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Day 3

• 3.1 Formal foundations of ML
• 3.2 Naive Bayes learning – Theory
• 3.3 Naive Bayes learning – Practice
• 3.4 Evaluation of a classifier
• Summary
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Block 3.1
Formal foundations of machine learning

Machine learning process – five basic steps
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Formulating the task

1 Task description
WSD: Assign the correct sense to the target word "line"
COL: Decide whether the given word pair forms a semantic collocation

2 Object specification
WSD: Sentences containing the target word
COL: Word pairs

3 Specification of target class C and its values y1, y2, ..., yk
WSD: SENSE = {CORD,DIVISION,FORMATION,PHONE,PRODUCT,TEXT}
COL: Class = {YES,NO}
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Getting both training and test data

Step 1: Getting feature vectors
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Getting both training and test data

Step 1: Getting feature vectors

Notation

• Features as variables A1, ..., Am

• Feature values x1, ..., xm, xi ∈ Ai

• Each object represented as feature vector x = 〈x1, ..., xm〉
• feature vectors are elements in an m-dimensional feature space
• set of instances X = {x : x = 〈x1, ..., xm〉, xi ∈ Ai}.
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Getting both training and test data

Step 1: Getting feature vectors – Example
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Getting both training and test data
Step 2: Assigning true classification

• Take a number of original objects and assign true classification to
each of them.

• Take these objects and their true classification, do preprocessing and
feature extraction. It results in Data = {〈x, y〉 : x ∈ X , y ∈ C}.
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Getting both training and test data

Step 3: Selecting training set Train and test set Test

• Train ⊆ Data

• Test ⊆ Data

• Train ∩ Test = ∅

• Train ∪ Test = Data
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Machine learning process
Where are we now?
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Building classifier

Classifier as a mapping
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Building classifier

Classifier as a mapping

• We look for a prediction
function, i.e. a classifier
c : X → C : c(x) = y ,
x = 〈x1, x2, ..., xm〉 ∈ X , y ∈ C .

• At the beginning we do not
know the target prediction
function. We need to
approximate it using a
hypothesis h : X → C .

• Then, we search for the best
hypothesis h? that is finally
taken as c.
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Two types of parameters in machine learning

• Each machine learning method determines a particular form of
prediction function.

• The purpose of the learning process is to search for the best
parameters of the prediction function.

learning hypothesis
parameters parameters

= parameters of the learning process = parameters of the prediction function
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Building classifier using training data

Terminological note

• Model = method + set of features + learning parameters

• Classifier = trained model, i.e. an output of the machine learning
process, i.e. a particular method trained on a particular training data.

• Prediction function = classifier (used in mathematics). It’s a
function calculating a response value using predictor variables.

• Hypothesis = prediction function – not necessarily the best one
(used in theory of machine learning).
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Building classifier using training data

Supervised learning
Data = {〈x, y〉 : x ∈ X , y ∈ C}

Unsupervised learning
Data = {x : x ∈ X}
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Building classifier using training data

Classification: C is categorical Regression: C is numerical
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Building classifier using training data

Development cycle
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Building classifier using development data

Development data is the set of all examples available to developer

Development cycle
• Input Development data (e.g., col.development.csv)

• Splitting the development data into development working set and
development test set

• Iteration
• Learning parameters setting and feature set selection

Then using development working data to train a classifier

• Prediction on development working and test sets
Computing training error and generalization error

• Evaluation and analysis of the current classifier
• Output h? = the best classifier, with the lowest generalization error
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Overfitting
Example 1

Draw decision boundary between classes described by a linear function h(x)
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Overfitting
Example 2

Draw decision boundary between classes described by quadratic function
h2(x)
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Overfitting
Example 3

Draw decision boundary between classes described by complex function
h3(x)
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Overfitting

Comparing Examples 1–3

• h(x): a straight line – determined by two parameters of the prediction
function
– doesn’t fit two examples

• h2(x): a parabola – determined by three parameters of the prediction
function
– doesn’t fit one example

• h3(x): a curve – determined by many parameters of the prediction
function
– perfectly fits all examples

ESSLLI ’2013 Hladká & Holub Day 3, page 22/64



Overfitting

If the generalization error increases while the training error steadily
decreases then a situation of overfitting may have occurred.

Generalization error has its global minimum =⇒ the best model
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How to avoid overfitting

• feature engineering
• informative features, i.e. useful for classification; control it by

training error

• robust features, i.e. not sensitive to training data; control it by
generalization error

• learning parameters tuning
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Machine learning process
Where are we now?
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Prediction by h? on test data

Test data Test, unseen during the training (e.g. col.test.csv)

Doing prediction
∀x such that 〈x, y〉 ∈ Test: Get h?(x).
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Evaluation of h? on test data

Comparing true classification with the predicted classification
∀x such that 〈x, y〉 ∈ Test: Compare y and h?(x)
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Machine learning process & Development cycle
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Block 3.2
Naive Bayes learning – Theory

Machine learning process
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Naive Bayes learning

Two types of parameters in machine learning – Examples

ML learning hypothesis
algorithm parameters parameters
DT minsplit (minimum num-

ber of instances in the asso-
ciated training subset in or-
der for a decision to be at-
tempted), ...

decisions

NB – probabilities
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Probability theory

Example The task of word sense disambiguation

• Outside, a line of customers waited to get in.
• Are you sure of the sense FORMATION? Yes, I’m sure.

• He quoted a few lines from Shakespeare.

• Are you sure of the sense TEXT? Yes, I’m sure.

• This has been a very popular new line.
• Are you sure of the sense PRODUCT? No, I’m not sure.
• Are you sure of the sense CORD? No, I’m not sure.
• Which sense is more likely?

Probability theory provides a framework for the quantification and
manipulation of uncertainty.
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What is the sense of a word in a sentence?

Use conditional probabilities.

1 P(CORD|This has been a very popular new line.)

2 P(DIVISION|This has been a very popular new line.)

3 P(FORMATION|This has been a very popular new line.)

4 P(PHONE|This has been a very popular new line.)

5 P(PRODUCT|This has been a very popular new line.)

6 P(TEXT|This has been a very popular new line.)

Output the sense with the highest conditional probability.

Use training data to get conditional probabilities.
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Probabilistic inference

Let x be an instance with feature values x1, x2, ..., xm and C is a target
class with possible values {y1, y2, ..., yk}.

Goal: Classify x into one of k classes {y1, y2, ..., yk}.

Output: Target class value y∗ with the highest (maximal) conditional
probability P(yi |x), i.e.

y∗ = argmaxyi∈CP(yi |x)

The argmax operator will give yi for which P(yi |x) is maximal.
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Probabilistic inference

P(yi |x) and P(x|yi)

Example: Assume instance x = 〈x11, x13, x15〉.

P(PRODUCT|TRUE, draw, between)
from definition

=
P(PRODUCT, TRUE, draw, between)

P(TRUE, draw, between)

P(TRUE, draw, between|PRODUCT)
from definition

=
P(PRODUCT, TRUE, draw, between)

P(PRODUCT)

ESSLLI ’2013 Hladká & Holub Day 3, page 34/64



Probabilistic inference

How to calculate P(yi |x)?

Use Bayes theorem

P(A|B)
definition

=
P(B|A) ∗ P(A)

P(B)

Then

y = argmaxyi∈CP(yi |x)
Bayes theorem

= argmaxyi∈C
P(x|yi)P(yi)

P(x)
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Naive Bayes learning

y = argmaxyi∈C
P(x|yi)P(yi)

P(x)

x=〈x1,...,xm〉
= argmaxyi∈C

P(x1, ..., xm|yi)P(yi)
P(x1, ..., xm)

• Since P(x1, ..., xm) is not dependent on C , it doesn’t influence
argmaxyi∈C . Therefore

y = argmaxyi∈CP(x1, ..., xm|yi)P(yi)
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Naive Bayes learning

assumes that features it uses are conditionally independent of one
another given a target class.

Formal definition of conditional independence

Two events A and B are conditionally independent given an event D if

P(A|B, D) = P(A|D)

.

I.e. knowledge of B’s value doesn’t affect our belief in the value of A,
given a value of D.
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Naive Bayes learning

How to calculate P(x|yi) given the assumption of conditional
independence of features given a target class C?

P(x|yi) = P(x1, x2, ..., xm|yi)
chain rule

= P(x1|x2, ..., xm, yi)P(x2|x3, ..., xm, yi)...P(xm|yi)
ass. conditional indp.

= Πm
j=1P(xj |yi)

Then

y = argmaxyi∈CΠm
j=1P(xj |yi)P(yi)
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Naive Bayes classifier

How to calculate P(xj |yi) and P(yi)?

From training set Train that contains n training examples (|Train| = n):

• probabilities of classes

P(yi) = |{x : 〈x, yi〉 ∈ Train|/n

• conditional probabilities

P(xj |yi) =
|{x̂ : 〈〈x̂1, x̂2, ..., xj , ..., x̂m〉, yi〉 ∈ Train}|

|{x : 〈x, yi〉 ∈ Train|
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Naive Bayes classifier

Naive assumption of feature conditional independence given a target
class is rarely true in real world applications.

Nevertheless, Naive Bayes classifier surprisingly often shows good
performance in classification.
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Block 3.3
Naive Bayes (NB) classifier – Practice in R
The very basics of using Naive Bayes classifier implementation in R

• Task
Assign the correct sense to the target word “line” (“lines”, “lined”)

• Objects
Sentences containing the target word (“line”, “lines”, “lined”)

• Target class
SENSE = {CORD, DIVISION, FORMATION, PHONE, PRODUCT, TEXT}

• Features
Binary features A1, A2, ..., A11
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NB classifier in R – preparing data

examples <- read.table("../data/wsd.development.csv", header=T)
examples$A1 <- as.factor(examples$A1)
examples$A2 <- as.factor(examples$A2)
examples$A3 <- as.factor(examples$A3)
. . .

examples$A11 <- as.factor(examples$A11)

num.examples <- nrow(examples)
num.train <- round(0.9 * num.examples)
num.test <- num.examples - num.train

set.seed(123); s <- sample(num.examples)

indices.train <- s[1:num.train]
train <- examples[indices.train,]
indices.test <- s[(num.train+1):num.examples]
test <- examples[indices.test,]
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NB classifier in R – the package

First of all, if not installed yet, install the package e1071

# to install the package
> install.packages("e1071")

# to check if the package is installed
> library()

# to load the package
> library(e1071)

# to get help info
> help(naiveBayes)
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NB classifier in R – learning model M1

The first model M1 uses only one feature, namely A4

# to create a Naive Bayes model
> M1 <- naiveBayes(SENSE ~ A4, data=train)
>

Prediction on training data

> P1 <- predict(M1, train[5], type="class")
> print(table(P1))
P1

cord division formation phone product text
0 0 0 150 3022 0

>
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NB classifier in R – analyzing the model M1

Comparing the predicted values with the true senses
> table(train$SENSE, P1)

P1
cord division formation phone product text

cord 0 0 0 0 303 0
division 0 0 0 0 294 0
formation 0 0 0 0 268 0
phone 0 0 0 142 205 0
product 0 0 0 0 1646 0
text 0 0 0 8 306 0

>

56.37% of training examples are predicted correctly
> round(sum(diag(table(train$SENSE, P1)))/num.train * 100, 2)
[1] 56.37
>

ESSLLI ’2013 Hladká & Holub Day 3, page 45/64



NB classifier in R – testing the model M1

Predicted values vs. true senses on the test data
> P1.test <- predict(M1, test[5], type="class")
> table(test$SENSE, P1.test)

P1.test
cord division formation phone product text

cord 0 0 0 0 33 0
division 0 0 0 0 28 0
formation 0 0 0 0 28 0
phone 0 0 0 12 21 0
product 0 0 0 0 192 0
text 0 0 0 1 37 0

57.95% of test examples are predicted correctly
> round(sum(diag(table(test$SENSE, P1.test)))/num.test * 100, 2)
[1] 57.95
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Using more features

More models are described in the attached R-script
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Homework 3.1

1 Download the col.development.csv data set

2 Load it both into a spreadsheet and into R and look at the data
• There are 10 numerical features and 1 categorical feature – the

description is given on your handout material

3 Split the data into 90%– 10% training and test portions

4 Build your own classifier – you can use both (choose at least one)
• Decision Tree classifier
• Naive Bayes classifier

– You can use any subset of the 11 features

5 Prepare a feedback for us – if you want
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Block 3.4
Evaluation of a classifier

You need thorough evaluation to

1 get a reliable estimate of the classifier performance
– i.e. how it will perform on new – so far unseen – data instances
(possibly in the future)

2 compare your classifiers that you have developed
– to decide which one is “the best”

= Model assessment and selection
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Model robustness

You need good performance

not only on *your* data,

but also on any data that can be expected!
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Working with data
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Working with data
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Development data – the working portion

Development working data

Is used both for training your classifier and for evaluation when you tune
the learning parameters.

• Training data
is used for training your classifier with a particular learning parameter
settings when you tune your classifier

• Held-out data
is used for evaluating your classifier with a particular learning
parameter settings when you tune your classifier
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Development data – the test portion

Development test set

• the purpose is to simulate the “real” test data
• should be used only for your final development evaluation when your
classifier has already been tuned and your learning parameters are
finally set

• using it you get an estimate of your classifier’s performance at the
end of the development

• is also used for model selection
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Using bigger training sets

Generally, whenever you extend your training data, you should get a
better classifier!

If not, there is a problem

• either with your data
– e.g. noise data or not representative data (distortion of statistical

characteristics)
• or with your method/model

– e.g. bad settings of learning parameters

– Sometimes, you cannot get better results because the performance is
already stable/maximal. Even in this case using more training data should
imply better robustness.
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Using different training sets

1 When you tune your classifier you split your development working set
and use only the “training portion” to train your classifier. You always
hold out some data for classifier evaluation.
In this phase you can do cross-validation, bootstrapping, or any

other tricks. – Will be discussed later.
2 When you have your classifier tuned, keep the best parameters. Then

use all “development working” portion as training data to make the
best model.

3 Finally – after model selection – use all your development data as a
training set to train the best model you are able to develop.
This model can be later evaluated on the “unseen test” data

(which is NOT a developer’s job!).
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Using a test set

• Purpose – How well will your classifier perform on novel data?
– We can estimate the performance of the classifier using a test

data set. And we do NOT have any better chance to get reliable
estimate!

• Performance on the training data is not a good indicator of
performance on future data.
– You would easily overestimate!

• Important! – You should NOT have any look at your test data
during the development phase!
– Test set = independent instances that have NOT been used

in any way to create the classifier.
• Assumption – Both training data and test data are representative
samples of the underlying problem!
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Baseline classifier

The most trivial baseline classifier is the classifier that always gives
the most frequent class (sometimes called the MFC classifier).

Your classifier should never be worse than that baseline :–)

Usually a simple classifier (e.g. with a default settings of learning
parameters) is considered to be a baseline. Then you compare your
developed classifier to that baseline.
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Confusion matrix

Confusion matrix is a square matrix indexed by all possible target class
values.

** Comparing the predicted values with the true senses -- M3 **

Prediction
Truth cord division formation phone product text

cord 268 3 10 7 9 6
division 3 280 1 2 5 3
formation 13 3 225 4 19 4
phone 25 5 2 293 12 10
product 51 10 39 32 1442 72
text 12 1 7 4 28 262

Correctly predicted examples are displayed on the diagonal.
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Accuracy and error rate

Accuracy
is the number of correctly predicted examples divided by
the number of all examples in the predicted set

Error rate
is equal to 1 - accuracy
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The case of binary classification

Binary classification aka
= 2-class classification aka

= 0/1 classification

In binary classification tasks examples are sometimes regarded as divided
into two disjoint subsets:

• positive examples – “to be retrieved” (ones)
• negative examples – “not to be retrieved” (zeros)

Confusion matrix for binary classification has only 4 cells
### Example confusion matrix for binary classification
> table(cv.test$Class, pred.test)

prediction
0 1

true 0 580 69
1 37 144

>
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Confusion matrix for binary classification

Predicted class
Positive Negative

True class Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Explanation

• ‘Trues’ are examples correctly classified
• ‘Falses’ are examples incorrectly classified
• ‘Positives’ were predicted as positives (correctly or incorrectly)
• ‘Negatives’ were predicted as negatives (correctly or incorrectly)
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Proportion of correctly predicted test examples
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Basic performance measures

Measure Formula
Precision TP/(TP+FP)

Recall/Sensitivity TP/(TP+FN)
Specifity TN/(TN+FP)
Accuracy (TP+TN)/(TP+FP+TN+FN)

Very often you need to combine both good precision and good recall.
Then you usually use balanced F-score, so called F-measure

F = 2 Precision ∗ Recall
Precision + Recall
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Summary of Day 3
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