## A Gentle Introduction to Machine Learning in Natural Language Processing using R

ESSLLI '2013 Düsseldorf, Germany

http://ufal.mff.cuni.cz/mlnlpr13

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

- 5.1 Cross-validation and confidence intervals
- 5.2 13 points you cannot miss on the way to ML
- 5.3 Overview of the course



## Block 5.1 Cross-validation and confidence intervals

The evaluation process



## Block 5.1 Cross-validation and confidence intervals

The evaluation process



Is it enough to test your classifier on one test set? You can get a good/bad result by chance!

ESSLLI '2013

Hladká & Holub

The more test data, the more confident evaluation ...



### k-fold cross-validation

# **Development working data is partitioned into** k subsets of equal size.

Then you do k iterations.

In the *i*-th step of the iteration, the *i*-th subset is used as a test set, while the remaining parts form the training set.

#### Example



#### 6-fold cross-validation process

When you get k different results from the cross-validation experiment, what can you conclude then?

#### 1 One Sample t-test

to test if the mean of a (normally distributed) population is equal to a given value

#### **2** Paired Two-Sample t-test

to test if the difference of the means of two populations is equal to a given value, assuming that the given sample contains paired individuals

You have two models, A and B, and for each of them 10 results – accuracies obtained from 10-fold cross-validation experiment.

```
> A.acc
[1] 0.853 0.859 0.863 0.871 0.832 0.848 0.863 0.860 0.850 0.849
> mean(A.acc)
[1] 0.8548
> B.acc
[1] 0.851 0.848 0.862 0.871 0.835 0.836 0.860 0.859 0.841 0.843
> mean(B.acc)
[1] 0.8506
```

The average accuracy of **A** is 85.48 %, while the average accuracy of **B** is only 85.06 %.

Is the model A \*really\* better than the model B?

ESSLLI '2013

To test if the difference between the models **A** and **B** is **statistically significant** we will check **confidence intervals** for the mean accuracy.

```
### Could the true mean of A accuracy be 0.8506?
> t.test(A.acc, mu=0.8506)
    One Sample t-test
data: A.acc
t = 1.2195, df = 9, p-value = 0.2537
alternative hypothesis: true mean is not equal to 0.8506
95 percent confidence interval:
    0.8470088 0.8625912
sample estimates:
mean of x
    0.8548
```

We cannot reject the null hypothesis that the mean of A accuracy is equal to 0.8506. The t-test says that the true mean of A accuracy could be between 0.8470088 and 0.8625912, which is the confidence interval at the significance level  $\alpha = 5$  %.

```
### Could the true mean of the difference be equal to zero?
> t.test(A.acc, B.acc)
Welch Two Sample t-test
data: A.acc and B.acc
t = 0.8157, df = 17.803, p-value = 0.4254
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.006625999 0.015025999
sample estimates:
mean of x mean of y
0.8548 0.8506
```

We cannot reject the null hypothesis that the mean of the difference between A accuracy and B accuracy is equal to 0. The t-test says that the true mean of the difference could be between -0.006625999 and 0.015025999, which is the confidence interval at the significance level  $\alpha = 5$  %.

#### Task and data management

- 1 Time management
- 2 Formulating the task
- 3 Getting data
- 4 The more data, the better
- **5** Feature engineering
- 6 Curse of dimensionality

#### Methods and evaluation

- Contraction Contractica Con
- 8 Development cycle
- 9 Evaluation
- Optimizing learning parameters
- Overfitting
- The more classifiers, the better
- ① Theoretical aspects of ML

## (1) Time management

How much time do particular steps take?



- Precise formulation of the task
- What are the objects of the task?
- What are the target values of the task?

- Gather data
- Assign true classification
- Clean it
- Preprocess it

#### If we don't have enough data

- **cross-validation** The data set *Data* is partitioned into subsets of equal size. In the *i*-th step of the iteration, the *i*-th subset is used as a test set, while the remaining parts from the training set.
- bootstrapping New data sets Data<sub>1</sub>, ..., Data<sub>k</sub> are drawn from Data with replacement, each of the same size as Data. In the *i*-th iteration, Data<sub>i</sub> forms the training set, the remaining examples in Data form the test set

- Understand the properties of the classified objects
  - How they interact with the target class
  - How they interact each other
  - How they interact with a given ML algorithm
  - Domain specific
- Feature selection manually
- Feature selection automatically: generate large number of features and then filter some of them out

- A lot of features  $\longrightarrow$  high dimensional spaces
- The more features, the more difficult to extract useful information
- Dimensionality increases  $\longrightarrow$  predictive power of classifier reduces
- The more features, the harder to train a classifier
- Remedy: feature selection, dimensionality reduction

#### Which one to choose?

First, identify appropriate learning paradigm

- Classification? Regression?
- Supervised? Unsupervised? Mix?
- If classification, are class proportions even or skewed?

In general, no learning algorithm dominates all others on all problems.

- Test developer's expectation
- What does it work and what doesn't?

#### Model assessment

• **Metrics** and **methods** for performance evaluation How to evaluate the performance of a classifier? How to obtain reliable estimates?

#### Classifier comparison

How to compare the relative performance among competing classifiers?

#### Classifier selection

Which classifier should we prefer?

## (10) Optimizing learning parameters

#### Searching for the best classifier, i.e.

- adapting ML algorithms to the particulars of a training set
- optimizing classifier performance

Optimization techniques

- Greedy search
- Beam search
- Grid search
- Gradient descent
- Quadratic programming

ESSLLI '2013

• . . .

#### To avoid it using

- cross-validation
- feature engineering
- parameter tuning
- regularization a standard method to penalize classifiers with more complex structure

## (12) The more classifiers, the better

#### • Build an ensemble of classifiers using

- different learning algorithm
- different training data
- different features
- **Analyze** their performance: complementarity implies potential improvement
- Combine classification results (e.g. majority voting).

#### Examples of ensemble techniques

- bagging works by taking a bootstrap sample from the training set
- **boosting** works by changing weights on the training set

**Computational learning theory** aims to understand fundamental issues in the learning process. Mainly the issues on

- How computationally hard is the learning problem?
- How much data do we need to be confident that good performance on that data really means something?

## Block 5.3 Overview of the course

- 1.1 Relation between NLP and ML
- 1.2 Course outline
- 1.3 Non-technical view on ML
- 1.4 Dealing with data
- 1.5 Intro to R
- Summary



- 2.1 A few necessary R functions
- 2.2 Mathematics
- 2.3 Decision tree learning Theory
- 2.4 Decision tree learning Practice
- Summary



- 3.1 Formal foundations of ML
- 3.2 Naive Bayes learning Theory
- 3.3 Naive Bayes learning Practice
- 3.4 Evaluation of a classifier
- Summary



- 4.1 Information Theory and Feature Selection
- 4.2 SVM learning Theory
- 4.3 SVM learning Practice



- 5.1 Cross-validation and confidence intervals
- 5.2 13 points you cannot miss on the way to ML
- 5.3 Overview of the course



#### COL task

| Features       | Algorithm                     | Accuracy (%) |
|----------------|-------------------------------|--------------|
| $A_1,, A_{11}$ |                               |              |
|                | DT                            | 87.8         |
|                | NB                            | 85.3         |
|                | SVM (kernel=linear, cost=10)  | 86.8         |
|                | SVM (kernel=linear, cost=100) | 86.8         |
| $A_1,, A_{10}$ |                               |              |
|                | DT                            | 85.6         |
|                | NB                            | 85.6         |
|                | SVM (kernel=linear, cost=10)  | 85.4         |
|                | SVM (kernel=linear, cost=100) | 85.4         |

### You are at the very beginning... Good luck!!!