SUBMIT	1,2,4,5,u	250	70,8	94,1	2,6	0,88

- baseline is accuracy of the most frequent classifier
- avg human accuracy is average accuracy of 3 annotators with respect to the expert's annotation
- perplexity of a target class
- kappa is Fleiss kappa of inter-annotator agreement

ESSLLI '2015 Hladká & Holub Day 2, page 12/38

Questions?

Data analysis (cntnd)

Deeper understanding the task by statistical view on the data

We exploit the data in order to make prediction of the target value.

- Build intuition and understanding for both the task and the data
- Ask questions and search for answers in the data
 - What values do we see
 - What associations do we see
- Do plotting and summarizing

Analyzing distributions of values Feature frequency

Feature frequency

$$fr(A_i) = \#\{\mathbf{x}_i \mid x_i^j > 0\}$$

where A_j is the *j*-th feature, \mathbf{x}_i is the feature vector of the *i*-th instance, and \mathbf{x}_i^j is the value of A_j in \mathbf{x}_i .

Analyzing distributions of values Feature frequency

```
> examples <- read.csv("cry.development.csv", sep="\t")</pre>
> c <- examples[,-c(1,ncol(examples))]</pre>
> length(names(c)) # get the number of features
[1] 363
# compute feature frequencies using the fr function
> ff <- apply(c, 2, fr.feature)</pre>
> table(sort(ff))
0 1 2 3 4 5 6 7 8 9 10 12 14 15 16 20
181 47 26 12 9 3 5 6 4 4 7 1 3 1 2 1
21 24 25 26 28 29
                    30 31
                            32 34 35 39 41
                   .3
                             2 2
                                       1
                       5
                                     1
51
   55
                        89
                            92 98 138 151 176 181 217 218 245
           1 1 1 1 1 2
247 248 249
```

Analyzing distributions of values Feature frequency

Analyzing distributions of values Feature frequency

ESSLLI '2015 Hladká & Holub Day 2, page 18/38

Analyzing distributions of values Entropy

```
compute entropy using the entropy function
> e <- apply(c, 2, entropy)</pre>
> table(sort(round(e,2))
  0 0.04 0.07 0.09 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.28 0.31 0.33
181
      49
           27 13
                               5
                                   6
0.34 0.4 0.42 0.46 0.47 0.48 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
                     1
                          2
                               1 1
                                        3
                                             5
                                                  3
0.62 0.64 0.65 0.69 0.71 0.73 0.76 0.82 0.83 0.85 0.88 0.89 0.91 0.94
                           1 1
                                    1
                                         1
0.95 0.97 0.99
   1
        3
```

Analyzing distributions of values Entropy

ESSLLI '2015 Hladká & Holub Day 2, page 20/38

Analyzing distributions of values Entropy

Association between feature and target value Pearson contingency coefficient


```
# compute conditional entropy using the entropy.cond function
ce <- apply(c, 2, entropy.cond, y=examples$tp)
table(sort(round(ce,2))
 0 0.04 0.07 0.09 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.28 0.31 0.33
 181 49
           27 13
                               5 6
0.34 0.4 0.42 0.46 0.47 0.48 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
              3 1
                            2
                                          3
0.62 0.64 0.65 0.69 0.71 0.73 0.76 0.82 0.83 0.85 0.88 0.89 0.91 0.94
                       4 1 1 1
0.95 0.97 0.99
   1
        3
```

ESSLLI '2015 Hladká & Holub Day 2, page 24/38

ESSLLI '2015 Hladká & Holub Day 2, page 25/38

What values do we see

Analyzing distributions of values

Filter out uneffective features from the CRY data

```
> examples <- read.csv("cry.development.csv", sep="\t")</pre>
> n <- nrow(examples)</pre>
> ## remove id and target class tp
> c.0 <- examples[,-c(1,ncol(examples))]</pre>
> ## remove features with 0s only
> c.1 <- c.0[,colSums(as.matrix(sapply(c.0, as.numeric))) != 0]</pre>
> ## remove features with 1s only
> c.2 <- c.1[,colSums(as.matrix(sapply(c.1, as.numeric)))  != n]
> ## remove column duplicates
> c <- data.frame(t(unique(t(as.matrix(c.2)))))</pre>
> ncol(c.0) # get the number of input features
[1] 363
> ncol(c) # get the number of effective features
Γ1] 168
```

ESSLLI '2015 Hladká & Holub Day 2, page 27/38

Methods for basic data exploration Confusion matrix

Confusion matrices are contingency tables that display results of classification algorithms/annotations. They enables to perform error/difference analysis.

Example Two annotators A_1 and A_2 annotated 50 sentences with *cry*.

		A ₂ 1 4 7 u x				
		1	4	A ₂	u	X
	1	24 3 0 1 0	3	1	3	0
	4	3	3	0	1	1
A_1	7	0	2	4	0	1
	u	1	0	0	0	0
	X	0	1	0	0	2

Example 1

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 50 \% & 50 \% \\ A_2 & 50 \% & 50 \% \end{array}$$

Then

• the best possible agreement is

Example 1

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cc} & t_1 & t_2 \\ \hline A_1 & 50 \% & 50 \% \\ A_2 & 50 \% & 50 \% \\ \end{array}$$

- \bullet the best possible agreement is 100 %
- the worst possible agreement is

Example 1

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

	t_1	t_2
A_1	50 %	50 %
A_2	50 %	50 %

- ullet the best possible agreement is $100\,\%$
- the worst possible agreement is 0 %
- the "agreement-by-chance" would be

Example 1

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

	t_1	t_2
A_1	50 %	50 %
A_2	50 %	50 %

- ullet the best possible agreement is $100\,\%$
- the worst possible agreement is 0 %
- the "agreement-by-chance" would be 50 %

Example 2

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 90 \% & 10 \% \\ \end{array}$$

Then

the best possible agreement is

Example 2

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 90 \% & 10 \% \\ \end{array}$$

- \bullet the best possible agreement is 100 %
- the worst possible agreement is

Example 2

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 90 \% & 10 \% \\ \end{array}$$

Then

- the best possible agreement is $100 \,\%$
- the worst possible agreement is 80%
- the "agreement-by-chance" would be

ESSLLI '2015 Hladká & Holub Day 2, page 30/38

Example 2

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

	t_1	t_2
A_1	90 %	10 %
A_2	90 %	10 %

Then

- ullet the best possible agreement is $100\,\%$
- the worst possible agreement is 80%
- the "agreement-by-chance" would be 82 %

ESSLLI '2015 Hladká & Holub Day 2, page 30/38

Example 3

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc}
 & t_1 & t_2 \\
\hline
 A_1 & 90 \% & 10 \% \\
 A_2 & 80 \% & 20 \%
\end{array}$$

Then

the best possible agreement is

Example 3

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 80 \% & 20 \% \end{array}$$

- ullet the best possible agreement is 90 %
- the worst possible agreement is

Example 3

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

$$\begin{array}{c|cccc} & t_1 & t_2 \\ \hline A_1 & 90 \% & 10 \% \\ A_2 & 80 \% & 20 \% \end{array}$$

Then

- the best possible agreement is 90 %
- the worst possible agreement is 70 %
- the "agreement-by-chance" would be

ESSLLI '2015 Hladká & Holub Day 2, page 31/38

Example 3

Assume two annotators (A_1, A_2) , two classes (t_1, t_2) , and the following distribution:

	t_1	t_2
A_1	90 %	10 %
A_2	80 %	20 %

- ullet the best possible agreement is 90 %
- the worst possible agreement is 70 %
- the "agreement-by-chance" would be 74 %

The situation from Example 3 can be simulated in R

```
# N will be the sample size
> N = 10^6
# two annotators will annotate randomly
> A1 = sample(c(rep(1, 0.9*N), rep(0, 0.1*N)))
> A2 = sample(c(rep(1, 0.8*N), rep(0, 0.2*N)))
# percentage of their observed agreement
> mean(A1 == A2)
[1] 0.740112
# exact calculation -- just for comparison
> 0.9*0.8 + 0.1*0.2
[1] 0.74
```

ESSLLI '2015 Hladká & Holub Day 2, page 32/38

Cohen's kappa

Cohen's kappa was introduced by Jacob Cohen in 1960.

$$\kappa = rac{\mathsf{Pr}(\mathit{a}) - \mathsf{Pr}(\mathit{e})}{1 - \mathsf{Pr}(\mathit{e})}$$

- \bullet Pr(a) is the relative observed agreement among annotators
 - = percentage of agreements in the sample
- Pr(e) is the hypothetical probability of chance agreement
 - = probability of their agreement if they annotated randomly
- \bullet $\kappa > 0$ if the proportion of agreement obtained exceeds the proportion of agreement expected by chance

Limitations

- Cohen's kappa measures agreement between two annotators only
- for more annotators you should use Fleiss' kappa
- see http://en.wikipedia.org/wiki/Fleiss'_kappa
 ESSLLI'2015 Hladká & Holub Day 2, page 33/38

Cohen's kappa

		1 4 7 u x				
		1	4	7	u	X
	1	24 3 0 1 0	3	1	3	0
	4	3	3	0	1	1
A_1	7	0	2	4	0	1
	u	1	0	0	0	0
	x	0	1	0	0	2

Cohen's kappa: ?

Homework 2.1

Work with the SUBMIT data

- 1 Filter out uneffective features from the data using the filtering rules that we applied to the CRY data.
- 2 Draw a plot of the conditional entropy H(P|A) for the effective features. Then focus on the features for which $H(P|A) \ge 0.5$. Comment what you see on the plots.

VPR vs. MOV - comparison

	MOV	VPR
type of task	regression	classification
getting examples by	collecting	annotation
# of examples	100,000	250
# of features	32	363
categorical/binary	29/18	0/363
numerical	3	0
output values	1–5	5 discrete categories

ESSLLI '2015 Hladká & Holub Day 2, page 36/38

Block 2.2 Introductory remarks on VPR classifiers

VPR task – accuracy estimated by 9-fold cross-validation

All numbers are in %

method/task	VPR.cry	VPR.submit
MFC baseline	52.4	70.8
AVG Human	92.2	94.1
Best model with the provided features	80.4	90.0
Best model with additional features	84.8	93.6
SIMPLE MODELS		
Single Decision Tree	61.6	86.0
SVM	73.2	86.0
Simple Logistic Regression	67.2	82.4
RESAMPLING METHODS		
simple bagging	70.8	84.4
random forest	79.6	87.2

ESSLLI '2015 Hladká & Holub Day 2, page 37/38

Example Decision Tree classifier – cry

Trained using a cross-validation fold

ESSLLI '2015 Hladká & Holub Day 2, page 38/38