Selected Topics in Applied Machine Learning: An integrating view on data analysis and learning algorithms

ESSLLI '2015
Barcelona, Spain

http://ufal.mff.cuni.cz/esslli2015

Barbora Hladká hladka@ufal.mff.cuni.cz

Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Block 2.1 Data analysis (cntnd)

Motivation No. 1
We, as students of English, want to understand the following sentences properly

- He broke down and cried when we talked to him about it.
- Major cried, jabbing a finger in the direction of one heckler.

If we are not sure, we check definitions for the verb cry in a dictionary

Verb Patterns Recognition

CRY -- dictionary definitions

1 cry; cries; crying; cried
When you cry, tears come from your eyes, usually because you are unhappy or hurt.

I hung up the phone and started to cry.
Please don't cry.
He cried with anger and frustration.
...a crying baby.
VB
2 cry; cries; crying; cried
If you cry something, you shout it or say it loudly.
'Nancy Drew,' she cried, 'you're under arrest!'.
I cried: 'It's wonderful news!'
VB
5 cry; cries
You can refer to a public protest about something or appeal for something as a cry of some kind. (JOURNALISM)

There have been cries of outrage about this expenditure.
Many other countries have turned a deaf ear to their cries for help.
N-COUNT: usu N of/for n

Verb Patterns Recognition

Based on the explanation and the examples of usage, we can recognize the two meanings of cry in the sentences

- He broke down and cried when we talked to him about it. [1]
- Major cried, jabbing a finger in the direction of one heckler. [2]

Verb Patterns Recognition

Motivation No. 2

We, as developers of natural language application, need to recognize verb meanings automatically.

Verb Patterns Recognition task (VPR) is the computational linguistic task of lexical disambiguation of verbs

- a lexicon consists of verb usage patterns that correspond to dictionary definitions
- disambiguation is recognition of the verb usage pattern in a given sentence

VPR - Verb patterns

CRY -- Pattern definitions

Pattern 1	[Human] cry [no object]
Explanation	[[Human]] weeps usually because [[Human]] is unhappy or in pain
Example	His advice to stressful women was: ' If you cry, do n't cry alone.

Pattern 4 [Human] cry [THAT-CL|WH-CL|QUOTE] (\{out\})

Explanation [[Human]] shouts ([QUOTE]) loudly typically, in order to attract attention

Example You can hear them screaming and banging their heads, crying that they want to go home.

Pattern 7	[Entity \| State] cry [\{out\}] [\{for\} Action] [no object]
Explanation	[[Entity \| State]] requires [[Action]] to be taken urgently
Example	Identifying areas which cry out for improvement or even simply areas of muddle and misunderstanding, is by no means negative -- rather a spur to action.

E.g., the pattern 1 of cry consists of a subject that is supposed to be a Human and of no object.

VPR - Getting examples

Examples for the VPR task are the output of annotation.
(1) Choosing verbs you are interested in -> cry, submit
(2) Defining their patterns
(3) Collecting sentences with the chosen verbs

VPR - Getting examples

(4) Annotating the sentences

- assign a pattern that fits best the given sentence
- if you think that no pattern matches the sentence, choose "u"
- if you do not think that the given word is a verb, choose "x"

VPR - Data

Basic statistics

	CRY					SUBMIT				
instances			250					250		
classes	1	4	7	u	x	u	1	2	4	5
frequency	131	59	13	33	14	7	177	33	12	21

VPR - Data representation

instance id	feature vector				target pattern
	morphological feature family (MS)	morpho-syntactic feature family (STA)	morpho-syntactic feature family (MST)	semantic feature familiy (SEM)	
129825	0	0	0	0	1
	\ldots	. .	
.
	0	0	0	0	7
	\ldots	

For more details, see vpr.handout posted at the course webpage.

VPR - Feature extraction

He broke down and cried when we talked to him about it.

MF_tense_vbd
MF_3p_verbs
MF_3n_verbs
STA.LEX_prt_none 1
STA.LEX_prep_none 1
MST.GEN_n_subj 1 nominal subject of the verb - OK
SEM.s.ac
tp

1 verb past tense - OK
1 third word preceding the verb is verb - broke, OK
1 third word following the verb is verb - talked, OK
1 there is no particle dependent on the verb - OK 1 there is no preposition dependent on the verb - OK

1 verb's subject is Abstract - he, KO
1 true target pattern

VPR - Details on annotation

Annotation by 1 expert and 3 annotators

verb	target classes	number of instances	baseline $(\%)$	avg human accuracy $(\%)$	perplexity $2^{\text {H(P) }}$	kappa
CRY	$1,4,7, \mathbf{u}, \mathrm{x}$	250	52,4	92,2	3,5	0,84
SUBMIT	$1,2,4,5, \mathrm{u}$	250	70,8	94,1	2,6	0,88

- baseline is accuracy of the most frequent classifier
- avg human accuracy is average accuracy of 3 annotators with respect to the expert's annotation
- perplexity of a target class
- kappa is Fleiss kappa of inter-annotator agreement

Questions?

Data analysis (cntnd)

Deeper understanding the task by statistical view on the data We exploit the data in order to make prediction of the target value.

- Build intuition and understanding for both the task and the data
- Ask questions and search for answers in the data
- What values do we see
- What associations do we see
- Do plotting and summarizing

Analyzing distributions of values Feature frequency

- Feature frequency

$$
\operatorname{fr}\left(A_{j}\right)=\#\left\{\mathbf{x}_{i} \mid x_{i}^{j}>0\right\}
$$

where A_{j} is the j-th feature, \mathbf{x}_{i} is the feature vector of the i-th instance, and x_{i}^{j} is the value of A_{j} in \mathbf{x}_{i}.

Analyzing distributions of values Feature frequency

```
> examples <- read.csv("cry.development.csv", sep="\t")
> c <- examples[,-c(1,ncol(examples))]
> length(names(c)) # get the number of features
[1] 363
# compute feature frequencies using the fr function
> ff <- apply(c, 2, fr.feature)
> table(sort(ff))
\begin{tabular}{rrrrrrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 14 & 15 & 16 & 20 \\
181 & 47 & 26 & 12 & 9 & 3 & 5 & 6 & 4 & 4 & 7 & 1 & 3 & 1 & 2 & 1
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrrrrrr}
21 & 24 & 25 & 26 & 28 & 29 & 30 & 31 & 32 & 34 & 35 & 39 & 41 & 42 & 46 & 48 & 49 \\
3 & 1 & 1 & 2 & 1 & 1 & 3 & 5 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 3 & 1
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrrrrr}
51 & 55 & 64 & 65 & 77 & 82 & 89 & 92 & 98 & 138 & 151 & 176 & 181 & 217 & 218 & 245 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
247 248 249
    1 1 2
```


Analyzing distributions of values Feature frequency

> VPR task: cry
> (feature-frequency-cry.R)

features

Analyzing distributions of values Feature frequency

Analyzing distributions of values Entropy

```
# compute entropy using the entropy function
> e <- apply(c, 2, entropy)
> table(sort(round(e,2))
    0 0.04 0.07 0.09 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.28 0.31 0.33
    181
    0.34 0.4 0.42 0.46 0.47 0.48 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
        2
    0.62 0.64 0.65 0.69 0.71 0.73 0.76 0.82 0.83 0.85 0.88 0.89 0.91 0.94
        1
    0.95 0.97 0.99
        1 3 1
```


Analyzing distributions of values Entropy

VPR task: cry
(entropy-cry.R)

Analyzing distributions of values Entropy

Association between feature and target value Pearson contingency coefficient

VPR task: cry
 (pearson-contingency-coefficient-vpr.R)

Association between feature and target value Conditional entropy

Association between feature and target value Conditional entropy

```
# compute conditional entropy using the entropy.cond function
ce <- apply(c, 2, entropy.cond, y=examples$tp)
table(sort(round(ce,2))
    0 0.04 0.07 0.09 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.28 0.31 0.33
    181
    0.34 0.4 0.42 0.46 0.47 0.48 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
        2
    0.62 0.64 0.65 0.69 0.71 0.73 0.76 0.82 0.83 0.85 0.88 0.89 0.91 0.94
        1
    0.95 0.97 0.99
        1 3 1
```


Association between feature and target value Conditional entropy

> VPR task: cry
> (entropy-cry.R)

Association between feature and target value Conditional entropy

What values do we see

Analyzing distributions of values

Filter out uneffective features from the CRY data

```
> examples <- read.csv("cry.development.csv", sep="\t")
> n <- nrow(examples)
> ## remove id and target class tp
> c.0 <- examples[,-c(1,ncol(examples))]
> ## remove features with Os only
> c.1 <- c.0[,colSums(as.matrix(sapply(c.0, as.numeric))) != 0]
> ## remove features with 1s only
> c.2 <- c.1[,colSums(as.matrix(sapply(c.1, as.numeric))) != n]
> ## remove column duplicates
> c <- data.frame(t(unique(t(as.matrix(c.2)))))
> ncol(c.0) # get the number of input features
[1] 363
> ncol(c) # get the number of effective features
[1] 168
```


Methods for basic data exploration Confusion matrix

Confusion matrices are contingency tables that display results of classification algorithms/annotations. They enables to perform error/difference analysis.

Example Two annotators A_{1} and A_{2} annotated 50 sentences with cry.

		A_{2}				
		$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	\mathbf{u}	\mathbf{x}
	$\mathbf{1}$	24	3	1	3	0
	A_{1}	$\mathbf{4}$	3	3	0	1
1	1					
	$\mathbf{7}$	0	2	4	0	1
	\mathbf{u}	1	0	0	0	0
	\mathbf{x}	0	1	0	0	2

What agreement would be reached by chance?

Example 1

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	50%	50%
A_{2}	50%	50%

Then

- the best possible agreement is

What agreement would be reached by chance?

Example 1

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	50%	50%
A_{2}	50%	50%

Then

- the best possible agreement is 100%
- the worst possible agreement is

What agreement would be reached by chance?

Example 1

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	50%	50%
A_{2}	50%	50%

Then

- the best possible agreement is 100%
- the worst possible agreement is 0%
- the "agreement-by-chance" would be

What agreement would be reached by chance?

Example 1

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	50%	50%
A_{2}	50%	50%

Then

- the best possible agreement is 100%
- the worst possible agreement is 0%
- the "agreement-by-chance" would be 50%

What agreement would be reached by chance?

Example 2

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	90%	10%

Then

- the best possible agreement is

What agreement would be reached by chance?

Example 2

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	90%	10%

Then

- the best possible agreement is 100%
- the worst possible agreement is

What agreement would be reached by chance?

Example 2

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	90%	10%

Then

- the best possible agreement is 100%
- the worst possible agreement is 80%
- the "agreement-by-chance" would be

What agreement would be reached by chance?

Example 2

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	90%	10%

Then

- the best possible agreement is 100%
- the worst possible agreement is 80%
- the "agreement-by-chance" would be 82%

What agreement would be reached by chance?

Example 3

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	80%	20%

Then

- the best possible agreement is

What agreement would be reached by chance?

Example 3

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	80%	20%

Then

- the best possible agreement is 90%
- the worst possible agreement is

What agreement would be reached by chance?

Example 3

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	80%	20%

Then

- the best possible agreement is 90%
- the worst possible agreement is 70%
- the "agreement-by-chance" would be

What agreement would be reached by chance?

Example 3

Assume two annotators $\left(A_{1}, A_{2}\right)$, two classes $\left(t_{1}, t_{2}\right)$, and the following distribution:

	t_{1}	t_{2}
A_{1}	90%	10%
A_{2}	80%	20%

Then

- the best possible agreement is 90%
- the worst possible agreement is 70%
- the "agreement-by-chance" would be 74%

Example in R

The situation from Example $\mathbf{3}$ can be simulated in \mathbf{R}

```
# N will be the sample size
> N = 10^6
# two annotators will annotate randomly
> A1 = sample (c(rep (1, 0.9*N), rep (0, 0.1*N)))
>A2 = sample(c(rep (1, 0.8*N), rep (0, 0.2*N)))
# percentage of their observed agreement
mean(A1 == A2)
[1] 0.740112
# exact calculation -- just for comparison
> 0.9*0.8 + 0.1*0.2
[1] 0.74
```


Cohen's kappa

Cohen's kappa was introduced by Jacob Cohen in 1960.

$$
\kappa=\frac{\operatorname{Pr}(a)-\operatorname{Pr}(e)}{1-\operatorname{Pr}(e)}
$$

- $\operatorname{Pr}(a)$ is the relative observed agreement among annotators
$=$ percentage of agreements in the sample
- $\operatorname{Pr}(e)$ is the hypothetical probability of chance agreement
$=$ probability of their agreement if they annotated randomly
- $\kappa>0$ if the proportion of agreement obtained exceeds the proportion of agreement expected by chance

Limitations

- Cohen's kappa measures agreement between two annotators only
- for more annotators you should use Fleiss' kappa
- see http://en.wikipedia.org/wiki/Fleiss'_kappa

Cohen's kappa

		A_{2}				
		$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	\mathbf{u}	\mathbf{x}
	$\mathbf{1}$	24	3	1	3	0
	A_{1}	$\mathbf{4}$	3	0	1	1
	$\mathbf{7}$	0	2	4	0	1
	\mathbf{u}	1	0	0	0	0
	\mathbf{x}	0	1	0	0	2

Cohen's kappa: ?

Homework 2.1

Work with the SUBMIT data

(1) Filter out uneffective features from the data using the filtering rules that we applied to the CRY data.
(2) Draw a plot of the conditional entropy $\mathrm{H}(P \mid A)$ for the effective features. Then focus on the features for which $\mathrm{H}(P \mid A) \geq 0.5$. Comment what you see on the plots.

VPR vs. MOV - comparison

	MOV	VPR
type of task	regression	classification
getting examples by	collecting	annotation
\# of examples	100,000	250
\# of features	32	363
categorical/binary	$29 / 18$	$0 / 363$
numerical	3	0
output values	$1-5$	5 discrete categories

Block 2.2
 Introductory remarks on VPR classifiers

VPR task - accuracy	ated by ers are in \%	oss-valida
method/task	VPR.cry	VPR.submit
MFC baseline	52.4	70.8
AVG Human	92.2	94.1
Best model with the provided features	80.4	90.0
Best model with additional features	84.8	93.6
1		
SIMPLE MODELS		
Single Decision Tree	61.6	86.0
SVM	73.2	86.0
Simple Logistic Regression	67.2	82.4
RESAMPLING METHODS		
simple bagging	70.8	84.4
random forest	79.6	87.2

Example Decision Tree classifier - cry

Trained using a cross-validation fold

